

ADVANCED CURRENT REGULATOR

DESCRIPTION

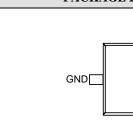
The A709 is a low dropout advanced current regulator rated for 20mA and 40mA for driving LEDs. The noise is very low. The special circuit design provides over 95% efficiency because of the very low dropout voltage. The low quiescent current and low dropout voltage are achieved by advanced Bi-CMOS process.

FEATURES

- 20mA and 40mA pure DC constant sink current.
- Output short / open circuit protection.
- Low dropout voltage.
- Low quiescent current.
- SOT-23 3L package available.
- Up to 95% efficiency
- Build-in thermal protection.
- Supply voltage range 2.7V ~ 12V.
- Output breakdown voltage up to 17V.
- 2KV HBM ESD protection
- Advanced Bi-CMOS process.

TYPICAL APPLICATION CIRCUIT

V_{LED+} O---


1 ED D 111 1

- LED Backlights.
- Mobile Phone, Smart Phone.
- Lighting
- Channel Letter

PACKAGE PIN OUT

OUT

APPLICATIONS

3 pin Plastic SOT-23 (Top View)

C _{BP}	字章 字章 字章
_	*
	LED
V _{DD} C _{IN}	V _{DD} A709
<u></u> = [GND
_	<u> </u>

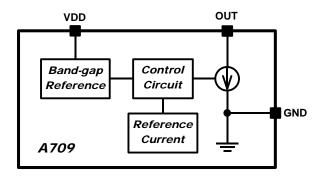
ORDER INFORMATION					
Output Cumont	W	Plastic SOT-23			
Output Current	VV	3-pin			
20mA		A709WFT-20			
40mA		A709WFT-40			
Note: The letter "F" is marked for Lead Free process, and letter "T" is marked for Tape & Reel.					

ABSOLUTE MAXIMUM RATINGS (Note)	
Input Voltage, V_{DD}	-0.3V to 13.2V
Output Voltage, V _{OUT}	-0.3V to 17V
Maximum Junction Temperature, T _J	150°C
Storage Temperature Range	-40°C to 150°C
Lead Temperature (soldering, 10 seconds)	260°C

Note:

Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal.

POWER DISSIPATION TABLE								
Package	θ_{JA} (°C/W)	Derating factor (mW/°C) $T_A \ge 25$ °C		T _A =70 °C Power rating (mW)	T _A = 85°C Power rating (mW)			
W	220	4.5	568	363	295			


Note:

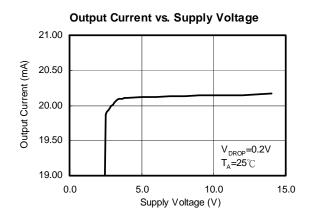
 $\label{eq:Junction Temperature Calculation:} \quad T_{\scriptscriptstyle J} = T_{\scriptscriptstyle A} + (P_{\scriptscriptstyle D} \; x \; \theta_{\scriptscriptstyle JA}).$

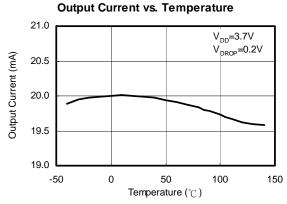
 $P_{\scriptscriptstyle D}$: Power Dissipation, $T_{\scriptscriptstyle A}$: Ambient temperature, $\theta_{\scriptscriptstyle JA}$: Thermal Resistance-Junction to Ambient The $\theta_{\scriptscriptstyle JA}$ numbers are guidelines for the thermal performance of the device/PC-board system.

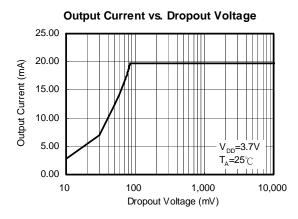
All of the above assume no ambient airflow.

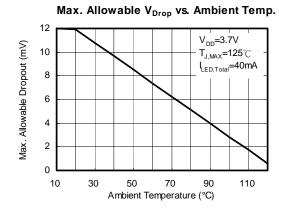
BLOCK DIAGRAM

PIN DESCRIPTION			
Pin Name Pin Function			
OUT Output pin. Connect to LED's cathode.			
V_{DD}	V _{DD} Power Supply pin.		
GND	Ground pin.		


RECOMMENDED OPERATING CONDITIONS						
Parameter Symbol Min Typ Max Un						
Supply Voltage	$V_{ m DD}$	2.7		12	V	
Operating Free-Air Temperature	T_A	-40		+85	°C	
Operating Junction Temperature	T_{J}			+125	°C	


ELECTRICAL CHARACTERISTICS							
V _{DD} =3.7V, T _A =25°C, No Loa	V _{DD} =3.7V, T _A =25°C, No Load, (Unless otherwise noted)						
Parameter Symbol Condition Min Typ Max Unit Apply Pin							
OUT Pin Dropout Voltage	V_{DROP}	Note		75	90	mV	
LED Civils Comment	_	A709WFT-20	18	20	22	4	
LED Sink Current	$I_{ m LED}$	A709WFT-40	36	40	44	mA	OUT
Load Regulation		V _{OUT} =0.15~3V			±3	%	
Line Regulation		$V_{DD}=2.7\sim12V, V_{OUT}=0.15V$			±3	%	
Supply Current	I_{DD}			300	600	uA	V_{DD}

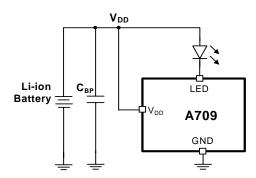

Note: LED Dropout Voltage: 90% \times I_{LED} @ V_{OUT}=150mV



CHARACTERISTIC CURVES

APPLICATION INFORMATION

Efficiency


The ACR (Advanced Current Regulator) architecture offers ultra low output dropout that significantly improves the efficiency compared to Inductive Boost type or Capacitor Charge Pump type LED driver. The system efficiency, defined as the ratio between the LEDs power and the input supplied power, is:

$$Efficiency = \frac{V_{\scriptscriptstyle F} \times I_{\scriptscriptstyle OUT}}{V_{\scriptscriptstyle DD} \times (I_{\scriptscriptstyle DD} + I_{\scriptscriptstyle OUT})} \cong \frac{V_{\scriptscriptstyle F} \times I_{\scriptscriptstyle OUT}}{V_{\scriptscriptstyle DD} \times I_{\scriptscriptstyle OUT}} = \frac{V_{\scriptscriptstyle F}}{V_{\scriptscriptstyle DD}}$$

Where, V_F is the forward voltage of LED.

Li-ion Battery Voltage Supply

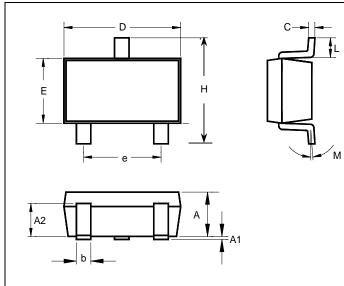
The A709 can work with Li-ion battery. The supply voltage of Li-ion battery ranges from 4.5V down to lower than 3V while the white/blue LED forward voltage (V_F) is in the range of 2.9V to 3.5V at 20~40mA current. The supply voltage range and LED forward voltage can be set to fully utilize Li-ion battery energy. For example, if the forward voltage of white LED is 3.2V at 20mA, the Li-ion battery can discharge until output voltage reaches 3.275V (normally around $1\% \sim 3\%$ power left in the battery). When Li-ion battery voltage is lower than the 3.275V, the LED current (brightness) will start to decrease.

PACKAGE

Top Marking for SOT-23

C: A709

X : Output Current Options


C = 20mA; E = 40mA;

Y : Year Code

W : Week Code

V: Identification Code

Surface Mount SOT-23

	INCHES			MILLIMETERS		
	MIN	TYP	MAX	MIN TYP		MAX
Α	0.039	0.043	0.051	1.00	1.10	1.30
Α1	0.000	1	0.004	0.00	1	0.10
A2	0.028	0.032	0.035	0.70	0.80	0.90
b	0.014	0.016	0.021	0.35	0.40	0.51
С	0.004	0.005	0.010	0.08	0.15	0.25
D	0.106	0.114	0.122	2.70	2.90	3.10
Е	0.047	0.055	0.063	1.20	1.40	1.60
Ф	0.075 TYP.			1.90 TYP.		
Н	0.082	0.094	0.107	2.10	2.40	2.70
L	0.007	-	0.020	0.20	-	0.50
М	0°	5°	9°	0°	5°	9°

IMPORTANT NOTICE

ADDtek reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. ADDtek integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of ADDtek products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

ADDtek assumes to no liability to customer product design or application support. ADDtek warrants the performance of its products to the specifications applicable at the time of sale.

ADDtek Corp.

9F, No. 20, Sec. 3, Bade Rd., Taipei, Taiwan, 105

TEL: 2-25700299 FAX: 2-25700196