
DESCRIPTION

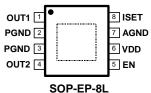
A703 is a high voltage, adjustable constant current driver for LED applications. Two regulated current ports are designed to provide uniform and pure DC constant current sinks for driving LEDs within a large range V_F variations.

A703 provides 2-channel constant current ports to match LEDs with equal current. Users may adjust the output current from 20mA to 150mA through an external resistor, R_{SET} , which gives users flexibility in controlling the light intensity of LEDs. It also could adjust LED brightness from 0% to 100% via enable pin (EN) with Pulse Width Modulation signal.

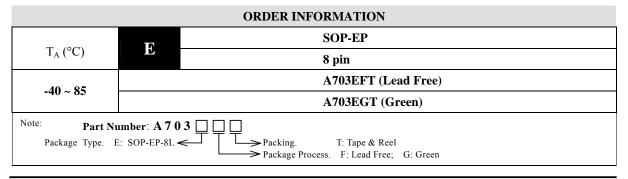
The thermal protection function protects IC from over temperature $(150^{\circ}C)$. Also, the thermal pad enhances the package power dissipation capability.

TYPICAL APPLICATION CIRCUIT

2 CHANNELS 150mA HIGH VOLTAGE Adjustable Current Regulator


FEATURES

- 2 constant-current output channels.
- Output current adjustable through external resistor.
- Constant output current range: 20mA~150mA.
- Wide supply voltage range: 6V~50V.
- 75V output sustaining voltage.
- Lead free and Green package available.


APPLICATIONS

- Automotive interior lighting
- Channel letter
- LED backlight driver for photo-frame, portable DVD, LCD Monitor, and LCD TV.
- Indoors lighting.

PACKAGE PIN OUT

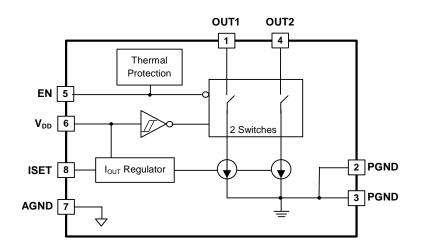
(Top View)

Copyright © 2009 ADDtek Corp.

ADDtek

ABSOLUTE MAXIMUM RATINGS (Note)				
Supply Voltage, V _{DD}	6V to 50V			
Output Current, I _{OUTn}	180mA			
Sustaining Voltage, V _{DS}	-0.4V to 75V			
Maximum Operating Junction Temperature, T _J	125°C			
Operating Temperature, T _{opr}	-40°C to 85°C			
Storage Temperature Range	-55°C to 150°C			
Lead Temperature (Soldering, 10 seconds)	260°C			
Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal.				

ABSOLUTE MAXIMUM RATINGS (Not


RECOMMENDED OPERATING CONDITIONS Parameter Symbol Min Тур Max Unit Supply Voltage V_{DD} 6 50 V 150 Output Sink Current I_{OUT} mA °C Operating free-air temperature range $T_{A} \\$ -20 +85

PIN DESCRIPTION					
Pin Number	Pin Name	Pin Function			
1,4	OUT1, OUT2	Constant Current Output pins. Sink current is decided by the current on R_{SET} connected to I_{SET} . $I_{OUTn} = 180 \times I_{SET}$.			
2, 3	PGND	Power Ground pin for current sink.			
5	EN	Enable Control pin. High enables the chip.			
6	VDD	Power Supply pin.			
7	AGND	Analog Ground pin for control logic. Must be connected to PGND on PCB.			
8	I _{SET}	Output current set input. Connect a resistor between I_{SET} pin and AGND pin to set the LED bias current following $I_{SET} = 1.2V/R_{SET}$. Don't leave this pin open as shutdown control.			
Exposed Pad	Heat Pad (PGND)	Heat pad. Connect to power ground. Must be soldered to PGND on PCB.			

Note: The thermal pad is suggested connect to GND on PCB. And thermal conductivity will be improved, if a copper foil on PCB is soldered with thermal pad.

ADDtek

BLOCK DIAGRAM

THERMAL DATA					
Thermal Resistance from Junction to Thermal Pad, θ_{JC}	15 °C/W				
Thermal Resistance from Junction to Ambient, θ_{JA}	86 °C/W				
Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$. The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. Connect the ground pin to ground using a large pad or ground plane for better heat dissipation. All of the above assume no ambient airflow.					

Maximum Power Calculation:

 $P_{D(MAX)} = \frac{T_{J(MAX)} - T_{A(MAX)}}{\theta_{JA}}$

 $T_J(^{\circ}C)$: Maximum recommended junction temperature

 $T_A(^{\circ}C)$: Ambient temperature of the application

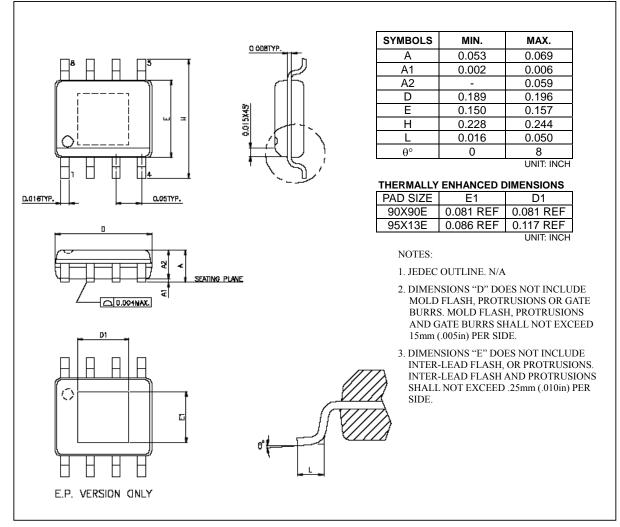
 $\theta_{JA}(^{oo}C/W)$: Junction-to-Ambient thermal resistance of the package, and other heat dissipating materials.

UADDtek

V_{DD} =12V, T _A =25°C	V _{DD} =12V, T _A =25°C. (Unless otherwise noted)									
Parameter		Symbol	Conditions	Min	Тур	Max	Unit			
Sustaining Voltage		V _{DS}	OUT1、OUT 2			75	V			
Output Current		I _{OUTn}	DC Test Circuit	20		150	mA			
Enable Input Voltag	Enable Input Voltage "H" level		Should not higher than V_{DD} .	2		12	V			
Enable Input Voltage "L" level		V _{IL}		GND		0.8	V			
Enable Input Hysteresis					200		mV			
Output Leakage Current		I _{LEAKAGE}	V _{DS} =60V			0.5	uA			
Output Current		I _{OUTn}	V_{DS} =0.6V, R _{SET} =2.4 K Ω	83.7	90	96.3				
Output Current	Output Current		V _{DS} =0.6V, R _{SET} =3.6 KΩ	55.8	60	64.2	mA			
Regulation of Output Current vs. Sustaining Voltage		%∕∆V _{DS}	$V_{DS} = 0.5 V \sim 3.0 V$			±1	%			
Regulation of Output Current vs. Supply Voltage		%∕∆V _{DD}	$V_{DD}=6V\sim 40V$			±1	%			
Pull-up Resistor, EN		R _{IN} (up)		0.5	1	1.5	MΩ			
Thermal Protection Temperature		T _X	When T_J approaches T_X and OUT is shut off		150		°C			
Thermal Protection Temperature Hysteresis					25					
Supply Current	"ON"	I _{DD(ON)}	R_{SET} =2.4 K Ω ; EN = "High"		4	7	mA			
	"OFF"	I _{DD(OFF)}	EN= "Low"		40	70	uA			

ELECTRICAL CHARACTERISTICS

ADDtek


A703

PACKAGE

Top Marking

SOP-EP 8-Pin

Copyright © 2009 ADDtek Corp.

5

A703

IMPORTANT NOTICE

ADDtek reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. ADDtek integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of ADDtek products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

ADDtek assumes to no liability to customer product design or application support. ADDtek warrants the performance of its products to the specifications applicable at the time of sale.

ADDtek Corp. 9F, No. 20, Sec. 3, Bade Rd., Taipei, Taiwan, 105 TEL: 2-25700299 FAX: 2-25700196

Copyright © 2009 ADDtek Corp.

6