intersil

5V Ultra Low Noise, Zero Drift Rail-to-Rail Precision Op Amp

ISL28134

The ISL28134 is a single, chopper-stabilized zero-drift operational amplifier optimized for single and dual supply operation from 2.25 V to 6.0 V and $\pm 1.125 \mathrm{~V}$ and $\pm 3.0 \mathrm{~V}$. The ISL28134 features very low input offset voltage and low noise with no $1 / \mathrm{f}$ noise corner down to 0.1 Hz . The ISL28134 is designed to have ultra low offset voltage and offset temperature drift, wide gain bandwidth and rail-to-rail input/output swing while minimizing power consumption.

This amplifier is ideal for amplifying the sensor signals of analog front-ends that include pressure, temperature, medical, strain gauge and inertial sensors.
The ISL28134 can be used over standard amplifiers with high stability over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The ISL28134 is available in an industry standard pinout SOIC package.

Applications

- Medical Instrumentation
- Sensor Gain Amps
- Precision Low Drift, Low Frequency ADC Drivers
- Precision Voltage Reference Buffers
- Thermopile, Thermocouple, and other Temperature Sensors

Front-end Amplifiers

- Inertial Sensors
- Process Control Systems
- Weight Scales and Strain Gauge Sensors

Features

- Rail-to-Rail Inputs and Outputs
- CMRR @ $\mathrm{V}_{\mathrm{CM}}=0.1 \mathrm{~V}$ beyond $\mathrm{V}_{\mathrm{S}} \ldots \ldots135 \mathrm{~dB}$, typ.
- V_{OH} and $\mathrm{V}_{\mathrm{OL}} \ldots .10 \mathrm{mV}$ from V_{S}, typ.
- No $1 / \mathrm{f}$ Noise Corner Down to 0.1 Hz
- Input Noise Voltage $10 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ @ 1 kHz
- 0.1Hz to 10 Hz Noise Voltage 250nVP-P
- Low Offset Voltage . 2.5 2 V , Max
- Superb Offset Drift. 15nV/ ${ }^{\circ} \mathrm{C}$, Max
- Single Supply . 2.25V to 6.0V
- Dual Supply $\pm 1.125 \mathrm{~V}$ to $\pm 3.0 \mathrm{~V}$
- Low Icc
$.675 \mu A$, typ.
- Wide Bandwidth 3.5 MHz
- Operating Temperature Range
- Industrial
$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Full Industrial (Coming Soon) $40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Packaging
- Single: SOIC, SOT-23, μ TDFN (1.6mmx1.6mm)

Related Literature

- See AN1641, "ISL28134 Evaluation Board Manual"
- See AN1560, "Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to $0.1 \mathrm{~Hz}{ }^{\prime \prime}$

FIGURE 1. TYPICAL APPLICATION

FIGURE 2. $V_{O S}$ HISTOGRAM $V_{S}=\mathbf{5 V}$

Pin Configurations

ISL28134
(6 LD μ TDFN) TOP VIEW

Pin Descriptions

$\begin{aligned} & \text { ISL28134 } \\ & \text { (8 Ld SOIC) } \end{aligned}$	ISL28134 (6Ld μ TDFN)	$\begin{gathered} \text { ISL28134 } \\ \text { (5Ld SOT-23) } \end{gathered}$	PIN NAME	FUNCTION	EQUIVALENT CIRCUIT
2	2	4	IN-	Inverting input	(See Circuit 1)
3	3	3	IN+	Non-inverting input	Circuit 1
4	1	2	V-	Negative supply	
6	4	1	OUT	Output	Circuit 2
7	6	5	V+	Positive supply	
1, 5, 8	5	-	NC	No Connect	Pin is floating. No connection made to IC.

Ordering Information

PART NUMBER (Note 5)	PART MARKING	TEMP RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE (Pb-Free)	PKG. DWG. \#
ISL28134IBZ (Notes 1, 3)	28134 IBZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Ld SOIC	
Coming Soon ISL28134FBZ (Notes 1, 3)	28134 FBZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Ld SOIC	M8.15E
Coming Soon ISL28134FRUZ-T7 (Notes 2, 4)	U8	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 Ld μ TDFN	
Coming Soon ISL28134FHZ-T7 (Notes 2, 3)	BEEA (Note 6)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5 Ld SOT-23	

NOTES:

1. Add "-T*" suffix for tape and reel. Please refer to TB347 for details on reel specifications.
2. Please refer to TB347 for details on reel specifications.
3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
4. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
5. For Moisture Sensitivity Level (MSL), please see device information page for ISL28134. For more information on MSL please see techbrief TB363.
6. The part marking is located on the bottom of the part.

Absolute Maximum Ratings

Max Supply Voltage V+ to V- .6.5V	
Max Voltage VIN to GND (V-	+ + 0.3V) V
Max Input Differential Voltage	6.5 V
Max Input Current	20 mA
Max Voltage VOUT to GND (10s).	(V+) or (V-)
Max dv/dt Supply Slew Rate.	100V/ $\mu \mathrm{s}$
ESD Rating	
Human Body Model (Tested per JED22-A114F)	
Machine Model (Tested per JED22-A115B).	300V
Charged Device Model (Tested per JED22-C110D)	
Leh-Up (Passed Per JESD78B)	12

Thermal Information

Thermal Resistance (Typical)	$\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right.$
5 Ld SOT-23 (Notes 7, 8) $\ldots \ldots \ldots \ldots \ldots$	225	116
8 Ld SOIC (Notes 7, 8) $\ldots \ldots \ldots \ldots \ldots$.	125	77
6 Ld μ TDFN (Notes 7, 8) $\ldots \ldots \ldots \ldots .$.	220	120

Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Pb-Free Reflow Profile . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp

Operating Conditions

Ambient Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Maximum Operating Junction Temperature $+125^{\circ} \mathrm{C}$ Operating Voltage Range. 2.25 V ($\pm 1.125 \mathrm{~V}$) to $6 \mathrm{~V}(\pm 3 \mathrm{~V})$

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:
7. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
8. For θ_{Jc}, the "case temp" location is the center of the exposed metal pad on the package underside.

Electrical Specifications $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 9) } \end{gathered}$	TYP	$\begin{gathered} \text { MAX } \\ (\text { Note } 9) \end{gathered}$	UNIT
DC SPECIFICATIONS						
V_{OS}	Input Offset Voltage		-2.5	-0.2	2.5	$\mu \mathrm{V}$
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-3.4	-	3.4	$\mu \mathrm{V}$
TCV ${ }_{\text {OS }}$	Output Voltage Temperature Coefficient	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-15	-0.5	15	$\mathrm{nV} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-300	± 120	300	pA
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-300	-	300	pA
$\mathrm{TCl}_{\mathrm{B}}$	Input Bias Current Temperature Coefficient		-	± 1.4	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current		-600	± 240	600	pA
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-600	-	600	pA
TCI ${ }_{\text {OS }}$	Input Offset Current Temperature Coefficient		-	± 2.8	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Common Mode Input Voltage Range		$\mathrm{V}+=5.0 \mathrm{v}, \mathrm{v}-=0 \mathrm{~V}$ Guaranteed by CMRR $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	-0.1	-	5.1	v
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=-0.1 \mathrm{~V}$ to 5.1 V	120	135	-	dB
		$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=-0.1 \mathrm{~V} \text { to } 5.1 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	115	-	-	dB
PSRR	Power Supply Rejection Ratio	$\mathrm{Vs}=2.25 \mathrm{~V}$ to 6.0 V	120	135	-	dB
		$\begin{aligned} & \text { Vs }=2.25 \mathrm{~V} \text { to } 6.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	120	-	-	dB
v_{s}	Supply Voltage (V+ to V-)	Guaranteed by PSRR $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	2.25	-	6.0	v
Is	Supply Current per Amplifier	$\mathrm{R}_{\mathrm{L}}=$ OPEN	-	675	900	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\mathrm{OPEN} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	-	-	1075	$\mu \mathrm{A}$

Electrical Specifications $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 9)	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 9) } \end{gathered}$	UNIT
$\mathrm{I}_{\text {SC }}$	Short Circuit Output Source Current	$\mathrm{R}_{\mathrm{L}}=$ Short to V -	-	65	-	mA
	Short Circuit Output Sink Current	$\mathrm{R}_{\mathrm{L}}=$ Short to $\mathrm{V}+$	-	-65	-	mA
V_{OH}	Output Voltage Swing, HIGH From $\mathrm{V}_{\text {OUT }}$ to V_{+}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to V_{CM}	15	10	-	mV
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	15	-	-	mV
V_{OL}	Output Voltage Swing, LOW From V_ to V ${ }_{\text {OUT }}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to V_{CM}	-	10	15	mV
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	-	-	15	mV
A_{OL}	Open Loop Gain	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$	-	174	-	dB
AC SPECIFICATIONS						
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Differential	-	5.2	-	pF
		Common Mode	-	5.6	-	pF
e_{N}	Input Noise Voltage	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz	-	250	400	$n V_{\text {P-P }}$
		$\mathrm{f}=10 \mathrm{~Hz}$	-	8	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{f}=1 \mathrm{kHz}$	-	10	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
I_{N}	Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	-	200	-	$\mathrm{fA} / \sqrt{ } \mathrm{Hz}$
GBWP	Gain Bandwidth Product		-	3.5	-	MHz
TRANSIENT RESPONSE						
SR	Positive Slew Rate	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1 \mathrm{~V} \text { to } 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=3.7 \mathrm{pF} \end{aligned}$	-	1.5	-	$\mathrm{V} / \mathrm{\mu s}$
	Negative Slew Rate		-	1.0	-	$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$, Small Signal	Rise Time, $\mathrm{tr}_{\mathrm{r}} \mathbf{1 0 \%}$ to 90\%	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0.1 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}, \mathrm{R}_{\mathrm{F}}=0 \Omega, \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=3.7 \mathrm{pF} \end{aligned}$	-	0.07	-	$\mu \mathrm{s}$
	Fall Time, $\mathrm{t}_{\mathrm{f}} \mathbf{1 0 \%}$ to 90%		-	0.17	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ Large Signal	Rise Time, $\mathrm{t}_{\mathrm{r}} \mathbf{1 0 \%}$ to 90\%	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{R}_{\mathrm{F}}=0 \Omega, \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=3.7 \mathrm{pF} \end{aligned}$	-	1.3	-	$\mu \mathrm{s}$
	Fall Time, $\mathrm{t}_{\mathrm{f}} 10 \%$ to 90%		-	2.0	-	$\mu \mathrm{s}$
t_{s}	Settling Time to 0.1\%, 2V $\mathrm{P}_{\text {P-P }}$ Step	$A_{V}=-1, R_{F}=1 \mathrm{k} \Omega, C_{L}=3.7 \mathrm{pF}$	-	100	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {recover }}$	Output Overload Recovery Time, Recovery to 90% of Output Saturation	$A_{V}=+2, R_{F}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=3.7 \mathrm{pF}$	-	3.1	-	μs

Electrical Specifications $\mathrm{v}_{\mathrm{S}}=2.5 \mathrm{~V}, \mathrm{v}_{\mathrm{CM}}=1.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 9) } \end{gathered}$	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 9) } \end{gathered}$	UNIT
DC SPECIFICATIONS						
$\mathrm{v}_{\text {OS }}$	Input Offset Voltage		-2.5	-0.2	2.5	$\mu \mathrm{V}$
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-3.4	-	3.4	$\mu \mathrm{V}$
TCV ${ }_{\text {OS }}$	Output Voltage Temperature Coefficient		-15	-0.5	15	$\mathrm{nV} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-300	± 120	300	pA
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-300	-	300	pA
$\mathrm{TCl}_{\mathrm{B}}$	Input Bias Current Temperature Coefficient		-	± 1.4	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$

Electrical Specifications $\mathrm{v}_{\mathrm{S}}=2.5 \mathrm{~V}, \mathrm{v}_{\mathrm{CM}}=1.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 9) } \end{gathered}$	TYP	MAX (Note 9)	UNIT
Ios	Input Offset Current		-600	± 240	600	pA
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-600	-	600	pA
$\mathrm{TCl}_{\mathrm{OS}}$	Input Offset Current Temperature Coefficient		-	± 2.8	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Common Mode Input Voltage Range		$\begin{aligned} & \mathrm{V}+=2.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \text { Guaranteed by CMRR } \end{aligned}$	-0.1	-	2.6	v
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=-0.1 \mathrm{~V}$ to 2.6 V	120	135	-	dB
		$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=-0.1 \mathrm{~V} \text { to } 2.6 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	115	-	-	dB
Is	Supply Current per Amplifier	$\mathrm{R}_{\mathrm{L}}=$ OPEN	-	715	940	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\text { OPEN } \\ & \mathrm{V}_{\mathrm{CM}}=-0.1 \mathrm{~V} \text { to } 2.6 \mathrm{~V} \end{aligned}$	-	-	1115	$\mu \mathrm{A}$
Isc	Short Circuit Output Source Current	$\mathrm{R}_{\mathrm{L}}=$ Short to Ground	-	65	-	mA
	Short Circuit Output Sink Current	$\mathrm{R}_{\mathrm{L}}=$ Short to $\mathrm{V}+$	-	-65	-	mA
V_{OH}	Output Voltage Swing, HIGH From $\mathrm{V}_{\text {OUT }}$ to V_{+}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to V_{CM}	15	10	-	mV
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	15	-	-	mV
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing, LOW From $\mathrm{V}_{\text {- to }} \mathrm{V}_{\text {OUT }}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to V_{CM}	-	10	15	mV
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	-	-	15	mV
AC SPECIFICATIONS						
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Differential	-	5.2	-	pF
		Common Mode	-	5.6	-	pF
e_{N}	Input Noise Voltage	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz	-	250	400	$n V_{\text {P-P }}$
		$\mathrm{f}=10 \mathrm{~Hz}$	-	8	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{f}=1 \mathrm{kHz}$	-	10	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
I_{N}	Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	-	200	-	$\mathrm{fA} / \sqrt{ } \mathrm{Hz}$
GBWP	Gain Bandwidth Product		-	3.5	-	MHz
TRANSIENT RESPONSE						
SR	Positive Slew Rate	$\begin{aligned} & \mathrm{V}+=2.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0.25 \mathrm{~V} \text { to } \\ & 2.25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=3.7 \mathrm{pF} \end{aligned}$	-	1.5	-	V/us
	Negative Slew Rate		-	1.0	-	V/ $\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$, Small Signal	Rise Time, $\mathrm{t}_{\mathrm{r}} \mathbf{1 0 \%}$ to 90\%	$\begin{aligned} & \mathrm{V}+=2.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0.1 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \\ & \mathrm{R}_{\mathrm{F}}=0 \Omega, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=3.7 \mathrm{pF} \end{aligned}$	-	0.07	-	$\mu \mathrm{s}$
	Fall Time, $\mathrm{t}_{\mathrm{f}} 10 \%$ to 90%		-	0.17	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ Large Signal	Rise Time, $\mathrm{t}_{\mathrm{r}} \mathbf{1 0 \%}$ to 90\%	$\begin{aligned} & \mathrm{V}+=2.5 \mathrm{~V}, \mathrm{~V}-=\mathrm{OV}, \mathrm{~V}_{\mathrm{OUT}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{R}_{\mathrm{F}}=0 \Omega, \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=3.7 \mathrm{pF} \end{aligned}$	-	1.3	-	$\mu \mathrm{s}$
	Fall Time, $\mathrm{t}_{\mathrm{f}} 10 \%$ to 90%		-	2.0	-	$\mu \mathrm{s}$
t_{s}	Settling Time to 0.1\%, $2 \mathrm{~V}_{\text {P-P }}$ Step	$A_{V}=-1, R_{F}=1 \mathrm{k} \Omega, \mathrm{C}_{L}=3.7 \mathrm{pF}$	-	100	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {recover }}$	Output Overload Recovery Time, Recovery to 90% of Output Saturation	$\begin{aligned} & A_{V}=+2, R_{F}=10 \mathrm{k} \Omega, R_{L}=100 \mathrm{k}, \\ & C_{L}=3.7 \mathrm{pF} \end{aligned}$	-	1.5	-	$\mu \mathrm{s}$

NOTE:

9. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}+25^{\circ}{ }^{\circ}, \mathrm{V}_{\mathrm{cm}}=$ ov Uness othemise specified.

FIGURE 3. \mathbf{V}_{OS} vs TEMPERATURE, $\mathrm{V}_{\mathrm{S}}=\mathbf{\pm 2 . 5 \mathrm { V }}$

FIGURE 5. V_{OS} HISTOGRAM $\mathrm{V}_{\mathrm{S}}=\mathbf{5 V}$

FIGURE 7. V_{OS} HISTOGRAM $\mathrm{V}_{\mathrm{S}}=\mathbf{2 . 5 V}$

FIGURE 4. V_{OS} vs TEMPERATURE, $\mathrm{V}_{\mathrm{S}}=\mathbf{\pm 1 . 1 2 5 \mathrm { V }}$

FIGURE 6. TCV $_{\text {OS }}$ HISTOGRAM $V_{S}=5 V$

FIGURE 8. TCV $_{\text {OS }}$ HISTOGRAM $V_{S}=\mathbf{2 . 5 V}$

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=$ ov Unless otherwise specified. (Continued)

FIGURE 11. I_{B} vs V_{CM}

FIGURE 13. IB vs TEMPERATURE

FIGURE 10. $V_{0 S}$ vs SUPPLY VOLTAGE

FIGURE 12. I_{OS} vs V_{CM}

FIGURE 14. IOS vs TEMPERATURE

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cm}}=$ ov Unless onterwise spectifed. (Continued)

FIGURE 15. PSRR vs TEMPERATURE

FIGURE 17. POSITIVE SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 19. V_{OH} vs l LOAD

FIGURE 16. CMRR vs TEMPERATURE

FIGURE 18. NEGATIVE SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 20. V_{OL} vs $\mathrm{I}_{\text {LOAD }}$

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=$ ov Unless otherwise specified. (Continued)

FIGURE 21. OUTPUT HIGH OVERHEAD VOLTAGE vs LOAD CURRENT

FIGURE 23. V_{OH} vs TEMPERATURE

FIGURE 25. INPUT NOISE VOLTAGE DENSITY vs FREQUENCY

FIGURE 22. OUTPUT LOW OVERHEAD VOLTAGE vs LOAD CURRENT

FIGURE 24. V_{OL} vs TEMPERATURE

FIGURE 26. INPUT NOISE VOLTAGE 0.1 Hz TO 10 Hz

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=$ ov Unless otherwise specified. (Continued)

FIGURE 27. INPUT NOISE CURRENT DENSITY vs FREQUENCY

FIGURE 29. OPEN LOOP GAIN AND PHASE, $R_{L}=10 k$

FIGURE 31. GAIN vs FREQUENCY vs $R_{L}, \mathbf{V}_{\mathbf{S}}=\mathbf{2 . 5 V}$

FIGURE 28. OPEN LOOP GAIN AND PHASE, $R_{L}=10 \mathrm{M}$

FIGURE 30. FREQUENCY RESPONSE vs CLOSED LOOP GAIN

FIGURE 32. GAIN vs FREQUENCY vs $R_{L}, \mathbf{V}_{\mathbf{S}}=5.0 \mathrm{~V}$

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=$ ov Unless otherwise specified. (Continued)

FIGURE 33. GAIN vs FREQUENCY vs FEEDBACK RESISTOR VALUES
$\mathbf{R}_{f} / \mathbf{R}_{\mathbf{g}}$

FIGURE 35. GAIN vs FREQUENCY vs C_{L}

FIGURE 37. CMRR vs FREQUENCY, $\mathbf{V}_{\mathbf{S}}=\mathbf{5 V}$

FIGURE 34. GAIN vs FREQUENCY vs Vout

FIGURE 36. GAIN vs FREQUENCY vs SUPPLY VOLTAGE

FIGURE 38. CMRR vs FREQUENCY, $\mathbf{V}_{\mathbf{S}}=\mathbf{2 . 5 V}$

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=$ ov Unless otherwise specified. (Continued)

FIGURE 39. PSRR vs FREQUENCY, $\mathbf{V}_{\mathbf{S}}=\mathbf{5 V}$

FIGURE 41. NO PHASE INVERSION

FIGURE 43. LARGE SIGNAL STEP RESPONSE (1V)

FIGURE 40. PSRR vs FREQUENCY, $\mathbf{V}_{\mathbf{S}}=\mathbf{2 . 5 V}$

FIGURE 42. LARGE SIGNAL STEP RESPONSE (3V)

FIGURE 44. SMALL SIGNAL STEP RESPONSE (100mV)

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cm}}=$ ov Unless otherwise specified. (Continued)

FIGURE 45. SMALL SIGNAL OVERSHOOT vs LOAD CAPACITANCE, $\mathrm{Vs}= \pm \mathbf{2 . 5} \mathrm{V}$

Applications Information

Functional Description

The ISL28134 is a single 5V rail-to-rail input/output amplifier that operates on a single or dual supply. The ISL28134 uses a proprietary chopper-stabilized technique that combines a 3.5 MHz main amplifier with a very high open loop gain (174dB) chopper amplifier to achieve very low offset voltage and drift ($0.2 \mu \mathrm{~V}$, $0.5 \mathrm{nV} /{ }^{\circ} \mathrm{C}$) while having a low supply current $(675 \mu \mathrm{~A})$. The very low $1 / f$ noise corner $<0.1 \mathrm{~Hz}$ and low input noise voltage ($8 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ @ 100 Hz) of the amplifier makes it ideal for low frequency precision applications requiring very high gain and low noise.

This multi-path amplifier architecture contains a time continuous main amplifier whose input DC offset is corrected by a parallel-connected, high gain chopper stabilized DC correction amplifier operating at 100 kHz . From DC to $\sim 10 \mathrm{kHz}$, both amplifiers are active with the DC offset correction active with most of the low frequency gain provided by the chopper amplifier. A 10 kHz crossover filter cuts off the low frequency chopper amplifier path leaving the main amplifier active out to the -3 dB frequency (3.5 MHz GBWP).

The key benefits of this architecture for precision applications are rail-to-rail inputs/outputs, high open loop gain, low DC offset and temperature drift, low $1 / \mathrm{f}$ noise corner and low input noise voltage. The noise is virtually flat across the frequency range from a few mHz out to 100 kHz , except for the narrow noise peak at the amplifier crossover frequency (10 kHz).

Power Supply Considerations

The ISL28134 features a wide supply voltage operating range. The ISL28134 operates on single (+2.25 V to +6.0 V) or dual (± 1.125 to $\pm 3.0 \mathrm{~V}$) supplies. Power supply voltages greater than the +6.5 V absolute maximum (specified in the "Absolute Maximum Ratings" on page 4) can permanently damage the device. Performance of the device is optimized for supply voltages greater than 2.5 V . This makes the ISL28134 ideal for portable 3V battery applications that require the precision performance. It is highly recommended that a

FIGURE 46. SMALL SIGNAL OVERSHOOT vs LOAD CAPACITANCE, Vs $= \pm 1.25 \mathrm{~V}$
$0.01 \mu \mathrm{~F}$ or larger high frequency decoupling capacitor is placed across the power supply pins of the IC to maintain high performance of the amplifier.

Rail-to-rail Input and Output (RRIO)

Unlike some amplifiers whose inputs may not be taken to the power supply rails or whose outputs may not drive to the supply rails, the ISL28134 features rail-to-rail inputs and outputs. This allows the amplifier inputs to have a wide common mode range (100 mV beyond supply rails) while maintaining high CMRR (135 dB) and maximizes the signal to noise ratio of the amplifier by having the V_{OH} and V_{OL} levels be at the $\mathrm{V}+$ and V - rails, respectively.

Low Input Voltage Noise Performance

In precision applications, the input noise of the front end amplifier is a critical parameter. Combined with a high DC gain to amplify the small input signal, the input noise voltage will result in an output error in the amplifier. A $1 \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ input noise voltage with an amplifier gain of $10,000 \mathrm{~V} / \mathrm{V}$ will result in an output offset in the range of 10 mV , which can be an unacceptable error source. With only $250 \mathrm{nV} \mathrm{V}_{\mathrm{P}-\mathrm{P}}$ at the input, along with a flat noise response down to 0.1 Hz , the ISL28134 can amplify small input signals with minimal output error.
The ISL28134 has the lowest input noise voltage compared to other competitor Zero Drift amplifiers with similar supply currents (See Table 1). The overall input referred voltage noise of an amplifier can be expressed as a sum of the input noise voltage, input noise current of the amplifier and the Johnson noise of the gain-setting resistors used. The product of the input noise current and external feedback resistors along with the Johnson noise increases the total output voltage noise as the value of the resistance goes up. For optimizing noise performance, choose lower value feedback resistors to minimize the effect of input noise current. Although the ISL28134 features a very low $200 \mathrm{fA} / \sqrt{ } \mathrm{Hz}$ input noise current, at source impedances $>100 \mathrm{k} \Omega$, the input referred noise voltage will be dominated by
the input current noise. Keep source input impedances under $10 \mathrm{k} \Omega$ for optimum performance.

TABLE 1.

Part	Voltage Noise @ 100Hz	0.1 Hz to 10Hz Peak to Peak Voltage Noise
Competitor A	$22 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	$600 \mathrm{nV} \mathrm{P}_{\text {P-P }}$
Competitor B	$16 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	$260 \mathrm{nV} \mathrm{P}_{\text {P-P }}$
Competitor C	$90 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	$1500 \mathrm{nV} \mathrm{P}_{\text {P-P }}$
ISL28134	$8 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	$250 \mathrm{nV} V_{\text {P-P }}$

Reducing Input Bias Currents

The input stage of Chopper Stabilized amplifiers do not behave like conventional amplifier input stages. The ISL28134 uses switches at the chopper amplifier input that continually 'chops' the input signal at 100 kHz to reduce input offset voltage down to $1 \mu \mathrm{~V}$. The dynamic behavior of these switches induces a charge injection current to the input terminals of the amplifier. The magnitude of the charge injection current is proportional to the input impedance of the amplifier. High input impedance cause large injection currents which results in an increase in the input bias current of the amplifier.

To minimize the effect of impedance on input bias currents, an input resistor of $<10 \mathrm{k} \Omega$ is recommended. For applications where the input impedance is greater than $10 \mathrm{k} \Omega$, a capacitor at the inputs of the amplifier should be used to reduce the input bias current. A capacitor at the input provides a low impedance AC ground for the charge injection currents cause by the chopper switches. The amount of capacitance necessary to reduce the input bias current is dependant on the input impedance. As a design recommendation, an input capacitor of 10pF should be used for every $10 \mathrm{k} \Omega$ of input impedance

Because the chopper amplifier has charge injection currents at each terminal, capacitance tuning the input bias current should be balanced across each input (see Figure 47). The input impedance of the amplifier should be matched between the IN+ and IN - terminals to minimize total input offset current. Input offset currents show up as an additional output offset voltage, as shown in Equation 1:
$\mathrm{V}_{\text {OSTOT }}=\mathrm{V}_{\text {OS }}-\mathrm{R}_{\mathrm{F}}{ }^{*} \mathrm{I}_{\mathrm{OS}}$
If the offset voltage of the amplifier is negative, the input offset currents will add to the total output offset. For a $1 \mathrm{M} \Omega$ feedback resistor in high gain applications with 500pA total input offset current, the additional output offset voltage is 0.5 mV . By keeping the input impedance low and balanced across the amplifier inputs, the input offset current is kept below 100pA, resulting in an offset voltage 0.1 mV or less.

FIGURE 47. CIRCUIT IMPLEMENTATION FOR REDUCING INPUT BIAS CURRENTS

IN+ and IN - Protection

The ISL28134 is capable of driving the input terminals up to and beyond the supply rails by about 0.5 V . Back biased ESD diodes from the input pins to the $\mathrm{V}+$ and V - rails will conduct current when the input signals go more than 0.5 V beyond the rail (see Figure 48). The ESD protection diodes must be current limited to 20 mA or less to prevent damage of the IC. This current can be reduced by placing a resistor in series with the $\operatorname{IN}+$ and $I N$ - inputs in the event the input signals go beyond the rail.

FIGURE 48. INPUT CURRENT LIMITING

Output Phase Reversal

Output phase reversal is the unexpected inversion of the amplifier output signal when the inputs exceed the common mode input range. Since the ISL28134 is a rail-to-rail input amplifier, the ISL28134 is specifically designed to prevent output phase reversal within its common mode input range. In fact, the ISL28134 will not phase invert even when the input signals go 0.5 V beyond the supply rails (see Figure 41). If input signals are expected to go beyond the rails, it is highly recommended to minimize the forward biased ESD diode current to prevent phase inversion by placing a resistor in series with the input.

High Gain, Precision DC-Coupled Amplifier

Precision applications that need to amplify signals in the range of a few $\mu \mathrm{V}$ require gain in the order of thousands of V / V to get a good signal to the Analog to Digital Converter (ADC). This can be achieved by using a very high gain amplifier with the appropriate open loop gain and bandwidth.

In addition to the high gain and bandwidth, it is important that the amplifier have low V_{OS} and temperature drift along with a low input noise voltage. For example, an amplifier with $100 \mu \mathrm{~V}$ offset voltage and $0.5 \mathrm{uV} /{ }^{\circ} \mathrm{C}$ offset drift configured in a closed loop gain of $10,000 \mathrm{~V} / \mathrm{V}$ would produce an output error of 1 V and a $5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ temperature dependent error. Unless offset trimming and temperature compensation techniques are used, this error makes it difficult to resolve the input voltages needed in the precision application.

The ISL28134 features a low $\mathrm{V}_{\text {OS }}$ of $\pm 4 \mu \mathrm{~V}$ max and a very stable $10 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ max temperature drift, which produces an output error of only $\pm 40 \mathrm{mV}$ and a temperature error of $0.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. With an ultra low input noise of $210 \mathrm{nV} \mathrm{V}_{\mathrm{P}-\mathrm{P}}(0.1 \mathrm{~Hz}$ to 10 Hz$)$ and no $1 / \mathrm{f}$ corner frequency, the ISL28134 is capable of amplifying signals in the $\mu \mathrm{V}$ range with high accuracy. For even further DC precision, some feedback filtering C_{F} (see Figure 49) to reduce the noise can be implemented as a total signal stage amplifier. As a method of best practice, the ISL28134 should be impedance matched at the two input terminals. A balancing capacitor of the same value at the non-inverting terminal will result in the amplifier input impedances tracking across frequency.

FIGURE 49. HIGH GAIN, PRECISION DC-COUPLED AMPLIFIER

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest revision.

DATE	REVISION	
June 8, 2011	FN6957.1	Initial release to web.

Products

Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL28134

To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff
FITs are available from our website at: http://rel.intersil.com/reports/search.php

Package Outline Drawing

M8.15E

8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 0, 08/09

SIDE VIEW "A

$\underline{\underline{\text { TYPICAL RECOMMENDED LAND PATTERN }}}$

DETAIL "A"

NOTES:

1. Dimensions are in millimeters. Dimensions in () for Reference Only.
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
3. Unless otherwise specified, tolerance : Decimal ± 0.05
4. Dimension does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per side.
5. The pin \#1 identifier may be either a mold or mark feature.
6. Reference to JEDEC MS-012.

Package Outline Drawing

L6.1.6x1.6

6 LEAD ULTRA THIN DUAL FLAT NO-LEAD COL PLASTIC PACKAGE (UTDFN COL)
Rev 1, 11/07

TYPICAL RECOMMENDED LAND PATTERN

NOTES:

1. Dimensions are in millimeters. Dimensions in () for Reference Only.
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
3. Unless otherwise specified, tolerance: Decimal ± 0.05
4. Dimension b applies to the metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip.
5. Tiebar shown (if present) is a non-functional feature.
6. The configuration of the pin \#1 identifier is optional, but must be located within the zone indicated. The pin \#1 identifier may be either a mold or mark feature.

Package Outline Drawing

P5.064A

5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE Rev 0, 2/10

TOP VIEW

TYPICAL RECOMMENDED LAND PATTERN

NOTES:

1. Dimensions are in millimeters. Dimensions in () for Reference Only.
2. Dimensioning and tolerancing conform to ASME Y14.5M-1994.
3. Dimension is exclusive of mold flash, protrusions or gate burrs.
4. Foot length is measured at reference to guage plane.
5. This dimension is measured at Datum " H ".
6. Package conforms to JEDEC MO-178AA.
