Low Power Ambient Light-to-Voltage Non-Linear Converter

The ISL29102 is a low cost light-to-voltage silicon optical sensor combining a photodiode array, a non-linear current amplifier and a micro-power op amp on a single monolithic IC. Similar to human eyes, the photodiode array has peak sensitivity at 550 nm and spans from 400nm to 600nm, rejecting UV light and IR light. The input luminance range is from 0.3 lux to 10,000 lux.

The integrated non-linear current amplifier boosts and converts the photodiode signal in a square root fashion, extending the light input dynamic range while maintaining excellent sensitivity at dim conditions with low lux levels. The device consumes minimal power over a wide range of ambient lux levels because the current consumption ramps at a square root fashion. A dark current compensation circuit minimizes the effect of temperature dependent leakage currents in the absence of light, improving the light sensity at low lux levels while maintaining excellent sensitivity at low lux levels. The built-in $1 \mu \mathrm{~A}$ op amp gives the ISL29102 an output voltage driving advantage for heavier loads.

The ISL29102 is housed in an ultra compact $2 \mathrm{~mm} \times 2.1 \mathrm{~mm}$ ODFN plastic case surface mount package. Operation is rated from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Ordering Information

PART NUMBER (Note 2)	PACKAGE (Pb-Free)	PKG. DWG. \#
ISL29102IROZ-T7 (Note 1)	6 Ld ODFN Tape and Reel	L6.2x2.1
ISL29102IROZEVALZ	Evaluation Board	

NOTES:

1. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb -free plastic packaged products employ special Pb free material sets; molding compounds/die attach materials and NiPdAu plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J STD-020.

Simplified Block Diagram

VDD

Features

- Square Root Voltage Output
- 0.3 lux to 10,000 lux Range
- 1.8 V to 3.3 V Supply Range
- Close to Human Eye Spectral Response
- Fast Response Time
- Internal Temperature Compensation
- Good IR Rejection
- Low Supply Current
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 6 Ld ODFN: $2 m m \times 2.1 \mathrm{mmx0.7mm}$
- Pb-Free (RoHS Compliant)

Applications

- Display and keypad dimming for:
- Mobile devices: smart phone, PDA, GPS
- Computing devices: notebook PC, webpod
- Consumer devices: LCD-TV, digital picture frame, digital camera
- Industrial and medical light sensing

Pinout

ISL29102
(6 LD ODFN)
TOP VIEW

*THERMAL PAD CAN BE CONNECTED TO GND OR ELECTRICALLY ISOLATED

Pin Descriptions

PIN	NAME	DESCRIPTION
1	VDD	Supply (1.8V to 3.3V).
2	GND	Ground
3	NC	No connect
4	REXT	Connected to an external resistor to GND setting the light-to-voltage scaling constant.
5	NC	No connect
6	VOUT	Voltage Output.

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)	
Supply Voltage Between $\mathrm{V}_{\text {DD }}$ and GND 3.6V	
REXT	$(-0.5 \mathrm{~V}+\mathrm{GND})$ to $\left(0.5 \mathrm{~V}+\mathrm{V}_{\mathrm{DD}}\right)$
V OUT	$(-0.5 \mathrm{~V}+\mathrm{GND})$ to (0.5V + V DD$)$
$V_{\text {OUT }}$ Short Circuit Current	$<10 \mathrm{~mA}$
ESD Rating	
Human Body Model	3kV
Machine Model.	300V

Thermal Information

Thermal Resistance	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
6 Lead ODFN.	90
Maximum Die Temperature	$+90^{\circ} \mathrm{C}$
Storage Temperature.	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Pb-free reflow profilesee link below

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\quad V_{D D}=3 V, T_{A}=+25^{\circ} \mathrm{C}, R_{E X T}=100 \mathrm{k} \Omega$, no load at $\mathrm{V}_{\mathrm{OUT}}$, green LED light, unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITION	MIN	TYP	MAX	UNIT
E	Range of Input Light Intensity for Square root relationship to be held			0.3-10k		Lux
$\mathrm{V}_{\text {DD }}$	Operating Supply Voltage		1.8		3.3	V
$I_{\text {DD }}$	Supply Current	$E=0 \operatorname{lux}$		0.65		$\mu \mathrm{A}$
		$E=100$ lux		3.5		$\mu \mathrm{A}$
		$E=1,000$ lux		10	15	$\mu \mathrm{A}$
$V_{\text {OUTO }}$	Light-to-Voltage Accuracy	$E=100$ lux		0.185		V
V OUT1	Light-to-Voltage Accuracy	$E=1000$ lux	0.460	0.580	0.680	V
V ${ }_{\text {DARK }}$	Voltage Output in the absence of light	$\mathrm{E}=0$ lux, $\mathrm{R}_{\text {EXT }}=10 \mathrm{M} \Omega$		20	50	mV
$\Delta \mathrm{V}_{\text {OUT }}$	Output Voltage Variation Over Three Light Sources: Fluorescent, Incandescent and Halogen			10		\%
PSRR	Power Supply Rejection Ratio	$\mathrm{E}=100 \mathrm{lux}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 3.6 V		2.5		mV / V
V O-MAX	Maximum Output Compliance voltage at 95\% of nominal output			$V_{\text {DD }}-0.7 \mathrm{~V}$		V
t_{R}	Rise Time	$E=0$ lux to 300 lux		68		$\mu \mathrm{s}$
		$E=0$ lux to 1000 lux		68		$\mu \mathrm{s}$
t_{F}	Fall Time	$E=300$ lux to 0 lux		1830		$\mu \mathrm{s}$
		$E=1000$ lux to 0 lux		970		us
${ }^{\text {D }}$	Delay Time for Rising Edge	$E=0$ lux to 300 lux,		352		$\mu \mathrm{s}$
		$E=0$ lux to 1000 lux		145		$\mu \mathrm{s}$
${ }^{\text {t }}$	Delay Time for Falling Edge	$E=300$ lux to 0 lux		22		$\mu \mathrm{s}$
		$E=1000$ lux to 0 lux		22		$\mu \mathrm{s}$
ISC	Short Circuit Current of Op Amp			± 11		mA
SR	Slew Rate of Op Amp			± 10		V/ms
VOS	Offset Voltage of Op Amp			± 1.2		mV

FIGURE 1. TEST CIRCUIT FOR RISE/FALL TIME MEASUREMENT

Typical Performance Curves

FIGURE 3. SPECTRAL RESPONSE

FIGURE 2. TIMING DIAGRAM

FIGURE 4. SPECTRUM OF LIGHT SOURCES

FIGURE 5. RADIATION PATTERN

Typical Performance Curves (Continued)

FIGURE 6. OUTPUT VOLTAGE vs LIGHT INTENSITY

FIGURE 8. OUTPUT VOLTAGE vs LIGHT INTENSITY

FIGURE 10. TRANSIENT TIME vs LUX CHANGE FROM/TO 0 LUX

FIGURE 7. OUTPUT VOLTAGE vs LIGHT INTENSITY

FIGURE 9. OUTPUT VOLTAGE vs LIGHT INTENSITY

FIGURE 11. OUTPUT VOLTAGE vs TEMPERATURE AT 0 LUX

Typical Performance Curves (Continued)

FIGURE 12. SUPPLY CURRENT vs TEMPERATURE AT 0 LUX

FIGURE 14. SUPPLY CURRENT vs TEMPERATURE

FIGURE 16. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 13. NORMALIZED OUTPUT VOLTAGE vs TEMPERATURE

FIGURE 15. NORMALIZED OUTPUT VOLTAGE vs SUPPLY VOLTAGE

FIGURE 17. TRANSIENT RESPONSE OF ISL29102 TO CHANGE IN LIGHT INTENSITY

Application Information

Light-to-Voltage Conversion

The ISL29102 has responsiveness that is a square-root function of the light intensity intercepted by the photodiode in lux. Because the photodiode has a responsivity that resembles the human eye, conversion rate is independent of the light source (fluorescent light, incandescent light or direct sunlight).
$V_{\text {OUT }}=\frac{1.8 \mu \mathrm{~A}}{\sqrt{100 \mathrm{lux}}} \sqrt{E} \times \mathrm{R}_{\text {EXT }}$

In Equation 1, $\mathrm{V}_{\mathrm{OUT}}$ is the output voltage, E is the light intensity and $R_{E X T}$ is the value of the external resistor. The
$\mathrm{R}_{\mathrm{EXT}}$ is used to set the light-to-voltage scaling constant. The compliance of the ISL29102's output circuit may result in premature saturation when an excessively large $R_{E X T}$ is used. The output compliance voltage is 700 mV below the supply voltage as listed in $\mathrm{V}_{\mathrm{O}-\mathrm{MAX}}$ of the "Electrical Specifications" table on page 2.

Optical Sensor Location Outline

The green area in Figure 18 shows the optical sensor location outline of ISL29102. Along the pin-out direction, the center line (CL) of the sensor coincides with that of the packaging. The sensor width in this direction is 0.39 mm . Perpendicular to the pin-out direction, the CL of the sensor has an 0.19 mm offset from the CL of packaging away from pin-1. The sensor width in this direction is 0.46 mm .

FIGURE 18. 6 LD ODFN SENSOR LOCATION OUTLINE

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

Package Outline Drawing

L6.2x2.1

6 LEAD OPTICAL DUAL FLAT NO-LEAD PLASTIC PACKAGE (ODFN)
Rev 0, 9/06

NOTES:

1. Dimensions are in millimeters.

Dimensions in () for Reference Only.
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
3. Unless otherwise specified, tolerance: Decimal ± 0.05
4. Dimension b applies to the metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip.
5. Tiebar shown (if present) is a non-functional feature.
6. The configuration of the pin \#1 identifier is optional, but must be located within the zone indicated. The pin \#1 identifier may be either a mold or mark feature.

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

