

4. Special Capacitor

> Application

Harmonic is commonly generated in electricity system due to devices using Thyristor. It can causes electricity accidents and interference in the system Therefore, the application of filter facilities is essential to prevent the effect of Harmonic in the system and use electricity more efficiently.

> What is harmonic

Cyclic distortion wave is expressed as the sum of sine wave [50Hz], the integral number frequency and major sine wave, integral number [50Hz] frequency.

This integral number frequency is called harmonic wave and according to the change of amplitude and phase, wave form is changed resulting in synthetic distortion.

Combined distortion wave is manifested in distorted sine wave form. This form can be analyzed into one fundamental wave [50Hz] which has random cycle and major sine wave which has integral number frequency or subharmonic frequency.

If the frequency of it is higher than the fundamental frequency, it is called harmonics and if the frequency of it is lower, it is called fractional harmonic wave or subharmonic.

For example, an distorted wave form comprising sine wave type [50Hz] and 5th [250Hz] and 7th [350Hz] wave form is analyzed as following :

+

ex) Harmonic

Fundamental Wave

5th Harmonic Part 7th Harmonic Part +

> Harmonic Generator

=

- Thyristior controller
- Speed controller
- Low speed starter
- Power factor compensator
- Rectifier
- Arc furnace
- Transformer, Reactor
- Transformer, Reactor

generates harmonics.

• Non-linear loads such as rotating devices changing the wave form of the current which

> Process of Harmonic **Filter Engineering**

· Collecting data[system condition, harmonics spectrum, THD limit]

+

- Drawing system impedance map
- ·Calculating harmonics impedance and determining filtering order
- · Harmonic flow calculation
- Simulation
- · Checking abnormal resonance in the system and the possibility of harmonics extension
- · Designing Switcher PNL, Structure
- Testing the operation after installation
- Test report

Samwha 28

> Disturbance by Harmonics

Once Harmonic is generated in system, it moves around and affects on the connected other electricity facilities.

- Overheating and loss of transformer
- Influx of over current of capacitor and noise
- · Instability of control system
- Voltage change
- Overload of rotator
- Errors on the movement of circuit breaker
- Impediment in communication and interfering OA functions
- · Heavy current in neutral and low voltage between phase and earthing

> What is Harmonic Filter?

Harmonic filter is a device which represses and absorbs the outflow of harmonics generated in the electricity system. It consists of resistor, reactor and capacitor.

Basic harmonic filter consists of lower order [5–13th order] single shunt filter which is synchronized with the harmonics current generated.

For other higher order frequency, higher order filter shall be installed, if necessary.

> Effects of Harmonic Filter

- Improvement of power factor [invalid power in the electricity system is removed, resulting in the improvement of economics]
- Absorption and removal of harmonics
- · Resolving the problem of resonance between inductive and capacitive in the system.
- · Keeping the performance and lifetime of the facility high by keeping normal voltage

The effects of contained harmonic current by filter can be expressed as following :

4-1 A.C. Harmonic Filter

> Current Distortion Limits for General Distribution Systems [IEEE Std 519-199]

Maximum Harmonic Current Distortion in Percent of ${\sf I}_{\sf L}$ Individual Harmonic Order [Odd Harmonics]

I _{SC} / I _L	<11	11≤h(17	17≤h(23	23≤h(35	35≤h	TDD
(20	4	2	1.5	0.6	0.3	5
20(50	7	3.5	2.5	1	0.5	8
50(100	10	4.5	4	1.5	0.7	12
100(1000	12	5.5	5	2	1	15
>1000	15	7	6	2.5	1.4	20

Even harmonics are limited to 25% of the odd harmonic limits above

Current distortions that result in a dc offset, e.g., half wave converters are not allowed.

* All power generation equipment is limited to these values of current distortion regardless of actual lsc / l where

lsc = maximum short circuit current at PCC

 I_{L} = maximum demand load current [fundamental frequency component] at PCC

> Voltage Distortion Limits [IEEE Std 519-1992]

Bus Voltage at PCC	Individual Voltage Distortion [%]	Total Voltage Distortion THD [%]
69kV and below	3.0	5.0
69.001kV through and 161kV	1.5	2.5
161.001kV and above	1.0	1.5

4-2. Zero Sequence Filter(ZSF)

> General

1. General

Increasing use of computer and electric home appliance, the neutral current zero sequence harmonic in line make variety types of disturbances in system. ZSF(Zero Sequence Filter) is easy to install with electric accessories and

it can reduce this large neutral current up to 90% depending on the installed position.

2. The problems of Zero Sequence harmonics

- Trip the circuit breaker due to overcurrent
- Malfuction of electric protector

 Heat deterionration on transformer • Overheat / Fire on the neutral line

· Communication disturbance

3. Application

- · Applicable load : Computer, OA appliance, Electronic fluorescent lamp, Single Phase SCR heater and UPS etc
- · Applicable system : Single phase nonlinear loads on Three phase four wire system
- Applicable place : Office/Commercial Building, School, Apartment, Department, Factory, Medical center etc.

· Easy to select

> Features

- · Neutral impedence adjuster upon request
- Ammeter displaying the neutral current in option

- Easy to Install
- Increasing power quality

> Effects

- Protect heating and loss of line and neutral cable that is effected by zero sequence harmonic current
- Reduce unbalance of line current Reduce system loss
- Protect overinvestment by increasing capacity
- Reduce K-factor rating of load current at main transformer.

> Standard specification

			(Rated Volt	age: 220V				
Tuno	Currents	Dimensions [mm]						
туре	in Neutral [A]	W	D	Н				
ZSF22030	30	350	500	500				
ZSF22060	60	350	500	500				
ZSF22100	100	600	400	850				
ZSF22150	150	650	450	900				
ZSF22300	300	800	450	1000				
ZSF22450	450	800	500	1200				
ZSF22600	600	800	1500	2350				
ZSF221000	1000	1100	1500	2350				
ZSF223000	3000	1100	1500	2350				

* Approximate dimensions and weights are given above. Please contact to factory for exact dimensions,

> External Shape

4-3. Hybrid Harmonic Filter(HHF)

> General

1. General

The Hybrid Harmonic Filter(HHF) enable most three phase non-linear load to comply with both the voltage and current distortion limits of IEEE Std,519-1992 and other international limits such as AS-2279, EN61000-3-4, and BS G5/4.

Comparing with the classical broad band harmonic filter, the HHF have only 30% of capacitance with better filtering. Less capacitance can minimize leading current at light loading condition.

2.Problems of Harmonic

- Resonance at Power
- Over voltage trip and malfuction of Drive
- Trip the Relay or cut fuse

3. Application

- Applicable loads : Inverter, UPS, Elevator, AC/DC motor drive, Diode/SCR Rectifier,
 - Induction heater, DC power supply, HVAC system, Fan and Pumps etc.
- Applicable place : Office/Commercial building, School, Shopping Mall,
 - Department store, Apartment, Hospital, Factory etc
- · Applicable system : Low Voltage 3P nonlinear loads

> Features

- Patent No.0383791 as Hybrid Harmonic Filter
- · Qualified as Excellent Product by the ministray of commerce, industry and energy
- · Compact and easy-to-install.
- Standardized up to 1000HP (based on load capacity)
- · Quite operation and proper ventilation.
- Special voltage available upon request.

> Effects

- Protect loss and reduce capacity effected by harmonic current at transformer.
- Protect heating and loss of line cable that is effected by harmonic current.
- · Protect burning of reactor and capacitor by harmonic current injection.
- Improve power factor and reduce system loss. · Minimize interference with other equipment.
- Improve system voltage/current waveform.
- Prevent nuisance tripping of fuse and circuit breakers which can result from the presence of harmonics.

> Standard specification

(Rated Voltage : 380V)										
Tupo	Currents	Dimensions [mm]								
туре	in Neutral [A]	W	D	Н						
HHF38005	5	350	500	500						
HHF38010	10	500	800	1000						
HHF38020	20	600	1000	1200						
HHF38040	40	600	1200	1600						
HHF38060	60	800	1400	1600						
HHF38100	100	800	1500	1600						
HHF38200	200	900	1500	2350						
HHF38300	300	1100	1500	2350						
HHF38400	400	1100	1500	2350						

> External Shape

* Rated Voltage 220V or 440V is also available

* Approximate dimensions and weights are given above. Please contact to factory for exact dimensions.

4-4. L-C Complex Harmonic Filter(LCF)

> General

1. General

The motor using inverter is causing riffle wave form on voltage, and it causes many problems on the system like breaking down dielectric.

LCF can convert PWM wave form to sine wave form making more safe operation in the system.

2. Problems of Harmonic

- · Destroying dielectric in Motor by spike
- · Damage on Cable
- Damage on Voltage raising transformer
- Decreasing productivity
- Malfuction and reduced life spam of Inverter by inversed voltage.
- Instantaneous Over voltage phenomenon by distorted voltage wave form
- Malfuntion of precision apparatus • Over heat on distribution line

3. Application

- Applicable load : Motor and machines using inverter(Between inverter and motor)
- Applicable system: 220V, 380V, 440V, 1000HP
- Applicable place : Plants, Steel Mills, power plant, sewage disposal plants, Garbage dumps etc

> Features

- · Make smooth voltage and current wave form
- Reduce voltage reflection and surge impedance

> Effects

- · Prevent dielectric destruction
- Increase productivity and quality
- Increase system communication quality and life span

> Wave form with LCF

Reduce peak voltage of motor

> Standard specification

			(Rated Volt	age: 380V)
Turne	Currents	Dim	ensions [mm]
туре	in Neutral [A]	W	D	Н
LCF38005	3.7	350	500	500
LCF38008	5.6	350	500	500
LCF38010	7.5	420	730	1000
LCF38015	11	420	730	1000
LCF38020	20 <u>15</u> 25 19	420	730	1000
LCF38025		600	900	1200
LCF38030	22	600	900	1200
LCF38040	30	600	900	1200
LCF38050	37	600	900	1200
LCF38060	45	600	900	1200
LCF38100	75	600	900	1200
LCF38150	112	900	900	2150
LCF38200	149	900	900	2150
LCF38400	298	900	900	2150

> External Shape

* Rated Voltage 220V or 440V is also available

* Approximate dimensions and weights are given above. Please contact to factory for exact dimensions.

Samwha 34

Type

APF38050

APF38100

APF38200

APF38300

4-5. Active Power Harmonic Filter(APF)

> General

1. General

The proliferation of nonlinear loads such as static power converters and arc furnaces results in variety of undesirable phenomena in the operation of power systems.

The most important among these are harmonic contamination, increased reactive power demand and power system voltage fluctuations.

Harmonic currents increase power systems losses, excessive heating in rotating machinery, can create significant interference with the power line communication.

The harmonic is a growing problem for both electricity suppliers and consumers.

2. Problems of Harmonic

- Malfunction of precision control
- High current in neutral conductors
- · Damage to sensitive equipment
- Frequent tripping of circuit breakers

3. Application

- Capacitor overloading and failures
- Excitation of network resonance
- · Overheating of transformer, motor and cables
- · Applicable load : Welding Machine, Electrolyzer in Chemical Factory, Electrolytic machine of ceramic plasitc, Arc furnace, Crain etc
- Applicable system : 380V, 440V, 50-300A
- Applicable place : Steel Mills, Chemical Plants, Metal mills, Harbors etc

> Features

- Patent No.0459000 as Three Phase fourwire active power filter control device
- Meet IEEE standard 519-1992
- Parallel connection allows easy retrofit for large system

> Installation Effect

	XX	X	X	X	X
val para po			$\langle \rangle$	\bigcirc	
	1-1+	A.	10	2	Tec

(After installing APF)

(Rated Voltage : 380V)

Н

1670

2000

2000

2000

Dimensions [mm]

D

600

600

600

6850

(Before installing APF)

(After installing APF)

> External Shape

Solve Power Quality Problems

Curtailment of maintenance fee

> Standard specification

Rating Current

[A]

50A

100A

200A

300A

Approximate dimension is given above.

(Before installing APF)

W

600

750

900

1200

Please contact to factory for exact dimension and application,

4-6. Intelligent Var Compensator(IVC)

> General

1. General

Intelligent Var Compensator(IVC) is the product designed to improve power quality in the systems with welding, crane and many unspecified loads which is generating reactive power.

2. Application

- · Applicable loads : Welding machines, Arc furnace, unspecified loads generating reactive power,
- Applicable system: 380V, 440V, 30~1800kvar
- Applicable place : Steel mills, Chemical plants, Metal mills, Harbors etc.

> Features

- Patent No.0459000
- 3Phase 4Wire reactive power compensation system with linear response characteristics.
- Prevent the voltage drop and flicker with 5-20ms response speed.
- · Control the reactive power using power switching sockets without transient
- · Protect senstive electric machines and save energy
- Exact and fast power factor improvement
 Long life span of swiching sockets and capacitors

> Effects

- Power factor on the secondary side of transformer is improved at 98%
- Average current is decreased to 30%
 Allowance capacity of transformer is increased.
- Prevent voltage flicker phenomenon through resolving reactive power in real-time

> Standard specification

				(Rate	ed Voltage	e:380\
Tuno	Capacity	Step	Datia	Dime	ension [[mm]
туре	[kvar]	[kvar]	Ralio	W	D	Н
IVC38100	100	20	1:2:2	800	800	2000
IVC38120	120	40	1:1:1	800	800	2000
IVC38140	140	20	1:2:4	800	800	2000
IVC38200	200	40	1:2:2	800	800	2000
IVC38240	240	80	1:1:1	800	800	2000
IVC38280	280	40	1:2:4	800	800	2000
IVC38400	400	80	1:1:1	1000	800	2000
IVC38480	480	160	1:1:1	1000	800	2000
IVC38560	560	80	1:2:4	1600	800	2000
IVC38800	800	160	1:2:2	2400	800	2000
IVC381120	1120	160	1:2:4	3200	800	2000

> External Shape

* Rated Voltage 220V or 440V is also available

* Approximate dimensions and weights are given above. Please contact to factory for exact dimensions.

4-7 Low Frequnecy Induction Furnace Capacitor

> Application

This product was developed in 1977 with the purpose of rationalizing power supply by improving heat efficiency and power factor of Low Frequency Induction Furnace. This product consists of polypropylene film, aluminum thin film or metalized film which has excellent voltage resistance. It contains specially produced composite oil, resulting in high reliability.

> Product Scope

- Installation Place : Indoor
- Ambient Temperature for use : -20°C ~ +40°C [below 35°C average for 24 hours]

> Technical Data

Tolerance	−5 ~ +15% [at 20°C]
Withstand Voltage	10 seconds of 2.0 times of rated voltage between mutual terminals
Insulation Level	$2U_{N}$ + 2kV or 3kV, whichever is the higher, for 10s
Max Overvoltage	Less than 105% of rated voltage : within 12hours per day
May averaurrant	120% of rated capacity [less than 60Hz], 115% of rated capacity [more
	than 60Hz] or less
Capacitor Loss	0.25% [rated veltage 20%] or less
[Under stabilized condition]	U.30% [rated voltage, 20 C] or less

> Diagram

Figure 1

Samwha 36

Downloaded from $\underline{\text{Elcodis.com}}$ electronic components distributor

Creative TEchnology Provider

4-7 Low Frequnecy Induction Furnace Capacitor

Conseilty	Votage	Dhaaa	Frequency	Datad Capacity [luyar]	[kvar] Tvpa		[Dimensi	on [mm]		Figure
Capacity	[V]	Phase	[Hz]			Α	В	С	D	Е	F	Figure
50	630	1	60	50	SMFL-66050KS	343	153	280	355	205	200	1
	440	1	60	11.1+22.2+66.7	SMFL-46100KS	343	153	390	465	205	65	3
100	600	1	60	50+50	SMFL-66100KS	630	135	380	455	205	100	2
100	630	1	60	100	SMFL-66100KS	343	153	380	455	205	200	1
	800	1	60	100	SMFL-86100KS	343	153	470	545	205	200	1
150	600	1	60	50+100	SMFL-66150KS	630	135	500	575	205	100	2
150	800	1	60	150	SMFL-86150KS	343	153	640	715	295	200	1
	600	1	60	200	SMFL-66200KS	343	153	660	735	255	200	1
	750	1	60	25+40+135	SMFL-76200KS	343	153	580	655	255	65	3
200	1000	1	60	30+60+110	TAFL-106200KS	343	153	840	915	295	65	3
200	1000	1	60	100+100	TAFL-106200KS	530	135	610	685	295	100	2
	1200	1	60	25+25+150	TAFL-126200KS	530	170	480	555	205	65	3
	1200	1	60	50+50+100	TAFL-126200KS	530	170	480	555	205	65	3

> Ratings and Dimensions

* Approximate Dimensions and ratings are given above. Please contact factory to check it before order.

4. Special Capacitor

4-8 Water Cooling Capacitor

> Application

This product is specially designed to accommodate high capacity to be easily used for matching circuit of high frequency induction furnace device.

For dielectric, polypropylene film and capacitor paper was used together and aluminium foil electrode of non induction method was used. For insulating oil,

non PCB dielectric was impregnation resulting in stable and excellent feature.

For cooling method, it was designed that cooling water can absorb the heat generated from the inner dielectric loss.

To make matching circuit easily when inductive load is changed, capacity was divided into proper capacity and lead bushing was treated.

The material of case is non magnetic aluminum to minimize induction loss due to high frequency electric filed. The loss of capacitor itself is about 0.1%. Maximum Water temperature rise should not exceed 4deg[5l/min], on the standard of maxim capacitance.

Permissible load power is 1.05 times of rated voltage [within1 hour per day] and maximum permissible current is 1.35 times of rated current. High frequency water cooling capacitor does not contain discharging resistor

since it is connected to high capacity coil circuit in paralleled.

When capacitor is input into circuit again, the permissible limit of residual voltage should be within 10% of rated voltage and nuts with DC voltage. Tightening strength on nuts at terminal is $200 \text{kg} \cdot \text{cm}$ or less.

> Technical data

Installation place	Only for Indoor
Temperature of	Cooling water exit temperature less than 45°C
Cooling Water	Cooling water exit temperature less than 45 C
Ambient Temperature	More than 0°C
Tolerance	Within \pm 10% of rated capacity
Withstand Voltage	2.15 times of rated voltage, 10 seconds
Flux of Cooling Water	More than 5l per minute
Pressure of	Loca than 10kg/m²
Cooling Water	
Safety Device	Thermostat contact capacity [250VAC, 7.5A]
Case	Aluminium non painted product

(Head Loss and Cooling Water Quanfity Curve)

> Caution

Since the outer case of capacitor is unilateral electrode, please be sure to use the insulated rack in installation.

When more than 2 capacitors are connected in paralleled, there should be space at least 35mm. The flow quantity of cooling water shall be more than 5ℓ /min.

In case when capacitor is kept at subzero temperature, remove the water entirely from copper pipe

reative Technology Provide

4-8 Water Cooling Capacitor

> Diagram

Figure 2

Figure 4

C±3

Figure 3

> Ratings and Dimensions

Frequency	Rated Votage	Rated Capacity	Total				μF Per	Section				Dim	ension [I	nm]	-
[Hz]	[VAC]	[kvar]	[µF]	1	2	3	4	5	6	7	8	A	В	С	Figure
960	800	450	117	5	8	16	44	44	-	-	-	136.7	330.2	398.2	1
960	1000	480	80	13	13	27	27	-	-	_	-	104.6	330.2	398.2	3
1000	1250	750	76	3	3	3	3	13	13	19	19	104.6	360.2	428.0	1
1200	1250	1200	102	-	_	17	17	17	17	17	17	104.6	330.2	398.2	4
2000	1250	300	15	7.6	7.6	_	_	-	-	_	_	136.7	200.0	368.0	2
3000	400	300	100	7	13	27	53	-	-	_	_	104.6	200.0	268.0	2
3000	800	1000	84	21	21	21	21	-	-	_	_	104.6	330.2	398.2	3
3000	1250	1200	40	3	3	3	3	7	7	7	7	104.6	330.2	398.2	л
3000	1250	1200	40	2	2	2	2	6	10	10	10	104.6	330.2	398.2	4

* Approximate Dimensions and ratings are given above. Please contact factory to check it before order.

4-9 Surge Absorbing Capacitor

> Application

This product was developed by our company in 1976 to absorb and reduce surge

which may be generated when the breaker is open or closed and lighting surge

by connecting transmission line and, closed and lightning surge which may be delivered by connecting transmission line and ground.

Its dielectric is polypropylene film which has excellent withstand voltage and good quality capacitor paper and it also contains specially produced composite oil.

The Capacitor with series resistance was developed to improve electric feature.

> Product Scope

- Installation Place : Indoor / Outdoor
- Ambient Temperature : -20° ~ $+40^{\circ}$ [below average 35°C per day, below 25°C average per year]

> Technical Data

Tolerance	-5% ~ +15% [at 20℃], le	ess than 108% of unbalar	nced ratio between phases							
Max overvoltage	Below 110% of rated volt Below 115% of rated volt Below 120% of rated volt Below 130% of rated volt	age: within 8 hours per age: within 30 minutes age [less than 2 times c age [less than 2 times c	day per day f 5 min, per month] f 1 min, per month]							
Max overcurrent	Transient current 130% o	Transient current 130% of rated current allowed								
Withstand Voltage	Between case and all of Line voltage 3300V 6600V 11000V 22000V	terminals <u>Test v</u> <u>16kVAC [1 min.]</u> <u>22kVAC [1 min.]</u> <u>28kVAC [1 min.]</u> <u>50kVAC [1 min.]</u>	voltage 45kVDC [10 sec.] 60kVDC [10 sec.] 90kVDC [10 sec.] 150kVDC [10 sec.]							
Capacitor Loss [Under stabilized condition] Reference Standard	Less than 0.5% [at rated	voltage, 20°C], in case (C-R type less than 0.6%							

> Diagram

4. Special Capacitor

Samwha 40

realize Technology Provide

4-9 Surge Absorbing Capacitor

> Ratings and Dimensions

Rated Voltage	Datad Capacity	Turne			Dimensi	on [mm]			Figure
[VAC]	Raled Capacity	туре	Α	В	С	D	E	F	Figure
3300/√3	0.05 µF x 3	THF-T30015T [CR]	430	115	250	435	315	150	
3300/√3	0.1 µF x 3	THF-T3003T [CR]	430	115	220	435	315	150	
3300/√3	0.5 µF x 3	THF-T305T	430	115	270	455	315	150	1
3300/√3	0.8 µF x 3	THF-T3024T	430	115	270	455	315	150	I
6600/√3	0.05 µF x 3	THF-T60015T [CR]	430	115	250	435	315	150	
6600/√3	0.1 µF x 3	THF-T6003T [CR]	430	115	250	435	315	150	
22900/√3	0.1 μF	THF-T23001S	430	145	250	520	400	_	
13800/√3	0.3 <i>µ</i> F	THF-T13003S	430	145	280	510	360	_	2
24000/√3	0.2 μF	THF-T24002S	430	145	350	620	400	_	2
24000/√3	0.4 µF	THF-T24004S	530	135	450	720	400	_	

* Approximate Ratings and Dimensions are given above. Please contact factory before order.

4-9 Surge Absorbing Capacitor

> Operation principle

To explain the effect of surge absorbing capacitor, the rotator is expressed as intensive equivalent resistance R as in the figure A.

In parallel with this, on the circuit to which the protecting Capcitor is connected, VO = EOH[t] travelling wave invaded from line of surge impedance Z.

Then, when terminal voltage of R and C is Vc, the current Ip at P point is

$$Ip = C \frac{dVc}{dt} + \frac{1}{R} Vc = \frac{1}{Z} [2Vo - Vo]$$

To rearrange the expression $\frac{d}{dt}$ = P, Vo = EoH[t]

$$PVc = \left(\frac{R+Z}{CRZ}\right)Vc = \frac{2Eo}{CZ} H[t]$$
$$\left(\frac{R+Z}{CRZ}\right) = \alpha$$

$$Vc = \frac{2Eo}{CZ} \times \frac{1}{P+\alpha} \quad H[t] = \frac{2Eo}{\alpha CZ} [1-e^{-\alpha t}] \quad H[t]$$

When Z and R is constant and C is changed, the terminal voltage of the rotator Vc is as in the figure B. From this, it can be seen that the wave height value is reduced

according to the value of C or R. When $R = \infty$ and $C = 0.3\mu F$, the terminal voltage of the rotator is reduced to 1/2 of invasion wave, which shows the effects of surge absorbing capcitor.

Vo Figure A С Voltage R >R $R_1 \rightarrow C_1 \langle C_2$ B → CI (C) Figure B C 10 20 30 40 50 60 Time(us)

4-10 Grounding Capacitor

> Application

This porduct was developed by our company in 1975 to improve capacity between distribution line and earth by connecting the 2nd winding distribution line of insulation transformer and earth. It uses polypropylene film which has excellent insulation ability and good quality capacitor paper as dielectric and contains specially produced composite oil to improve electric feature.

> Product Scope

- Installation Place : Indoor / Outdoor
- Ambient Temperature : -20° C $\sim +40^{\circ}$ C[below 35°C average per day, below 25°C average per year]

> Technical Data

Tolerance	$-5\% \sim +15\%$ [at 20°C], less than 108% of unbalanced ratio between phases							
	Below 110% of rated voltage : within 12 hours per day							
	Below 115% of rated voltage : within 30 minutes per day							
Max overvoltage	Below 120% of rated voltage : within 5 minutes							
	Below 130% of rated voltag	e : within 1 minute						
	Below 182% of rated voltage : within 2 seconds							
Max overcurrent	Transient current 130% of rated current allowed							
	Between case and all of terminals							
Withstand Valtage	Line voltage Test voltage							
withstand voltage	3300V	10kVAC [1 min.]	30kVDC [10 sec.]					
	6600V	16kVAC [1 min.]	45kVDC [10 sec.]					
Capacitor Loss	Less than 0.35% [at rated voltage, 20°C]							
Painting Color	Munsell no. 5Y 7/1							
Reference Standard	JEM1362 [1999]							

> Diagram

INNER CONNECTION

4-10 Grounding Capacitor

> Ratings and Dimensions

Line Valtage [V]	Deted Consoity [kyar]	Turpe	Dimension [mm]		
Line voltage [v]	Raled Capacity [Kvar]	Type Dimension TBF-T36010Y 490 TBE-T66010Y 290	В		
3300	10	TBF-T36010Y	490	675	
6600	10	TBF-T66010Y	290	475	

* Approximate Dimensions are give above. Please contact factory for exact deimensions of a particular capacitor

> Operation Principle

In 3 phase circuit, for 1 line grounding current is calculated from the following formula.

 $Ig = 3j\omega CEa = j\sqrt{3}E \times 2\pi fC$

Ig : Grounding Current [A] E : Line Voltage [V]

Ea : Phase Voltage [V] C : Equivalent Ground Capacitance $[C = C_1+C_2]$

 l_{C1} [Ground fault current Ig in figure A - charged current after zero phase current transformer [ZCT]] passes the zero phase current transformer. Therefore, ground fault current Ig₁ passing ZCT can be calculated from the following formula.

$Ig_1 = \sqrt{3}E \times 2\pi \times f \times C_1$

When the distance between transformer and ZCT is small, ground capacity in line is small and penetration ground fault current I_{g1} is not enough to move circuit breaker. Therefore, use capacitor for earthing to improve ground capacity in line.

For example, when E = 3300V, $C_1 = 0.5 \mu$ F, and f = 50Hz in figure B, ZCT penetration ground fault current is as following :

 $Ig_{1} = \sqrt{3} \times 3300 \times 2\pi \times 60 \times 0.5 \times 10^{-6} = 1.08A$

Since detecting current of grounding breaker is selected to be 0.1 \sim 0.8A, it is good to select the value of C1 to be more than this value

[C₁ is equivalent to 1 phase and in case of C₁ = 0.5μ F, capacitor for grounding of 0.5μ F×3 is to be selected]

4-11 Pulse Power Capacitor

> Application

It is normally used in the area of power supply device for tests, for example IVG, ICG, Mark Generator, Power Supply for L-C resonance circuit and small scale power supply for fusion study and Power supply pulse power[state of art medical instruments, rock destruction and pulse laser] and recently, households which use this capacitor have been rapidly increased.

Since high energy density capacitor for pulse power is the key part of aircrafts [fighter, artificial satellite and passenger airplane], electronic / electric heat chemical gun, high efficiency laser and high efficiency munitions such as radar, the supply of this product was difficult since the industrialized countries regulated the outflow of technology. But, recently our company mass porduced the capacitor resulting in smooth supply of the product. In 1997, 11kVDC 150μ F 9kJ rated capacitor for energy storage was developed with our own technology and delivered them for power supply of simple composite test facility and its performance has been recognized.

Several capacitors were also installed at heavy electro mechanics manufacturers in Korea and are used for test facilities.

> PulsePower Low Capacitor

This product uses polypropylene film which has excellent withstand voltage and good quality capacitor paper as dielectric and contains refined impregnation oil, resulting in high reliability. To minimize inner inductance, it employs non inductive solder for reducing self inductance.

- Installation Place : Indoor
- Ambient Temperature : -10° C $\sim +40^{\circ}$ C [Average 35°C or less per day]
- Technical Data

Tolerance	−10% ~ +10% [at 20°C]
Insulation Resistance	More than $1000MQ$ between batch terminal and case [below20°C]
Withstand Voltage	Rated voltage × 1.2 times, for 60 seconds between terminal and case
Painting Color	Munsell no. 5Y 7/1
Self Inductance	Max. 150nH
Duty Cycle	Pause for more than 10 min, per charging / discharging
Voltage Reversal	20% ~ 90%

4-11 Pulse Power Capacitor

> Ratings and Dimensions

Rated Volage	Capacity	Joule	Turne	Dimension [mm]					Weight	Figure	Demortice		
[kVDC]	[µF]	[kJ]	туре	А	В	С	D	E	F	F	[kg]	Figure	Remarks
11	150	9.08	TFT-T11150S	810	995	160	315	370	424	228	70.7		
10	0.01	0.01	TFT-T40001S	190	375	115	315	430	496	300	20.8		Ctool
40	11	8,80	TFT-T40011S	560	745	170	530	530	583	300	71.8	1	Sleel
100	0.5	2.50	TFT-T100001S	390	660	135	530	530	583	380	42.6		Case
100	1.0	5,00	TFT-T100001S	690	690	135	530	530	583	380	73.4		
25	0.3	0.09	TAE-25001S	_	-	_	_	_	_	_	6.7	0	Plastic
100	0.1	0.50	THE-100001S	-	-	-	-	-	-	-	7.5	2	Case

* Approximate Ratings and Dimensions are given above. Please contact factory before order.

> High Energy Density Pulse Power Capacitor

With metalized polypropylene film made through metalized technology and good quality capacitor paper as dielectric, this product realized high energy density, high reliability and long life span.

- Installation Place : Indoor
- Ambient Temperature for Use : -10° C $\sim +40^{\circ}$ C [below 35°C average per day]
- Techinical Data

Tolerance	−10% ~ +10% [at 20℃]
Inculation Decistores	More than $1000MQ$ between batch terminal and case
Insulation Resistance	[below 20°C]
Withstand Valtage	Rated voltage×1.2 times, for 60 seconds between
withstand voltage	terminal and case
Painting Color	Munsell no. 5Y 7/1
Self Inductance	Max. 150nH
Duty Ovolo	Pause for more than 10 min. per charging /
Duly Cycle	discharging
Voltage Reversal	20% ~ 90%

Rated Volage	Capacity	Energy Density	Tune	Dimension [mm]			Weight	E aure
[kVDC]	[μF]	[kJ/kg]	туре	А	В	С	[kg]	Figure
20	200	0.33	SDF-T20200S	620	660	340	120	2

> Basic Information for Order

- Capacity and tolerance on capacitance
 - Charging time and hold time
- Rated voltage and voltage reversal [%] Maximum current [kA] in discharging and discharge time
- Required life span and 1 time charging / discharging cycle

