Micro Machined
 Sensors

DESCRIPTION

The MMS is a ultra-small magnetically actuated reed sensor (SPST) that requires no power. It is manufactured by using semiconductor wafer technology. Its biggest advantages are the small dimensions with $4.8 \mathrm{~mm} \times 2.05 \mathrm{~mm}$ (0.189 "x 0.081 ").

FEATURES

- SMT reed sensors (SPST) in miniature size
- requires no power
- ultra-small dimensions
- designed for switching low power devices (max. 3 VDC)
- 10^{9} Ohm insulation resistance across the contacts
- magnetic sensitivity ranges from 1.8 to 4.0 milliTesla
- preferably packaged in tape \& reel according to IEC 286/part 3, waffle package possible
- electrostatic sensitive device!!

APPLICATIONS

- Medical pacemakers and insulin pumps
- Telecommunications
- CMOS gates and other low power signals switching

DIMENSIONS

All dimensions in mm [inches] unspecified tolerances $+/-0.1 \mathrm{~mm}$

Lead design 1

Lead design 2

PAD LAYOUT

Lead design 1+2

PACKAGING

ORDER INFORMATION

Part Number Example

MMS - B-1

Series	Sensitivity Class	Lead Design
MMS	B -	1,2

B is the magnetic sensitivity
1 defines the lead design

Sensors

CONTACT DATA

All Data at $20^{\circ} \mathrm{C}$	Contact Form -->	Form A / ${ }_{\text {DRY }}$			
Contact Ratings	Conditions	Min.	Typ.	Max.	Units
Switching Power	Any DC combination of V \& A not to exceed their individual max.'s			0.3	W
Switching Voltage	DC or peak AC			3.0	V
Switching Current	DC or peak AC			100	$\mu \mathrm{A}$
Carry Current	DC or peak AC			100	$\mu \mathrm{A}$
Static Contact Resistance	Measured w/ 0.5 V \& $50 \mu \mathrm{~A}$		50	1000	Ω
Insulation Resistance across Contacts	25 Volt applied	10^{9}			Ω
Breakdown Voltage across Contacts		50			VDC
Operation Time incl. Bounce	Measured w/ 40 \% overdrive		0.1	0.2	ms
Release Time	Measured w/ no coil suppression		0.05	0.1	ms
Capacitance	at 10 kHz across contact		0.2	0.5	pF
Life Expectancies					
	Switching Voltage 1.5 V \& $15 \mu \mathrm{~A}$	10^{7}			Cycles
Magnetic Characteristics					
Pull-In	Ramped in $0.1 \mathrm{mT} / \mathrm{ms} \mathrm{steps}$	1.8		4.0	mT
Drop-Out	Ramped in $0.1 \mathrm{mT} / \mathrm{ms} \mathrm{steps}$	0.5		3.2	mT
Environmental Data					
Shock Resistance	Any direction	5000			g
Vibration Resistance	From $10-2000$ Hz	30			g
Ambient Temperature	$10^{\circ} \mathrm{C} /$ minute max. allowable	-20		100	${ }^{\circ} \mathrm{C}$
Stock Temperature	$10^{\circ} \mathrm{C} /$ minute max. allowable	-55		150	${ }^{\circ} \mathrm{C}$
Soldering Temperature	3.5 sec . at			260	${ }^{\circ} \mathrm{C}$
Cleaning		fully sealed			
Packaging	Tape \& Reel	17.78 mm Reel (7 inch), 12 mm width, 4 mm ptich			
Marking	On Tape \& Reel Packaging	A: Supplier Part Number B: Supplier Lot Number / Date Code C: Quantity			

ATTENTION

These devices are especially designed for low voltage and low power switching! The following points must be respected when the device is connected in a circuit:

- Voltage spikes (electrostatic or otherwise) across the terminals in the open mode are limited to $10 \mathrm{dv} / \mathrm{dt}$
- Switched voltages and current are limited to the maximum ratings
- The parallel capacitance added across the switch is less than 100 pF
- Minimize stray capacitance to less than 100 pF in any lead circuit
- The mounting and test equipment are properly grounded, as they may induce voltage spikes across the terminals
- All handling is performed on a conductive mat, and the operator is also grounded through a wrist contact bracelet
- Permanent sticking or damage of the contacts may result whenever any of the above warnings is not respected.

