- SIRE\|7A

Sirenza Microdevices' SDM-09120-1Y 130W power module is a robust impedance matched, single-stage, push-pull Class AB amplifier module suitable for use as a power amplifier driver or output stage. The power transistors are fabricated using Sirenza's latest, high performance LDMOS process. It is a drop-in, no-tune solution for high power applications requiring high efficiency, excellent linearity, and unit-tounit repeatability. It is internally matched to 50 ohms.

Functional Block Diagram

Case Flange $=$ Ground

SDM-09120-1Y

915-960 MHz Class AB 130W Power Amplifier

Product Features

- 50Ω RF impedance
- 130W Output $P_{1 d B}$
- Single Supply Operation : Nominally 28V
- High Gain: 15 dB at 942 MHz
- High Efficiency: 42\% at 942 MHz
- ESD Protection: JEDEC Class 2 (2000V HBM)
- RoHS Compliant Green Package

Applications

- Base Station PA driver
- Repeater
- CDMA
- GSM / EDGE

Key Specifications

Symbol	Parameter	Units	Min.	Typ.	Max.
Frequency	Frequency of Operation	MHz	915	-	960
$\mathrm{P}_{1 \mathrm{~dB}}$	Output Power at 1dB Compression, 943 MHz	W	120	130	-
Gain	120W PEP Output Power, 942MHz and 943MHz	dB	14	15	-
Gain Flatness	Peak-to-Peak Gain Variation, 120W PEP, 925-960MHz	dB	-	0.3	0.5
IRL	Input Return Loss, 120W PEP Output Power, 925-960MHz	dB	-	-14	-12
IMD	3rd Order Product. 120W PEP Output, 942MHz and 943MHz	dBc	-	-28	-26
IMD Variation	120W PEP Output, Change in Spacing 100KHz - 25MHz	dB	-	1.0	-
Efficiency	Drain Efficiency, 120W PEP Output, 942MHz and 943MHz	\%	32	33	-
	Drain Efficiency, 120W CW Output, 943MHz	\%	-	42	-
Delay	Signal Delay from Pin 3 to Pin 8	nS	-	4.0	-
Phase Linearity	Deviation from Linear Phase (Peak-to-Peak)	Deg	-	0.7	-
Test Conditions $Z_{\text {in }}=Z_{\text {out }}=50 \Omega, \mathrm{~V}_{\mathrm{DD}}=28.0 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ} 1}=\mathrm{I}_{\mathrm{DQ} 2}=500 \mathrm{~m}$. $\mathrm{T}_{\text {Flange }}=25^{\circ} \mathrm{C}$					

Quality Specifications

| Parameter | Description | Unit | Typical |
| :---: | :--- | :--- | :---: | :---: |
| ESD Rating | Human Body Model | Volts | 2000 |
| MTTF | $200^{\circ} \mathrm{C}$ Channel | Hours | 1.2×10^{6} |

Pin Description

Pin \#		Dunction	Description
1	$\mathrm{~V}_{\mathrm{GS} 1}$	LDMOS FET Q1 and Q2 gate bias. $\mathrm{V}_{\mathrm{GSTH}} 3.0$ to 5.0 VDC . See Notes 2, 3 and 4	
$2,4,7,9$	Ground	Module Topside ground.	
3	RF Input	Internally DC blocked	
5	$\mathrm{~V}_{\mathrm{GS}}$	LDMOS FET Q3 and Q4 gate bias. $\mathrm{V}_{\mathrm{GSTH}} 3.0$ to 5.0 VDC. See Notes 2, 3 and 4	
6	$\mathrm{~V}_{\mathrm{D} 2}$	LDMOS FET Q3 and Q4 drain bias. See Note 1.	
8	RF Output	Internally DC blocked	
10	$\mathrm{~V}_{\mathrm{D} 1}$	LDMOS FET Q1 and Q2 drain bias. See Note 1.	
Flange	Ground	Baseplate provides electrical ground and a thermal transfer path for the device. Proper mounting assures optimal performance and the highest reliability. See Sirenza applications note AN-054 Detailed Installation Instructions for Power Modules.	

Simplified Device Schematic

Absolute Maximum Ratings

Parameters	Value	Unit
Drain Voltage (V VDD$)$	35	V
RF Input Power	+43	dBm
Load Impedance for Continuous Operation Without Damage	$5: 1$	VSWR
Control (Gate) Voltage, VDD = 0 VDC	15	V
Output Device Channel Temperature	-20 to +90	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		
Operation of this device beyond any one of these limits may cause per- manent damage. For reliable continuous operation see typical setup val- ues specified in the table on page one.		

Note 1:
Internal RF decoupling is included on all bias leads. No additional bypass elements are required, however some applications may require energy storage on the V_{D} leads to accommodate modulated signals.

Note 2:
Gate voltage must be applied to V_{GS} leads simultaneously with or after application of drain voltage to prevent potentially destructive oscillations. Bias voltages should never be applied to a module unless it is properly terminated on both input and output.

Note 3:

The required V_{GS} corresponding to a specific I_{DQ} will vary from module to module and may differ between $\mathrm{V}_{\mathrm{GS} 1}$ and $\mathrm{V}_{\mathrm{GS} 2}$ on the same module by as much as ± 0.10 volts due to the normal die-to-die variation in threshold voltage for LDMOS transistors.

Note 4:

The threshold voltage $\left(\mathrm{V}_{\mathrm{GSTH}}\right)$ of LDMOS transistors varies with device temperature. External temperature compensation may be required. See Sirenza application notes AN-067 LDMOS Bias Temperature Compensation.

Note 5:

This module was designed to have it's leads hand soldered to an adjacent PCB. The maximum soldering iron tip temperature should not exceed $700^{\circ} \mathrm{F}$, and the soldering iron tip should not be in direct contact with the lead for longer than 10 seconds. Refer to app note ANO54 (www.sirenza.com) for further installation instructions.

Caution: ESD Sensitive

Appropriate precaution in handling, packaging and testing devices must be observed.

Typical Performance Curves

2 Tone Gain, Efficiency, Linearity and IRL vs Frequency Vdd=28V, Idq=1.2A, Pout=120W PEP, Delta F=1 MHz

CW Gain, Efficiency, IRL vs Frequency

2 Tone Gain, Efficiency, Linearity vs Pout Vdd=28V, $\mathrm{Idq}=1.2 \mathrm{~A}$, Freq=942 MHz, Delta F=1 MHz

303 S. Technology Court Broomfield, CO 80021
http://www.sirenza.com EDS-105407 Rev C

Typical Performance Curves (cont'd)

W Gain vs Pout for various Idq
Vds=28V, Freq=942 MHz

Note:
Evaluation test fixture information available on Sirenza Website, referred to as SDM-EVAL

Package Outline Drawing

MODULE WEIGHT $=41 \mathrm{gm}$ NOMINAL

Note:
Refer to Application note AN054, "Detailed Installation Instructions for Power Modules" for detailed mounting information.

