

OVERVIEW

The SM5005A series are crystal oscillator module ICs, that incorporate high-frequency, low current consumption oscillator and output buffer circuits. Highly accurate thin-film feedback resistors and high-frequency capacitors are built-in, eliminating the need for external components to make a stable 3rd overtone oscillator.

FEATURES

- High-frequency operation
- 3rd overtone oscillation
- \blacksquare Capacitors C_G , C_D built-in
- Standby function (oscillator stops)
- Power-saving pull-up resistor built-in
- Inverter amplifier feedback resistor built-in
- CMOS input level

- 8mA ($V_{DD} = 2.7V$) drive capability
- CMOS output duty level
- Output three-state function
- 2.25 to 3.6V supply voltage
- Oscillator frequency output
- 8-pin VSOP (SM5005A××V)
- Chip form (CF5005A××)

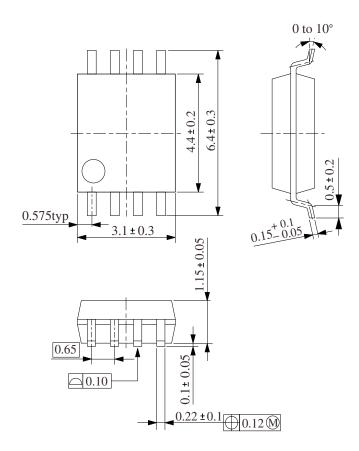
SERIES CONFIGURATION

Version ¹		ed operating ange ² [MHz]	gm ratio Output duty Output Output Output			$R_f[k\Omega]$			
Version	V _{DD} = 2.25 to 2.75V	V _{DD} = 2.7 to 3.6V	giirratio	level current [mA]		C _G	C _D	- n _f [ks2]	
SM5005ALAV	60 to 70	70 to 100	1.0	CMOS	8	8	10	2.2	
SM5005ALBV	-	90 to 110	1.5	CMOS	8	6	6	3.3	
SM5005ALCV	-	107 to 125	1.5	CMOS	8	3	3	3.3	
CF5005ALD ³	45 to 60	60 to 80	1.0	CMOS	8	8	10	3.5	
CF5005ALE ³	30 to 45	40 to 60	1.0	CMOS	8	8	15	5.6	

^{1.} Chip form devices have designation CF5005A $\times\times$.

ORDERING INFORMATION

Device	Package
SM5005A××V	8-pin VSOP
CF5005A××-1	Chip form

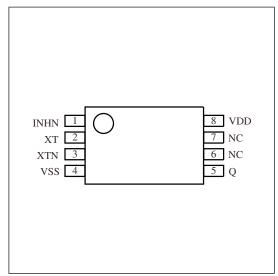

The recommended operating frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

^{3.} Chip form only.

PACKAGE DIMENSIONS

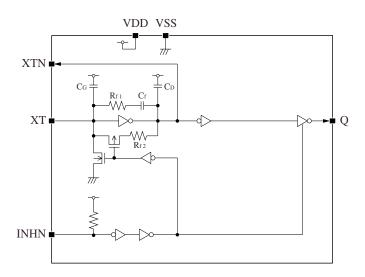
(Unit: mm)

• 8-pin VSOP


PAD LAYOUT

(Unit: µm)

PINOUT


(Top view)

PIN DESCRIPTION and PAD DIMENSIONS

Number	Name	1/0	Description			Description		Pad dimen	sions [µm]
Number	Ivallie	1/0	Description		Х	Υ			
1	INHN	I	Output state control input. Oscillator stopped when LOW. Power-saving pull-up resistor built in		195	212			
2	XT	I	Amplifier input.	Crystal oscillator connection pins.	385	212			
3	XTN	0	Amplifier output.	Crystal oscillator connected between XT and XTN	575	212			
4	VSS	-	Ground		766	212			
5	Q	0	Output. Output frequer	ncy (f _O)	765	1152			
6	NC	-	No connection		-	-			
7	NC	-	No connection		-	-			
8	VDD	-	Supply voltage		162	1152			

BLOCK DIAGRAM

SPECIFICATIONS

Absolute Maximum Ratings

 $V_{SS} = 0V$

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range	V _{DD}		-0.5 to 7.0	V
Input voltage range	V _{IN}		-0.5 to V _{DD} + 0.5	
Output voltage range	V _{OUT}		-0.5 to V _{DD} + 0.5	
Operating temperature range	T _{opr}		-40 to 85	°C
Ctorage temperature range	т	Chip form	-65 to 150	°C
Storage temperature range	T _{stg}	8-pin VSOP	-40 to 125	
Output current	l _{out}		25	mA
Power dissipation	P _D	8-pin VSOP	300	

Recommended Operating Conditions

CF5005AL×

 $V_{SS} = 0V$, $f \le 125MHz$ unless otherwise noted.

Parameter	Symbol	Condition		Unit		
Farameter	Symbol	Condition	min	typ	max	Offic
O	V	C _L ≤ 15pF	2.7	-	3.6	V
Supply voltage	V _{DD}	C _L ≤ 30pF	3.0	-	3.6	1 V
Input voltage	V _{IN}		V _{SS}	-	V _{DD}	V
Operating temperature	T _{OPR}		-20	-	80	°C

CF5005ALA/CF5005ALD/CF5005ALE

 $V_{SS} = 0V$, $f \le 70MHz$ unless otherwise noted.

Parameter	Symbol Condition —			Unit		
Farameter	Symbol	Condition	min	typ	max	Oilli
Supply voltage	V _{DD}	$C_L \le 30pF$	2.25	-	2.75	V
Input voltage	V _{IN}		V _{SS}	-	V _{DD}	V
Operating temperature	T _{OPR}		-20	-	80	°C

SM5005AL×V

 $V_{SS} = 0V$, $f \le 125MHz$ unless otherwise noted.

Parameter Symbol Conditi		Condition		Unit		
raiametei	Symbol	Condition	min	typ	max	Oilit
Supply voltage	V _{DD}	C _L ≤ 15pF	2.7	-	3.6	V
Input voltage	V _{IN}		V _{SS}	-	V _{DD}	V
Operating temperature	T _{OPR}		-20	-	80	°C

SM5005A series

Electrical Characteristics

 $V_{\rm DD}$ = 2.7 to 3.6V, $V_{\rm SS}$ = 0V, Ta = -20 to 80°C unless otherwise noted.

		Condition				Rating		
Parameter	Symbol			min	typ	max	Unit	
HIGH-level output voltage	V _{OH}	Q: Measurement cct	1, V _{DD} = 2.7V, I _{OH} = 8m	A	2.2	2.4	-	V
LOW-level output voltage	V _{OL}	Q: Measurement cct 2	2, V _{DD} = 2.7V, I _{OL} = 8m.	A	-	0.3	0.4	V
Output leakage current	I _Z	Q: Measurement cct 2	2, INHN = LOW,	$V_{OH} = V_{DD}$	-	-	10	μА
Output leakage current	'Z	V _{DD} = 3.6V		$V_{OL} = V_{SS}$	-	ı	10	μΛ
HIGH-level input voltage	V _{IH}	INHN			0.7V _{DD}	-	-	V
LOW-level input voltage	V _{IL}	INHN			-	-	0.3V _{DD}	V
Current consumption	I _{DD}	INHN = open, Measurement cct 3, load cct 1,	C _L = 30pF	CF5005AL×	-	40	100	mA
	.00	V _{DD} = 3.0V to 3.6V f = 125MHz	C _L = 15pF	SM5005AL×V CF5005AL×	-	25	60	
Standby current	I _{ST}	INHN = LOW, Measur	rement cct 3		-	_	10	μA
INHN pull-up resistance	R _{UP1}	Measurement cct 4, II	NHN = LOW		0.4	_	4	MΩ
THE PAIR OF TOOLOGINGS	R _{UP2}	Measurement cct 4, II	NHN = 0.7V _{DD}		50	-	150	kΩ
				SM5005ALAV CF5005ALA	1.76	2.2	2.64	
	R _{f1}	Design value. A monitor pattern on a wafer is tested. CF5005A SM5005A	tor pattern on a wafer	SM5005ALBV CF5005ALB	2.64	3.3	3.96	
AC feedback resistance			SM5005ALCV CF5005ALC	2.64	3.3	3.96	kΩ	
				CF5005ALD	2.80	3.5	4.20	
				CF5005ALE	4.48	5.6	6.72	
DC feedback resistance	R _{f2}	Measurement cct 5			50	İ	150	kΩ
AC feedback capacitance	C _f	Design value. A monit	tor pattern on a wafer is	tested.	9.3	10	10.7	pF
		Design value. A monit	tor nattern on a wafer	SM5005ALAV CF5005ALA CF5005ALD CF5005ALE	7.44	8	8.56	
	C _G	is tested.	or patient on a water	SM5005ALBV CF5005ALB	5.58	6	6.42	pF
				SM5005ALCV CF5005ALC	2.79	3	3.21	
Built-in capacitance				SM5005ALAV CF5005ALA CF5005ALD	9.3	10	10.7	
	C _D	Design value. A monit is tested.	tor pattern on a wafer	SM5005ALBV CF5005ALB	5.58	6	6.42	pF
				SM5005ALCV CF5005ALC	2.79	3	3.21	
				CF5005ALE	13.95	15	16.05	

Switching Characteristics

3V operation

 $V_{SS} = 0V$, Ta = -20 to 80°C unless otherwise noted.

Davamatav	Parameter Symbol Condition				Rating			Unit
Parameter	Symbol		Condition				max	Unit
Output vine time	t _{r1}	Measurement cct 3, load cct 1,	C _L = 15pF, V _{DD} = 2.7V to 3.6V	SM5005AL×V CF5005AL×	-	1	3	
Output rise time	t _{r2}	0.1V _{DD} to 0.9V _{DD}	C _L = 30pF, V _{DD} = 3.0V to 3.6V	CF5005AL×	-	1.5	4	ns
Output fall time	t _{f1}	Measurement cct 3,	C _L = 15pF, V _{DD} = 2.7V to 3.6V	SM5005AL×V CF5005AL×	-	1	3	
Output fall time	t _{f2}		C _L = 30pF, V _{DD} = 3.0V to 3.6V	CF5005AL×	-	1.5	4	ns
			$C_L = 30pF,$ $f \le 125MHz$	CF5005AL×	45	-	55	
Output duty cycle ¹	Duty	Measurement cct 3, load cct 1, Ta = 25°C, V _{DD} = 3.0V	C _L = 15pF, f ≤ 107MHz	- SM5005AL×V	45	-	55	%
		יטט פוטי	C _L = 15pF, 107MHz < f < 125MHz		40	-	60	
Output disable delay time ²	t _{PLZ}	Measurement cct 6, Ta = 25°C, V_{DD} = 2.7V, $C_L \le 15pF$			-	-	100	ns
Output enable delay time ²	t _{PZL}	Measurement cct 6, Ta	= 25° C, V_{DD} = 2.7 V, $C_{L} \le 10^{\circ}$	15pF	-	-	100	ns

^{1.} The duty cycle characteristic is checked the sample chips of each production lot.

2.5V operation (CF5005ALA, CF5005ALD, CF5005ALE)

 $V_{SS} = 0V$, Ta = -20 to 80°C unless otherwise noted.

Parameter	Symbol	ol Condition		Rating		
Faiametei	Syllibol			typ	max	Unit
Output rise time	t _{r3}	Measurement cct 3, load cct 1, $0.1V_{DD}$ to $0.9V_{DD}$, $C_L = 30pF$, $V_{DD} = 2.25V$ to $2.75V$	-	2	6	ns
Output fall time	t _{f3}	Measurement cct 3, load cct 1, $0.9V_{DD}$ to $0.1V_{DD}$, $C_L = 30pF$, $V_{DD} = 2.25V$ to $2.75V$	-	2	6	ns
Output duty cycle ¹	Duty	Measurement cct 3, load cct 1, Ta = 25°C, V_{DD} = 2.5V, C_L = 30pF, f \leq 70MHz	40	-	60	%
Output disable delay time ²	t _{PLZ}	Measurement cct 6, Ta = 25°C, V_{DD} = 2.25V, $C_L \le 15 pF$	-	-	300	ns
Output enable delay time ²	t _{PZL}	Measurement cct 6, Ta = 25°C, V_{DD} = 2.25V, $C_L \le 15pF$	-	-	300	ns

 $^{1. \ \ \}text{The duty cycle characteristic is checked the sample chips of each production lot}.$

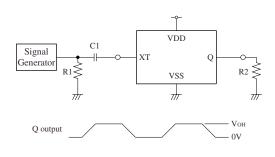
^{2.} Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

^{2.} Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

FUNCTIONAL DESCRIPTION

Standby Function

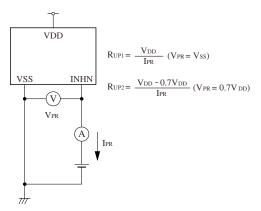
The oscillator stops when INHN goes LOW. When the oscillator stops, the oscillator output on Q goes high impedance.

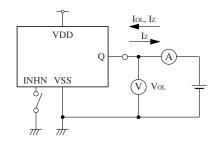

INHN	Q	Oscillator
HIGH (or open)	f _O output frequency	Normal operation
LOW	High impedance	Stopped

Power-saving Pull-up Resistor

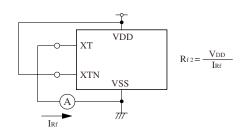
The INHN pull-up resistance changes in response to the input level (HIGH or LOW). When INHN goes LOW (standby state), the pull-up resistance becomes large to reduce the current consumption during standby.

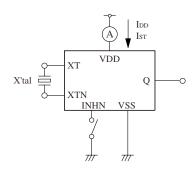
MEASUREMENT CIRCUITS


Measurement cct 1


 $2.5 V_{P-P}$, 10MHz sine wave input signal $C1:0.001 \mu F$

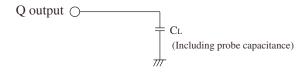
 $\begin{array}{l} \text{C1}: 0.001 \mu \\ \text{R1}: 50 \Omega \\ \text{R2}: 275 \Omega \end{array}$


Measurement cct 4


Measurement cct 2

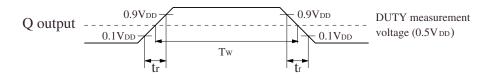
Measurement cct 5

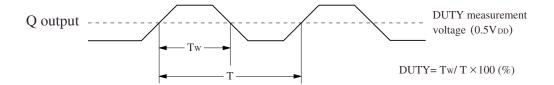
Measurement cct 3



Measurement cct 6

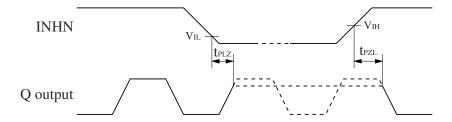
R1:50 Ω


Load cct 1


 $\begin{array}{l} C_L = 15pF; t_{r1}, t_{f1}, I_{DD} \; (SM5005AL \times V, CF5005AL \times) \\ C_L = 30pF; t_{r2}, t_{f2}, t_{f3}, t_{f3}, I_{DD} \; (CF5005AL \times) \end{array}$

Switching Time Measurement Waveform

Output duty level (CMOS)



Output duty cycle (CMOS)

Output Enable/Disable Delay

The following figure shows the oscillator timing during normal operation. Note that when the device is in standby, the oscillator stops. When standby is released, the oscillator starts and stable oscillator output occurs after a short delay.

INHN input waveform $tr = tf \le 10$ ns

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

15-6, Nihombashi-kabutocho, Chuo-ku, Tokyo 103-0026, Japan Telephone: +81-3-6667-6601 Facsimile: +81-3-6667-6611

http://www.npc.co.jp/ Email: sales@npc.co.jp

NC9805GE 2006.04

SEIKO NPC CORPORATION —10