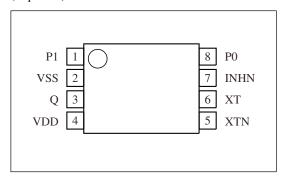


OVERVIEW

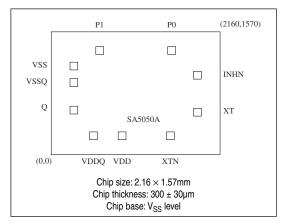

The SM5050A is a single-output clock generator IC that generates standard high-frequency clocks derived from a 20 to 40MHz crystal oscillator master clock. The high-frequency output stage uses optimized PLL circuits for low jitter output. The oscillator capacitors C_G and C_D are built-in, realizing a high-frequency output oscillator by just the connection of a crystal. Two program inputs allows selection from 4 frequency multipliers, making the SM5050A able to generate multi-standard frequency clock outputs.

FEATURES

- 2.7 to 3.6V operating supply voltage
- 20 to 40MHz master clock frequency (fundamental)
- Output frequency ranges
 - 100 to 166.6MHz ($V_{DD} = V_{DDQ} = 3.0$ to 3.6V)
 - 100 to 125MHz ($V_{DD} = V_{DDQ} = 2.7$ to 3.6V)
- 8mA output drive capability
- \blacksquare Oscillator capacitors $(C_G,\,C_D)$ and feedback resistor (R_f) built-in
- 100ps (typ) low jitter output (peak-to-peak)
- 2 program inputs for 4 selectable multiplier ratios
- Standby function
- Packaging
 - Chip form (CF5050A)
 - 8-pin VSOP package (SM5050AV)

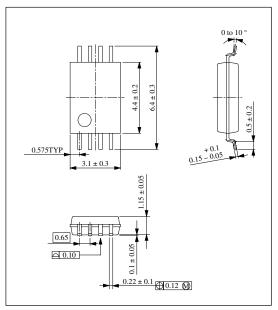
PINOUT

(Top view)

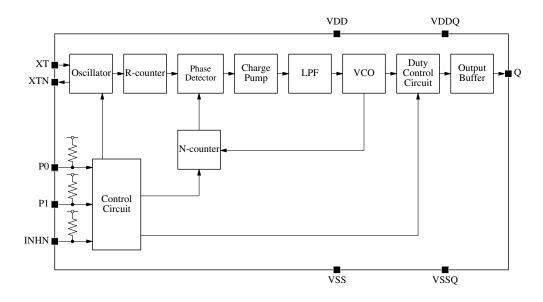


ORDERING INFORMATION

Device	Package
CF5050A-1	Chip form
SM5050AV	8-pin VSOP


PAD DIMENSIONS

(Unit: µm)



PACKAGE DIMENSIONS

(Unit: mm)

BLOCK DIAGRAM

PIN DESCRIPTION

SM50	50AV		CF5050A			
Number	Number Name		Pad dimensions [µm]		I/O ¹	Description
Number	Name	Name	Х	Y		
1	P1	P1	620	1330	lp	Program input 1. Selects the output frequency multiplier ratio.
2	VSS	VSS	290	1132	-	Ground
2	VOO	VSSQ	290	920	-	Output circuit ground
3	Q	Q	290	569	0	Output (CMOS)
4	VDD	VDDQ	540	240	-	Output circuit supply
4	טטע	VDD	906	240	-	Supply
5	XTN	XTN	1524	240	0	Crystal oscillator connection pins.
6	XT	XT	1870	542	I	Crystal connected between XT and XTN.
7	INHN	INHN	1870	1015	lp	Operating state control (inhibit). When INHN is LOW, output is high impedance and PLL circuits stop.
8	P0	P0	1540	1330	lp	Program input 0. Selects the output frequency multiplier ratio.

^{1.} Ip = input with built-in pull-up resistor.

OUTPUT FREQUENCY SETTINGS

Program inputs		Multiplier ratio	Master clock	Output frequency	Supply voltage [V]	
P0	P1	wulliplier ratio	frequency [MHz]	[MHz]	Supply voltage [v]	
LOW	LOW	×4	25.00	100		
LOW	HIGH	× 4.25	25.00	106.25	2.7 to 3.6	
HIGH	LOW	5	25.00	125		
nidn	LOW	×5	26.66	133.3		
HIGH	HIGH	× 6.25	24.8832	155.52	3.0 to 3.6	
ПИП			26.66	166.6		

Note: The output frequency range is 100 to 166.6MHz. The master clock frequency can be adjusted to any value within the range 20 to 40MHz, so the master clock frequency and multiplier should be selected such that the output frequency is within the output frequency range.

SPECIFICATIONS

Absolute Maximum Ratings

$$V_{SS} = 0V$$

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range	V _{DD}		-0.5 to 6.0	V
Input voltage range	V _{IN}		-0.5 to V _{DD} + 0.5	V
Output voltage range	V _{OUT}		-0.5 to V _{DD} + 0.5	V
Ctorono tomonorativo vonco	T _{stg}	CF5050A	-65 to 150	°C
Storage temperature range		SM5050AV	-55 to 125	°C
Operating temperature range	T _{opr}		-40 to 85	°C
Output current	I _{OUT}		25	mA
Power dissipation	P _D	SM5050AV	150	mW

Recommended Operating Conditions

$$V_{SS} = 0V$$
, $f_{OUT} = 100$ to 166.6MHz, $C_L = 15$ pF

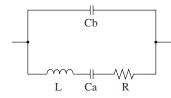
Parameter	Symbol	Condition		Unit		
raiametei	Symbol		min	typ	max	Oille
Operating supply voltage	l V _{DD}	f _{OUT} ≤ 125MHz	2.7	-	3.6	- V
		f _{OUT} ≤ 166.6MHz	3.0	-	3.6	
Input voltage	V _{IN}		V _{SS}	-	V _{DD}	V
Operating temperature	T _{opr}		-20	-	80	°C

SM5050A

DC Characteristics

 $V_{\rm DD}$ = 2.7 to 3.6V, $V_{\rm SS}$ = 0V, Ta = -20 to 80°C unless otherwise noted.

Parameter	Complete	Condition			Rating		Unit
Parameter	Symbol			min	typ	max	
Q HIGH-level output voltage	V _{OH}	V _{DD} = 2.7V, I _{OH} = 8mA		2.2	-	-	V
Q LOW-level output voltage	V _{OL}	V _{DD} = 2.7V, I _{OL} = 8mA		-	-	0.4	V
0		Measurement circuit 4,	$V_{OH} = V_{DD}$	-	-	10	4
Q output leakage current	Ι _Ζ	INHN = V _{SS}	V _{OL} = V _{SS}	-	_	10	μΑ
INHN HIGH-level input voltage	V _{IH1}		•	0.7V _{DD}	-	-	V
P0, P1 HIGH-level input voltage	V _{IH2}			0.9V _{DD}	_	-	V
INHN LOW-level input voltage	V _{IL1}			_	_	0.3V _{DD}	V
P0, P1 LOW-level input voltage	V _{IL2}				_	0.1V _{DD}	V
Current consumption		25MHz crystal, measurement circuit 1, load circuit 1, INHN = open, C _L = 15pF, P0 = HIGH, P1 = LOW, V _{DD} = 3.0V		-	23	-	- mA
	I _{DD}	25MHz crystal, measurement circuit 1, load circuit 1, INHN = open, C _L = 15pF, P0 = HIGH, P1 = LOW		-	-	42	
Standby current	I _{ST}	INHN = V _{SS} , measureme	ent circuit 1	_	-	40	μA
INHN, P0, P1 input pull-up	R _{UP1}	V _{DD} = 3V, measurement circuit 2		0.3	_	6	MΩ
resistance	R _{UP2}			10	_	200	kΩ
Negative resistance	-R _L	V _{DD} = 3V, Ta = 25°C, f = 30MHz		-	-240	-	Ω
Feedback resistance	R _f	Measurement circuit 3		100	300	900	kΩ
Internal conscitones	C _G	Design values		15.98	18.44	20.90	pF
Internal capacitance	C _D	Design values		15.98	18.44	20.90	pF

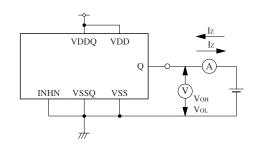

Switching Characteristics

 V_{DD} = 2.7 to 3.6V, V_{SS} = 0V, Ta = -20 to 80°C unless otherwise noted.

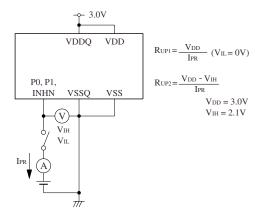
Parameter	Symbol	Condition		Rating			Unit
raiametei	Symbol Condition		min	typ	max	Oille	
Output rise time	t _r	$0.2V_{DD} \rightarrow 0.8V_{DD}$, measurement circuit 1, load circuit 1, $C_L = 15pF$		-	1	2.5	ns
Output fall time	t _f	$0.8V_{DD} \rightarrow 0.2V_{DD}$, meas circuit 1, load circuit 1, C _I		-	1	2.5	ns
Output duty cycle	Duty	V_{DD} = 3V, Ta = 25°C, measurement circuit 1, load circuit 1, C_L = 15pF, f \leq 166.6MHz		40	-	60	%
Output disable delay time ¹	t _{PLZ}	V _{DD} = 3V, Ta = 25°C, measurement circuit 1, load circuit 1, C _L = 15pF		-	-	100	ns
Startup time ^{2,3}	t _{SZL}	V_{DD} = 3V, Ta = 25°C, measurement circuit 1, load circuit 1, C_L = 15pF		-	1	-	ms
Oscillator frequency	f	Measurement circuit 1		20	-	40	MHz
Output frequency	fоит	Measurement circuit 1	V _{DD} = 2.7V	100	-	125	MHz
Output frequency			V _{DD} = 3.0V	100	-	166.6	IVIITZ
Output clock jitter ³	Jitter	V _{DD} = 3V, Ta = 25°C, 25MHz crystal, P0 = HIGH, P1 = LOW, measurement circuit 1, load circuit 1,C _L = 15pF, peak-to-peak		-	100	-	ps

- Time from when INHN goes LOW until Q output goes high impedance.
 Time from when either INHN goes LOW to HIGH or supply voltage V_{DD} = 3.0V until normal signal output.
 Measured values using NPC characteristics standard evaluation board and standard crystal.

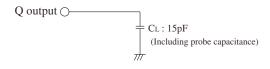
NPC STANDARD CRYSTAL DATA

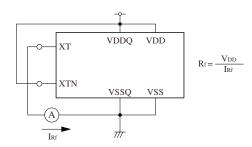

f (MHz)	R (Ω)	L (mH)	Ca (fF)	Cb (pF)
25	4.368	1.885	21.52	4.793
27	7.421	2.402	14.48	4.097

MEASUREMENT CIRCUITS

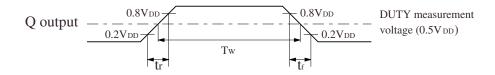

Measurement Circuit 1

XT VDDQ VDD Q VTN

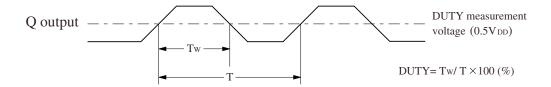

Measurement Circuit 4


Measurement Circuit 2

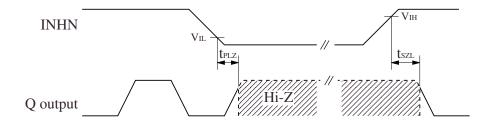
Load Circuit 1



Measurement Circuit 3



Switching Time Measurement Waveforms


Output duty level

Output duty cycle time

Output Disable Delay Time/Startup Time

INHN input waveform $tr = tf \le 10ns$

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

15-6, Nihombashi-kabutocho, Chuo-ku, Tokyo 103-0026, Japan Telephone: +81-3-6667-6601 Facsimile: +81-3-6667-6611

http://www.npc.co.jp/ Email: sales@npc.co.jp

NC9921BE 2006.04

SEIKO NPC CORPORATION —8