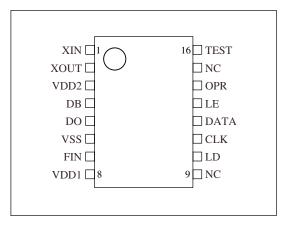
NPC

OVERVIEW

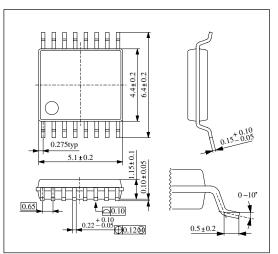
The SM5170AV is a PLL synthesizer IC developed for application in pagers. It incorporates independentlycontrolled reference frequency and FIN input frequency dividers, and operates from a low-voltage supply to realize low power dissipation. It features a charge pump that operates at 3V, making possible a wide range of VCO designs.

FEATURES

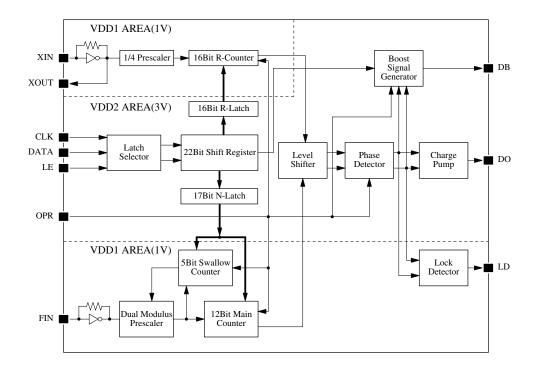

- Supply voltages
 - $V_{DD1} = 0.95$ to 1.2V (prescaler, counters)
 - $V_{DD2} = 2.0$ to 3.3V (charge pump)
- FIN input frequency
 - $f_{FIN} = 300 MHz (V_{DD1} = 0.95V)$
- $f_{FIN} = 330 MHz (V_{DD1} = 1.0V)$
- Reference frequency
 - $f_{XIN} = 25MHz (V_{DD1} = 0.95V)$
- 20 to 262140 reference frequency divider ratio range (with 1/4 prescaler built-in)
- 1056 to 131071 FIN input frequency divider ratio range
- -10 to 60° C operating temperature range
- 16-pin VSOP

ORDERING INFORMATION

Device	Package
SM5170AV	16-pin VSOP


PINOUT

(Top view)


PACKAGE DIMENSIONS

(Unit: mm)

PLL Synthesizer IC

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Name	I/O	Supply	Description
1	XIN	Ι	1V	Reference frequency divider crystal oscillator connection pins. Alternatively, an external clock input can
2	XOUT	0	1V	be connected to XIN. The clock is output on XOUT. Feedback resistor built-in for AC-coupled inputs.
3	VDD2	-	3V	Phase comparator, charge pump and booster signal 3V supply
4	DB	0	3V	Booster signal output for faster locking
5	DO	0	3V	Phase comparator output pin. Built-in charge pump and tristate output means that this output can be connected to a low-pass filter. The output polarity is preset for connection to a passive filter.
6	VSS	-	-	Ground pin
7	FIN	Ι	1V	FIN input frequency divider input pin. Feedback resistor built-in for AC-coupled inputs.
8	VDD1	-	1V	Reference frequency and FIN input frequency prescaler and counter 1V supply
9	NC	-	-	No connection
10	LD	0	1V	Unlock signal output pin. (Unlocked when LOW). The function of LD can be turned OFF using the LD input control bit (LD should be tied LOW when not used).
11	CLK	Ι	3V	Control data clock input pin
12	DATA	I	3V	Control data input pin
13	LE	Ι	3V	Control data latch enable signal input pin
14	OPR	Ι	3V	Power-save control pin. Start when HIGH, standby mode when LOW.
15	NC	-	-	No connection
16	TEST	Ι	1V	Test pin. Pull-down resistor built-in. Leave open or connect to ground for normal operation.

SPECIFICATIONS

Absolute Maximum Ratings

 $V_{SS} = 0V$

Parameter	Symbol Condition		Rating	Unit
Supply voltage	V _{DD1}	VDD1	-0.3 to 2.0	V
Supply vollage	V _{DD2}	VDD2	-0.3 to 4.6	V
	V _{IN1}	FIN, XIN, TEST	$\rm V_{SS}-0.3$ to $\rm V_{DD1}$ + 0.3	V
Input voltage range	V _{IN2}	OPR, CLK, DATA, LE	$V_{\rm SS}$ – 0.3 to $V_{\rm DD2}$ + 0.3	V
Storage temperature range	T _{stg}	-40 to 125		°C
Power dissipation	PD		150	mW

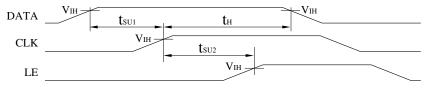
Recommended Operating Conditions

 $V_{SS} = 0V$

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	V _{DD1}	VDD1	0.95 to 1.2	V
Supply vollage	V _{DD2}	VDD2	2.0 to 3.3	V
Operating temperature range	T _{opr}		-10 to 60	°C

ELECTRICAL CHARACTERISTICS

 $V_{SS} = 0V, V_{DD1} = 0.95$ to 1.2V, $V_{DD2} = 2.0$ to 3.3V, Ta = -10 to 60°C


Parameter	Cumhal	Symbol Condition		Rating			Unit
Parameter	Symbol Condition		min	typ	max	Unit	
VDD1 operating current consumption	I _{DD1}	Note 1		-	1.1	1.9	m 4
VDD2 operating current consumption	I _{DD2}	Note 2		-	0.003	-	mA
VDD1 standby current	I _{st1}	Note 3		-	0.7	-	
VDD2 standby current	I _{st2}	Note 4		_	0.01	10.0	μA
	4	300mVp-p sine	V _{DD1} = 0.95 to 1.2V	300	-	-	N411-
FIN maximum operating input frequency	f _{max1}	wave	V _{DD1} = 1.0 to 1.2V	330	-	-	MHz
XIN maximum operating input frequency	f _{max2}	300mVmVp-p sine	wave (external input)	25	-	-	MHz
FIN minimum operating input frequency	f _{min1}	300mVp-p sine wa	ve	_	_	27	MHz
XIN minimum operating input frequency	f _{min2}	300mVp-p sine wa	ve (external input)	-	-	9	MHz
	V _{FIN1}	f _{FIN} = 300MHz, AC	coupling	0.3	-	-	
FIN input amplitude	V _{FIN2}	$f_{FIN} = 330MHz$, $V_{DD1} = 1.0$ to 1.2V, AC coupling		0.3	-	-	Vp-р
XIN input amplitude	V _{XIN}	f _{XIN} = 25MHz, AC o	coupling (external input)	0.3	_	-	Vp-p
OPR, CLK, DATA, LE LOW-level input voltage	V _{IL}			-	-	0.3	V
OPR, CLK, DATA, LE HIGH-level input voltage	V _{IH}			V _{DD2} – 0.3	-	-	V
FIN LOW-level input current	I _{IL1}			_	_	60	μA
XIN LOW-level input current	I _{IL2}	$V_{IL} = 0V$		_	-	10	μA
FIN HIGH-level input current	I _{IH1}			_	-	60	μA
XIN HIGH-level input current	I _{IH2}	$v_{\rm IH} = v_{\rm DD1}$	$V_{IH} = V_{DD1}$		_	10	μA
DB LOW-level output voltage	V _{DOL}	Note 5		-	-	0.5	V
DB HIGH-level output voltage	V _{DOH}	Note 6	Note 6		-	-	۷
DO LOW-level output current	I _{DOL}	Note 7		1.0	-	-	mA
DO HIGH-level output current	I _{DOH}	Note 8		1.0	-	-	mA
DO, DB tristate output high-impedance leakage	I _{OZL}	V _{OL} = 0V		-	-	100	nA
current	I _{OZH}	$V_{OH} = V_{DD2}$		-	-	100	
$DATA \to CLK \text{ setup time}$	t _{SU1}			2	-	-	μs
$CLK \to LE \text{ setup time}$	t _{SU2}	See the timing diagrams.		2	-	-	μs
Hold time	t _H	1		2	-	_	μs

Note 1. V_{DD1} = 1.0 to 1.05V, V_{DD2} = 2.7 to 3.3V, f_{FIN} = 310MHz (300mVp-p sine wave), f_{XIN} = 14.4MHz (300mVp-p sine wave), 25kHz comparator fre-

quency, OPR = HIGH, no output load, typ condition: $V_{DD1} = 1.0V$ Note 2. $V_{DD1} = 0.95$ to 1.2V, $V_{DD2} = 2.7$ to 3.3V, $f_{FIN} = 310MHz$ (300mVp-p sine wave), $f_{XIN} = 14.4MHz$ (300mVp-p sine wave), 25kHz comparator frequency, OPR = HIGH, no output load, typ condition: $V_{DD2} = 3.0V$

Note 3. $V_{DD1} = 1.0V$, $V_{DD2} = 3.0V$, OPR = LOW, no input/output load (i.e. CLK = DATA = LE = 0V) Note 3. $V_{DD1} = 1.0V$, $V_{DD2} = 3.0V$, OPR = LOW, no input/output load (i.e. CLK = DATA = LE = 0V), typ condition: $V_{DD2} = 3.0V$ Note 4. $V_{DD1} = 0V$, $V_{DD2} = 2.7$ to 3.3V, OPR = LOW, no input/output load (i.e. CLK = DATA = LE = 0V), typ condition: $V_{DD2} = 3.0V$ Note 5. DB output is derived from the V_{DD2} supply. DB-pin condition select bit = (00001)₂, $V_{DD2} = 2.7$ to 3.3V, no load Note 6. DB output is derived from the V_{DD2} supply. DB-pin condition select bit = (11111)₂, $V_{DD2} = 2.7$ to 3.3V, no load Note 7. DO output is derived from the V_{DD2} supply. $V_{DD2} = 2.7$ to 3.3V, $V_{OL} = 0.4V$

Note 8. DO output is derived from the V_{DD2} supply. V_{DD2} = 2.7 to 3.3V, V_{OH} = V_{DD2} - 0.4V

DATA, CLK, and LE timing

FUNCTIONAL DESCRIPTION

Frequency Divider Data

The input data should be specified keeping in mind the V_{DD2} supply. The data is input using CLK, DATA and LE pins into the shift register and latch which operate from the V_{DD2} supply. The V_{DD1} supply level, however, is not needed and can be ON or OFF.

The control data input uses a 3-line 24-bit serial interface comprising the clock (CLK), data input (DATA) and latch enable (LE). The data is input with the MSB first. The last two bits (23rd + 24th) are used as the latch select control bits. Data is written to the shift register on the rising edge of the clock signal. Accordingly, the data should change state on the falling edge of the clock signal. Data is transferred from the shift register to the latch when the latch enable (LE) signal goes HIGH. Accordingly, the latch enable signal should be held LOW while data is being written to the shift register.

The clock and data input signals are both ignored when the latch enable signal goes HIGH. Also, the CLK, DATA and LE inputs should be tied LOW when not setting data.

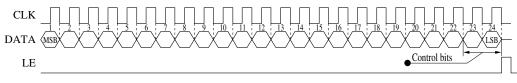


Figure 1. Frequency divider data format

Input Data Description

Latch select

Figure 2. Latch select data format

The last two data bits determine the status of the shift register data latch.

Bit 23	Bit 24	Latch
0	0	Swallow counter and main counter frequency divider ratio latch select
0	1	Reference frequency counter divider ratio data and LD output latch select

FIN input frequency Divider (N-counter) Structure

The FIN input frequency divider generates a comparator frequency signal (FV), which is input to the phase comparator, by dividing the VCO signal input on pin FIN. The phase comparator is comprised of dual modulus prescalers, a 5-bit swallow counter and a 12-bit main counter.

Frequency settings	Prescaler	P and P + 1
	Swallow counter	S
	Main counter	М
	FIN input frequency divider ratio	$N = (P + 1) \times S + P \times (M - S)$
		$= P \times M + S$ (where $M > S$)
Counter set ranges	Prescaler	P = 32, P + 1 = 33
	Swallow counter	S = 0 to 31
	Main counter	M = 32 to 4095
FIN input frequency	divider ratio range	N = 1056 to 131071

Swallow counter and main counter data

The swallow counter and main counter which determine the FIN input frequency divider ratio are set by bits 1 to 12 and bits 13 to 17, respectively. The voltage signal output on pin DB is set by bits 18 to 22.

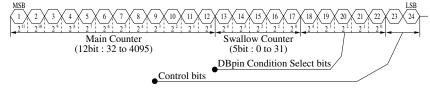


Figure 3. Swallow counter and main counter frequency divider data format

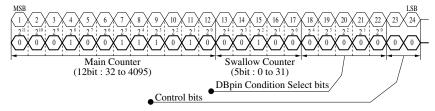
FIN input frequency divider example

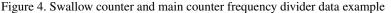
If the VCO output is (f_{VCO}) , the output frequency (f_{LO}) is 251.3MHz, and the channel bandwidth $(f_{CH}$: Phase comparator frequency (f_R)) is 25kHz, then the FIN input frequency divider ratio N is given by:

$$N = \frac{f_{LO}}{f_{CH}} = \frac{f_{VCO}}{f_N} = \frac{(251.3)}{(0.025)} = 10052 = 32 \times 314 + 4$$

Therefore, the swallow counter count is 4 $(00100)_2$ and the main frequency divider counter count is 314 $(000100111010)_2$.

DB fast-lockup data


The output voltage on pin DB provides an additional boost to charge the external lowpass filter capacitor for faster lockup times. One of 31 possible output voltage level signals is selected by bits 18 to 22.


The DB level signal output occurs during 2 clock cycles when the reference frequency divider comparator signal FR is generated after OPR goes HIGH, or after LE goes LOW when data is written. The DB output subsequently becomes high impedance.

Note that if bits 18 to 22 are all set to 0, this function is not activated and DB remains in the high impedance state.

Input data format example

FIN input frequency divider = 10052, DB is high impedance:

Reference Frequency Divider (R-counter) Structure

The reference frequency divider generates a comparator frequency signal (FR), which is input to the phase comparator, by dividing the reference oscillator frequency input either from an external signal on XIN or from a crystal oscillator connected between XIN and XOUT. The reference frequency divider is comprised of a fixed divide-by-4 prescaler and a 16-bit reference counter.

Frequency settings	Prescaler	A (= 4)
	Reference counter	В
	Reference frequency divider ratio	$\mathbf{R} = \mathbf{A} \times \mathbf{B} = 4 \times \mathbf{B}$
Counter set ranges	Prescaler	A = 4
	Reference counter	B = 5 to 65535
Reference frequency divider ratio range $R = 20$ to 26214		

Reference counter frequency data and LD setting

The reference counter which determines the reference frequency divider ratio is set by bits 1 to 16. The lock detect signal output is set by bit 20.

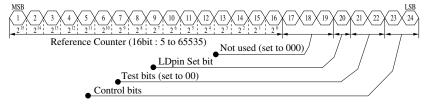


Figure 5. Reference counter data and LD output setting format

Reference frequency divider example

If the VCO output is (f_{VCO}), the crystal oscillator frequency is 14.4MHz and the channel bandwidth (f_{CH} : comparator frequency (f_R)) is 25kHz, then the reference frequency divider ratio R is given by:

$$R = \frac{X'tal}{f_{CH}} = \frac{X'tal}{f_R} = \frac{14.4}{(0.025)} = 576 = 4 \times 144$$

Therefore, the reference counter count is $144 (000000010010000)_2$.

LD output

The output on LD is set by bit 20.

Bit 20	LD output	
1	Normal unlock signal output (normal operation)	
0	Unlock signal output OFF, LOW-level output	

Bits 15 to 19, bits 21 to 22

Bits 15 to 19 have no meaning, and should be set to 0. Bits 21 and 22 are factory test bits and should also be set to 0.

Input data format example

Reference frequency divider = 144, LD normal operation:

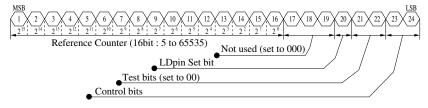


Figure 6. Reference counter data and LD output setting example

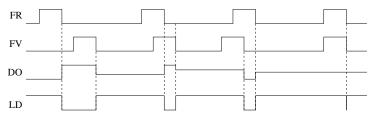
Standby Mode

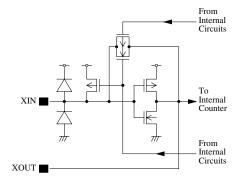
The SM5170AV enters standby mode when OPR goes LOW. In this mode, the states and functions shown in the table occur.

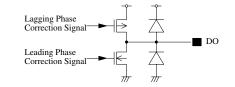
Block	State
DO and DB	Floating (high impedance)
LD	LOW-level output
Phase comparator	Reset
Input FIN	Feedback resistor is cutoff (HIGH level)
Input XIN	Feedback resistor is cutoff (HIGH level)
N counter	Reset
R counter	Reset
Latch data	Stored (while V _{DD2} is within rating)

In standby mode, some current flows into VDD1. Therefore, it is necessary to reduce V_{DD1} to 0V to fully reduce current consumption and reduce power dissipation. Note that if both the V_{DD1} and V_{DD2} supplies are reduced to 0V, the latch contents will be erased. In this case, V_{DD1} only should be reduced to 0V. Standby mode is released when V_{DD1} rises and OPR goes HIGH.

Phase Comparator Timing Diagram

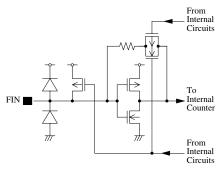



Figure 7. Phase comparator timing


The DO output circuit polarity is configured for connection to an external passive filter. The signals compared are FV and FR, which are the internal FIN input frequency divider output signal and reference frequency divider output signal, respectively.

DO

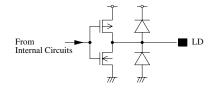
INPUT/OUTPUT EQUIVALENT CIRCUITS


XIN, XOUT

FIN

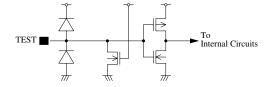
DB

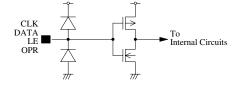
CLK, DATA, LE, OPR


DB

From Internal Circuits

From Internal Circuits


From Internal Circuits


From Internal Circuits

77

TEST

SEIKO NPC CORPORATION -9

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

NC9808EE 2006.04