
BOURNS®

- High Current Triacs
- 16 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- 125 A Peak Current
- Max I_{GT} of 50 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

MDC2ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING			VALUE	UNIT	
	TIC246D		400		
Repetitive peak off-state voltage (see Note 1)	TIC246M	M	600	V	
	TIC246S	V _{DRM}	700		
	TIC246N		800		
Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note 2)			16	Α	
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3)			125	Α	
Peak gate current			±1	Α	
Operating case temperature range			-40 to +110	°C	
Storage temperature range			-40 to +125	°C	
Lead temperature 1.6 mm from case for 10 seconds			230	°C	

NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.

2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 400 mA/°C.

3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of peak reverse volta ge and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	ТҮР	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	$V_{D} = rated V_{DRM}$	$I_{G} = 0$	$T_{C} = 110^{\circ}C$			±2	mA
I _{GT}		V _{supply} = +12 V†	R _L = 10 Ω	t _{p(g)} > 20 μs		12	50	
	Gate trigger	$V_{supply} = +12 V^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-19	-50	mA
	current	V _{supply} = -12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-16	-50	
		V _{supply} = -12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		34		
V _{GT}		V _{supply} = +12 V†	R _L = 10 Ω	t _{p(g)} > 20 μs		0.8	2	
	Gate trigger	$V_{supply} = +12 V^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-0.8	-2	V
	voltage	V _{supply} = -12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-0.8	-2	v
		$V_{supply} = -12 V^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		0.9	2	
V _T	On-state voltage	$I_{TM} = \pm 22.5 \text{ A}$	l _G = 50mA	(see Note 4)		±1.4	±1.7	V

† All voltages are with respect to Main Terminal 1.

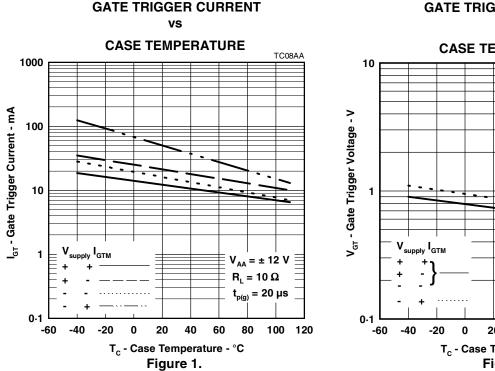
NOTE 4: This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

PRODUCT INFORMATION

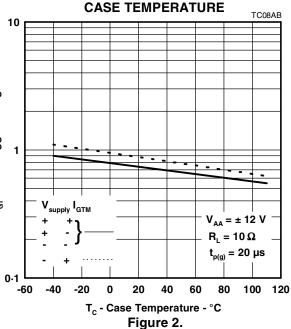
DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

PARAMETER		TEST CONDITIONS			MIN	ТҮР	MAX	UNIT
I _H	Holding current	$V_{supply} = +12 V^{\dagger}$	I _G = 0	Init' I _{TM} = 100 mA		22	40	mA
		$V_{supply} = -12 V^{\dagger}$	l _G = 0	Init' I _{TM} = -100 mA		-12	-40	
ΙL	Latching current	V _{supply} = +12 V† V _{supply} = -12 V†	(see Note 5)				80 -80	mA
dv/dt	Critical rate of rise of off-state voltage	V _D = Rated V _D	$I_{G} = 0$	$T_{\rm C} = 110^{\circ}{\rm C}$		±400		V/µs
dv/dt _(c)	Critical rise of commutation voltage	$V_D = Rated V_D$ di/dt = 0.5 I _{T(RMS)} /ms		T _C = 80°C I _T = 1.4 I _{T(RMS)}	±1.2	±9		V/µs
di/dt	Critical rate of rise of on -state current	V _D = Rated V _D di _G /dt = 50 mA/µs	I _{GT} = 50 mA	T _C = 110°C		±100		A/µs

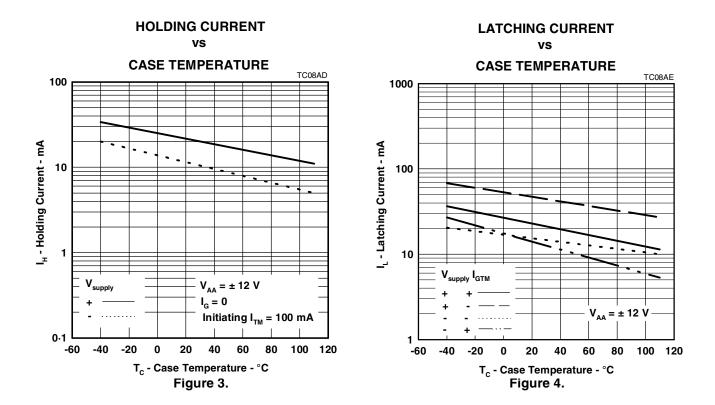

† All voltages are with respect to Main Terminal 1.

NOTE 5: The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \Omega$, $t_{p(g)} = 20 \mu s$, $t_r = \le 15 ns$, f = 1 kHz.


thermal characteristics

PARAMETER			TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.9	°C/W
R _{0JA}	Junction to free air thermal resistance			62.5	°C/W

TYPICAL CHARACTERISTICS


GATE TRIGGER VOLTAGE vs

PRODUCT INFORMATION

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

TYPICAL CHARACTERISTICS

PRODUCT INFORMATION

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.