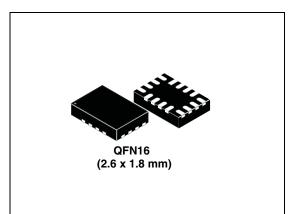


ST2149


4-bit dual supply level translator without direction control pin

Features

- 42 MHz: 84 Mbps (max) data rate at V_L = 1.8 V, V_{CC} = 3.3 V
- Bidirectional level translation without direction control pin
- Wide voltage range $(V_{CC} \ge V_L)$:
 - V_L ranges from 1.65 to 3.6 V
 - V_{CC} ranges from 1.65 to 5.5 V
- Power down mode feature when V_{CC} supply is off, all I/Os are in high impedance
- Totem-pole driving
- 5.5 V tolerant enable pin
- ESD performance on all pins : ±2 kv HBM
- Small package and footprint QFN16 (2.6 x 1.8 mm) package

Applications

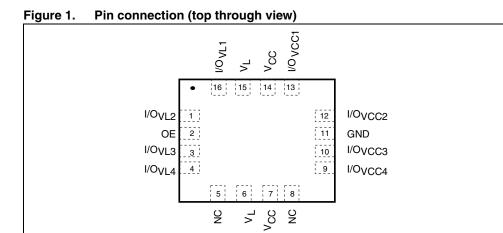
- Low voltage system level translation
- Mobile phone and other mobile devices

Description

The ST2149 is a 4-bit dual supply level translator which provides the level shifting capability to allow data transfer in a multi-voltage system. Externally applied voltages, V_{CC} and V_L , set the logic levels on either side of the device. Its architecture allows bidirectional level translation without a control pin.

The ST2149 accepts V_L from 1.65 to 3.6 V and V_{CC} from 1.65 to 5.5V, making it ideal for data transfer between low-voltage ASICs/PLD and higher voltage systems. This device has a tri-state output mode which can be used to disable all I/Os.

The ST2149 supports power-down mode when V_{CC} is grounded/floating or when the device is disabled via the OE pin.


Table 1. Device summary

Order code	Package	Packaging	
ST2149QTR	QFN16 (2.6 x 1.8 mm)	Tape & reel (3000 parts per reel)	

September 2009

1 Pin settings

1.1 Pin connection

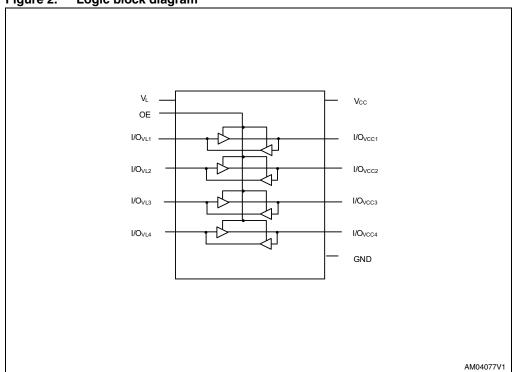
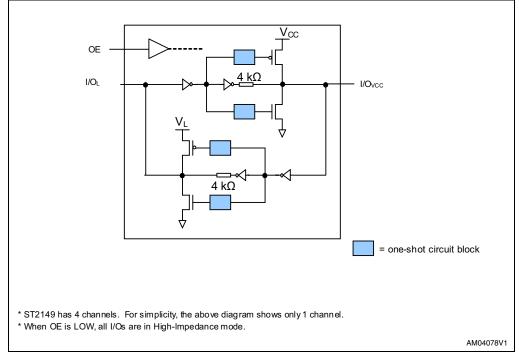
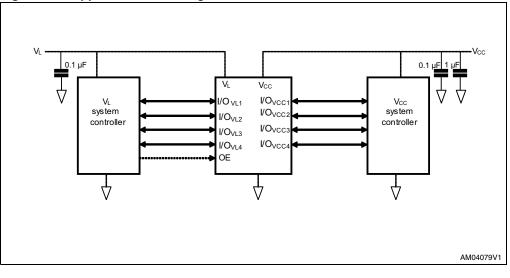

1.2 Pin description

Table 2. Pin description

Pin number	Symbol	Name and function		
1	I/O _{VL2}	Data input/output		
2	OE	Output enable		
3	I/O _{VL3}	Data input/output		
4	I/O _{VL4}	Data input/output		
5	NC	No connection		
6	VL	Supply voltage		
7	V _{CC}	Supply voltage		
8	NC	No connection		
9	I/O _{VCC4}	Data input/output		
10	I/O _{VCC3}	Data input/output		
11	GND	Ground		
12	I/O _{VCC2}	Data input/output		
13	I/O _{VCC1}	Data input/output		
14	V _{CC}	Supply voltage		
15	VL	Supply voltage		
16	I/O _{VL1}	Data input/output		

2 Logic diagram





2.1 Device block diagrams

Figure 3. ST2149 block diagram

Figure 4. Application block diagram

3 Supplementary notes

3.1 Driver requirement

For proper operation, the driver from each side of the device must have capability to source and sink a minimum of 1 mA current. The device architecture requires the driver to source/sink maximum current of ($V_{CC}/4$) mA to/from the weak 4 k Ω output buffer.

3.2 Load driving capability

To support the architecture that allows level translation without direction pin, the one-shot transistor is turned ON only during state transition at the output side. After the one-shot transistor is turned OFF, only the $4k\Omega$ resistor will maintain the state. So, resistive load or pull-up resistor less than $50k\Omega$ is not recommended for proper operation.

3.3 Power off feature

In some application where it might be required to turn off one of the power supplies powering up the level translator. The device will be automatically disabled when V_{CC} supply is turned OFF, even if the OE pin is set to HIGH (enabled). In this mode, all I/Os are in high impedance state.

3.4 Truth table

Enable	Bidirectional Input/Output					
OE	I/O _{VCC}	I/O _{VL}				
H ⁽¹⁾	H ⁽²⁾	H ⁽¹⁾				
H ⁽¹⁾	L	L				
L	Z ⁽³⁾	Z ⁽³⁾				

Table 3. Truth table

1. High level V_L power supply referred.

2. High level V_{CC} power supply referred.

3. Z = High impedance.

4 Maximum ratings

Stressing the device above the rating listed in *Table 4* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Value	Unit
VL	Supply voltage	-0.3 to 4.6	V
V _{CC}	Supply voltage	-0.3 to 6.5	V
V _{OE}	DC control input voltage	-0.3 to 6.5	V
V _{I/OVL}	DC I/O _{VL} input voltage (OE = GND or V_L)	-0.3 to V _L + 0.3	V
V _{I/OVCC}	DC I/O _{VCC} input voltage (OE = GND or V_L)	-0.3 to V _{CC} + 0.3	V
I _{IK}	DC input diode current	-20	mA
I _{I/OVL}	DC output current	±25	mA
I _{I/OVCC}	DC output current	±258	mA
I _{SCTOUT}	Short circuit duration, continuous	40	mA
PD	Power dissipation	500	mW
T _{STG}	Storage temperature	-65 to 150	°C
ΤL	Lead temperature (10 seconds)	300	°C
ESD	Electrostatic discharge protection (HBM)	±2	kV

 Table 4.
 Absolute maximum ratings

4.1 Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
VL	Supply voltage	1.65	-	3.6	V
V _{CC}	Supply voltage	1.65	-	5.5	V
V _{OE}	Input voltage (OE output enable pin, V_L power supply referred)	0	-	3.6	V
V _{I/OVL}	I/O _{VL} voltage	0	-	VL	V
V _{I/OVCC}	I/O _{VCC} voltage		-	V _{CC}	V
T _{OP}	Operating temperature	-40	-	85	°C
dt/dV	Input rise and fall time	0	_	1	ns/V

ST2149

5 Electrical characteristics

Over recommended operating conditions unless otherwise noted. All typical values are at T_{A} = 25 $^{\circ}\text{C}.$

Table 6.DC characteristics

							Value				
Symbol	Parameter	VL	v _{cc}	Test conditions	Тд	= 25	°C	-40 to	Unit		
					Min	Тур	Мах	Min	Мах		
	High level	1.65			1.16	-	-	1.16	_		
		1.8			1.26	-	-	1.26	_		
V _{IHL}	input voltage	2.5	1.65 to 5.5		1.75	-	-	1.75	_	v	
	(I/O _{VL})	3.0			2.10	-	_	2.10	_		
		3.6			2.52	-	-	2.52	_		
	Low level V _{ILL} input voltage (I/O _{VL})	1.65			-	-	0.50	-	0.50		
		1.8			-	-	0.54	-	0.54		
V _{ILL}			2.5	1.65 to 5.5		-	-	0.75	Ι	0.75	V
		3.0			_	-	0.90	-	0.90		
		3.6			-	-	1.08	-	1.08		
			1.65		1.16	-	-	1.16	-		
			1.8		1.26	-	-	1.26	-		
	High level		2.5		1.75	-	-	1.75	-		
V _{IHC}	input voltage	1.65 to 3.6	3.0		2.10	-	_	2.10	_	V	
	(I/O _{VCC})		3.6		2.52	-	_	2.52	_		
			4.3		3.01	-	_	3.01	-	1	
			5.5		3.85	-	_	3.85	-		
			1.65		-	-	0.50	-	0.50		
			1.8		-	-	0.54	-	0.54		
	Low level		2.5		-	-	0.75	Ι	0.75		
V _{ILC}		1.65 to 3.6	3.0		_	-	0.90	-	0.90	V	
			3.6		-	-	1.08	-	1.08		
			4.3		-	-	1.29	-	1.29		
			5.5		-	-	1.65	-	1.65		

							Value)		
Symbol	Parameter	VL	v _{cc}	Test conditions	Τ ₄	= 25	°C	-40 to	85 [°] C	Unit
					Min	Тур	Max	Min	Max	
		1.65			1.16	_	-	1.16	-	
	High level	1.8			1.26	-	-	1.26	-	
V _{IH-OE}		2.5	1.65 to 5.5		1.75	-	-	1.75	_	v
		3.0			2.10	_	-	2.10	-	
		3.6			2.52	_	-	2.52	-	
		1.65			_	_	0.50	-	0.50	
	Low level	1.8			_	_	0.54	_	0.54	
V _{IL-OE}	input voltage	2.5	1.65 to 5.5		-	-	0.75	_	0.75	v
	(OE)	3.0			-	-	0.90	_	0.90	
		3.6			-	-	1.08	_	1.08	
V _{OHL}	High level output voltage (I/O _{VL})	1.65 to 3.6	1.65 to 5.5	IO = -60 μA	V _L - 0.4	_	_	V _L - 0.4	_	v
V _{OLL}	Low level output voltage (I/O _{VL})	1.65 to 3.6	1.65 to 5.5	IO = +60 μA	_	_	0.4	_	0.4	v
V _{OHC}	High level output voltage (I/O _{VCC})	1.65 to 3.6	1.65 to 5.5	IO = -60 μA	V _{CC} - 0.4	_	_	V _{CC} - 0.4	_	v
V _{OLC}	Low level output voltage (I/O _{VCC})	1.65 to 3.6	1.65 to 5.5	IO = +60 μA	-	_	0.4	_	0.4	v
I _{OE}	Control input leakage current (OE)	1.65 to 3.6	1.65 to 5.5	$V_{l} = GND \text{ or } V_{L}$	_	_	0.1	_	1	μA
he	High impedance	1.65 to 3.6	1.65 to 5.5	OE = GND I/O _{VL} = High I/O _{VCC} = Low	-	-	0.1	_	1	μΑ
'IO_LKG	I _{IO_LKG} leakage current (I/O _{VL} , I/O _{VCC})	1.05 10 3.0	1.05 10 3.5	OE = GND I/O _{VL} = Low I/O _{VCC} = High	_	_	0.1	_	1	μΑ

 Table 6.
 DC characteristics (continued)

8/19

							Value	!		
Symbol	Parameter	VL	v _{cc}	Test conditions	Тд	T _A = 25 °C			-40 to 85 °C	
					Min	Тур	Мах	Min	Max	
10	Partial power I _{OFF} down current 1.65 to 3.6	1 65 to 3 6	0	OE = V _L or GND I/O _{VL} = High I/O _{VCC} = Low	_	_	0.1	_	1	μA
OFF		1.00 10 0.0	0	$\begin{array}{l} OE = V_{L} \text{ or} \\ GND \\ I/O_{VL} = Low \\ I/O_{VCC} = High \end{array}$	_	_	0.1	_	1	μ
Ιανςς	Quiescent supply current V _{CC}	1.65 to 3.6	1.65 to 5.5	OE = V _L I/O = Hi-Z		_	7	_	9	μΑ
I _{QVL}	Quiescent supply current	1.65 to 3.6	1.65 to 5.5	$OE = V_L$	-	-	0.1	-	1	μA
'QVL	VL	1.65 to 3.6	0	I/O = Hi-Z	I	-	0.1	-	1	μΛ
Iz-vcc	High impedance quiescent supply current V _{CC}	1.65 to 3.6	1.65 to 5.5	OE = GND I/O = Hi-Z	_	_	0.1	_	1	μΑ
	High impedance 1.65 to 3.6 1.65 to 5.5		-	-	0.1	-	1			
I _{Z-VL}	quiescent supply current V _L	1.65 to 3.6	0	OE = GND I/O = Hi-Z	_	_	0.1	_	1	μA

Table 6. DC characteristics (continued)

5.1 AC characteristics

Load C_L = 15 pF; driver t_r = t_f ${\leq}2$ ns over temperature range -40 °C to 85 °C.

Symbol	Parameter		V _{CC} = 1.65 – 1.95 V		V _{CC} = 2.3 – 2.7 V		V _{CC} = 3.0 – 3.6 V		V _{CC} = 4.5 – 5.5 V		Unit
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{RVCC}	Rise time I/O _{VCC}		-	5.0	-	3.2	-	2.4	-	1.4	ns
^t FVCC	Fall time I/O _{VCC}		-	1.5	-	1.4	-	1.3	-	1.2	ns
t _{RVL}	Rise time I/O _{VL}		-	2.8	-	2.7	-	2.6	-	2.6	ns
t _{FVL}	Fall time I/O _{VL}		-	1.5	-	1.4	-	1.4	-	1.3	ns
	Propagation delay time	t _{PLH}	-	6.6	-	5.8	-	5.0	-	4.4	ns
ti/ovl-vcc	I/O _{VL-LH} to I/O _{VCC-LH} I/O _{VL-HL} to I/O _{VCC-HL}	t _{PHL}	-	4.1	I	3.8	-	3.6	I	3.4	ns
	Propagation delay time	t _{PLH}	-	4.9	-	4.4	-	4.1	-	4.4	ns
^t I/OVCC-VL	I/O _{VCC-LH} to I/O _{VL-LH} I/O _{VCC-HL} to I/O _{VL-HL}	t _{PHL}	-	4.6	Ι	4.2	-	4.0	I	3.6	ns
t _{PZL} t _{PZH}	Output enable time		-	27	-	27	-	27	-	27	20
t _{PLZ} t _{PHZ}	Output disable time		-	145	-	145	-	145	-	145	ns
D _R	Data rate ⁽¹⁾		41	-	66	_	84	_	86	_	Mbps

Table 7. AC characteristics - test conditions: $V_L = 1.65 - 1.95 V$

Data rate is guaranteed based on the condition that output I/O signal rise/fall -time is less than 15% of period of input I/O signal; input I/O signal is at 50% duty-cycle and output I/O signal duty-cycle deviation is less than 50% ± 10%.

At that attend to the total time $V_{L} = 2.5 - 2.7 V_{L}$								
Parameter		$V_{CC} = 2.3 - 2.7 V$		V _{CC} = 3.0 – 3.6 V		V _{CC} = 4.5 – 5.5 V		Unit
		Min	Max	Min	Max	Min	Мах	
Rise time I/O _{VCC}		-	3.3	-	2.2	-	1.6	ns
Fall time I/O _{VCC}		-	1.7	-	1.6	-	1.4	ns
Rise time I/O _{VL}		-	2.2	-	2.0	-	1.9	ns
Fall time I/O _{VL}		-	1.3	-	1.2	-	1.2	ns
Propagation delay time	t _{PLH}	-	4.6	-	4.3	-	3.9	ns
I/O _{VL-LH} to I/O _{VCC-LH} I/O _{VL-HL} to I/O _{VCC-HL}	t _{PHL}	-	3.6	-	3.3	-	2.9	ns
Propagation delay time	t _{PLH}	-	3.9	-	3.5	-	3.5	ns
I/O _{VCC-LH} to I/O _{VL-LH} I/O _{VCC-HL} to I/O _{VL-HL}	t _{PHL}	-	3.6	_	3.0	-	2.5	ns
Output enable time		-	20	-	20	-	20	20
Output disable time		-	130	-	130	-	130	ns
Data rate ⁽¹⁾		84	-	85	-	88	-	Mbps
	Parameter Rise time I/O _{VCC} Fall time I/O _{VCC} Rise time I/O _{VL} Fall time I/O _{VL} Fall time I/O _{VL} Propagation delay time I/O _{VL-LH} to I/O _{VCC-LH} I/O _{VL-HL} to I/O _{VCC-HL} Propagation delay time I/O _{VCC-LH} to I/O _{VL-LH} I/O _{VCC-LL} to I/O _{VL-LH} I/O _{VCC-HL} to I/O _{VL-HL} Output enable time Output disable time	Parameter Rise time I/O _{VCC} Fall time I/O _{VC} Rise time I/O _{VL} Fall time I/O _{VL} Fall time I/O _{VL} Propagation delay time I/O _{VL-HL} to I/O _{VCC-HL} t _{PLH} I/O _{VL-HL} to I/O _{VCC-HL} t _{PLH} I/O _{VCC-LH} to I/O _{VL-LH} t _{PLH} I/O _{VCC-HL} to I/O _{VL-LH} t _{PLH} I/O _{VCC-HL} to I/O _{VL-LH} t _{PLH} Output enable time Output disable time	ParameterV_CC = 2.3MinRise time I/O_VCC-Fall time I/O_VCC-Fall time I/O_VL-Fall time I/O_VL-Propagation delay time I/O_VL-LH to I/O_VCC-LH I/O_VCC-LH to I/O_VCC-HLtpLH-Propagation delay time I/O_VCC-LH to I/O_VCC-HLtpLH-Propagation delay time I/O_VCC-LH to I/O_VL-LHtpLH-Output enable timeOutput disable time	Parameter V _{CC} = 2.3 - 2.7 V Min Max Rise time I/O _{VCC} - 3.3 Fall time I/O _{VCC} - 1.7 Rise time I/O _{VL} - 2.2 Fall time I/O _{VL} - 1.3 Propagation delay time I/O _{VL-LH} to I/O _{VCC-LH} t_{PLH} - 4.6 I/O _{VL-HL} to I/O _{VCC-HL} t_{PHL} - 3.6 Propagation delay time I/O _{VCC-HL} to I/O _{VCC-HL} t_{PLH} - 3.9 I/O _{VCC-HL} to I/O _{VL-HH} t_{PLH} - 3.6 Output enable time - 20 20 Output disable time - 130	Parameter V _{CC} = 2.3 - 2.7 V V _{CC} = 3.6 Min Max Min Rise time I/O _{VCC} - 3.3 - Fall time I/O _{VCC} - 1.7 - Rise time I/O _{VL} - 2.2 - Fall time I/O _{VL} - 1.3 - Fall time I/O _{VL} - 1.3 - Propagation delay time I/O _{VL-LH} to I/O _{VCC-LH} t _{PLH} - 4.6 - I/O _{VL-HL} to I/O _{VCC-HL} t _{PLH} - 3.6 - - Propagation delay time I/O _{VCC-HL} to I/O _{VL-HL} t _{PLH} - 3.6 - - I/O _{VCC-HL} to I/O _{VL-HL} t _{PLH} - 3.6 - - Output enable time - 20 - - - - Output disable time - 130 - - - - -	Parameter $V_{CC} = 2.3 - 2.7 V$ $V_{CC} = 3.0 - 3.6 V$ Rise time I/O_{VCC} Min Max Min Max Rise time I/O_{VCC} - 3.3 - 2.2 Fall time I/O_{VCC} - 1.7 - 1.6 Rise time I/O_{VL} - 2.2 - 2.0 Fall time I/O_{VL} - 1.3 - 1.2 Propagation delay time t_{PLH} - 4.6 - 4.3 I/O_{VL-LH} to I/O_{VCC-HL} t_{PHL} - 3.6 - 3.3 Propagation delay time t_{PLH} - 3.6 - 3.0 Ovcc-LH to I/O_{VL-HL} t_{PHL} - 3.6 - 3.0	Parameter $V_{CC} = 2.3 - 2.7 V$ $V_{CC} = 3.0 - 3.6 V$ $V_{CC} = 4.0$ Min Max Min Max Min Max Min Rise time I/O_{VCC} - 3.3 - 2.2 - Fall time I/O_{VCC} - 1.7 - 1.6 - Rise time I/O_{VL} - 2.2 - 2.0 - Fall time I/O_{VL} - 2.2 - 2.0 - Fall time I/O_{VL} - 1.3 - 1.2 - Propagation delay time I/O_{VC-LH} I_{PLH} - 3.6 - 3.3 - Propagation delay time I/O_{VC-HL} I_{PHL} - 3.6 - 3.3 - Propagation delay time I/O_{VC-HL} I_{PHL} - 3.6 - 3.0 - Propagation delay time I/O_{VL-HL} I_{PHL} - 3.6 - 3.0 - Output enable time - 20 <	Parameter $V_{CC} = 3.0 - 3.6 \vee$ $V_{CC} = 4.5 - 5.5 \vee$ Min Max Min Min Max Min Max Min Min Min Min Min Min

Table 8. AC characteristics - test conditions: $V_L = 2.3 - 2.7 V$

Data rate is guaranteed based on the condition that output I/O signal rise/fall -time is less than 15% of period of input I/O signal; input I/O signal is at 50% duty-cycle and output I/O signal duty-cycle deviation is less than 50% ± 10%.

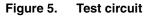

Symbol	Parameter		V _{CC} = 3.	0 – 3.6 V	$V_{CC} = 4$	Unit	
Symbol			Min	Max	Min	Max	Onit
t _{RVCC}	Rise time I/O _{VCC}		-	1.8	-	1.7	ns
t _{FVCC}	Fall time I/O _{VCC}		-	1.3	-	1.2	ns
t _{RVL}	Rise time I/O _{VL}		-	1.6	-	1.5	ns
^t FVL	Fall time I/O _{VL}		-	1.1	-	1.1	ns
	Propagation delay time	t _{PLH}	-	4.1	-	4.1	ns
^t I/OVL-VCC	I/O _{VL-LH} to I/O _{VCC-LH} I/O _{VL-HL} to I/O _{VCC-HL}	^t PHL	-	2.6	-	2.3	ns
	Propagation delay time	t _{PLH}	-	4.0	-	4.0	ns
^t I/OVCC-VL	I/O _{VCC-LH} to I/O _{VL-LH} I/O _{VCC-HL} to I/O _{VL-HL}	^t PHL	-	2.6	-	2.4	ns
t _{PZL} t _{PZH}	Output enable time		-	15	-	15	20
t _{PLZ} t _{PHZ}	Output disable time		-	110	-	110	ns
D _R	Data rate ⁽¹⁾		86	-	89	-	Mbps

Table 9. AC characteristics - test conditions: $V_L = 3.0 - 3.6 V$

Data rate is guaranteed based on the condition that output I/O signal rise/fall -time is less than 15% of period of input I/O signal; input I/O signal is at 50% duty-cycle and output I/O signal duty-cycle deviation is less than 50% ± 10%.

6 Test circuit

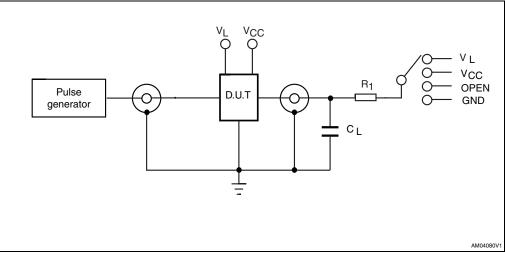


Table 10. Test circuit switches

Test	CL	R ₁	Switch
t _{PLH} , t _{PHL}	15 pF	20 kΩ	Open
t _r , t _f	15 pF	20 kΩ	Open
t _{PZL} , t _{PLZ}	15 pF	20 kΩ	V _L or V _{CC}
t _{PZH} , t _{PHZ}	15 pF	20 kΩ	GND

Table 11.Waveform symbol value

Symbol	Driving I/O _{VL}		Driving I/O _{VCC}	
	$1.65~V \leq V_L \leq V_{CC} \\ \leq 2.5~V$	$\begin{array}{c} \textbf{3.3 V} \leq \textbf{V_L} \leq \textbf{V_{CC}} \leq \\ \textbf{5.5 V} \end{array}$	$\begin{array}{c} \textbf{1.65 V} \leq \textbf{V_L} \leq \textbf{V_{CC}} \\ \leq \textbf{2.5 V} \end{array}$	$\begin{array}{c} \textbf{3.3 V} \leq \textbf{V}_L \leq \textbf{V}_{CC} \leq \\ \textbf{5.5 V} \end{array}$
V _{IH}	VL	VL	V _{CC}	V _{CC}
V _{IM}	50% V _L	50% V _L	50% V _{CC}	50% V _{CC}
V _{OM}	50% V _{CC}	50% V _{CC}	50% V _L	50% V _L
V _X	V _{OL} + 0.15V	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.3V
V _Y	V _{OH} – 0.15V	V _{OH} – 0.3V	V _{OH} – 0.15V	V _{OH} – 0.3V

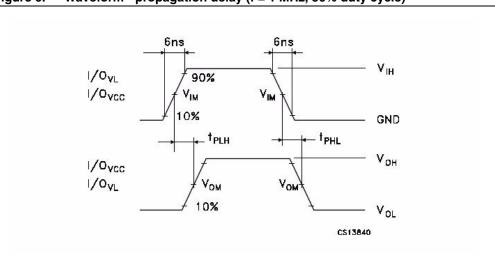
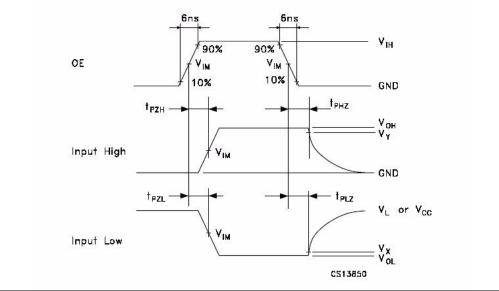
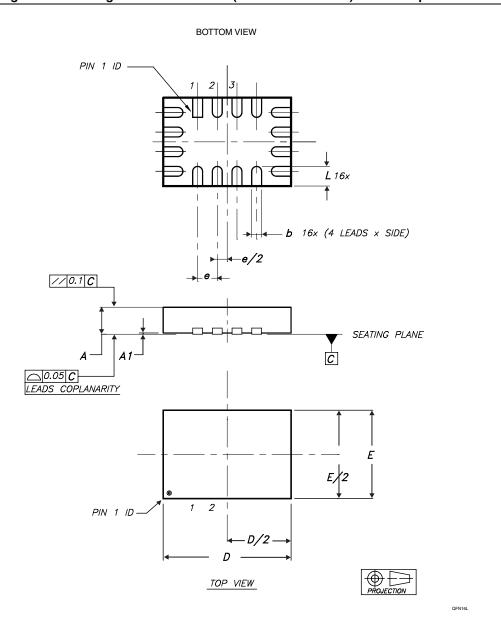



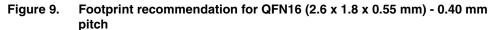
Figure 6. Waveform - propagation delay (f = 1 MHz, 50% duty cycle)

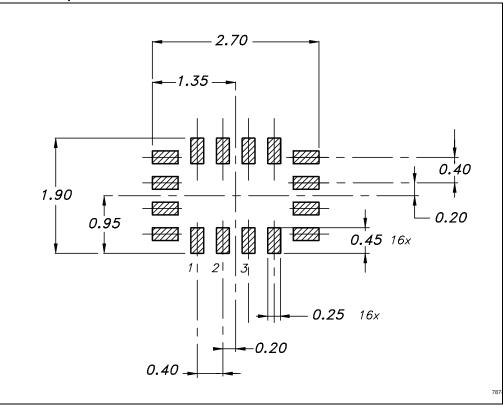


57

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.





Sumbol	Millimeters			
Symbol	Тур	Min	Мах	
A	0.55	0.45	0.60	
A1	0.02	0	0.05	
b	0.20	0.15	0.25	
D	2.60	2.50	2.70	
E	1.80	1.70	1.90	
e	0.40	-	-	
L	0.40	0.35	0.45	

Table 12. Mechanical data for QFN16 (2.6 x 1.8 x 0.55 mm) - 0.40 mm pitch

57

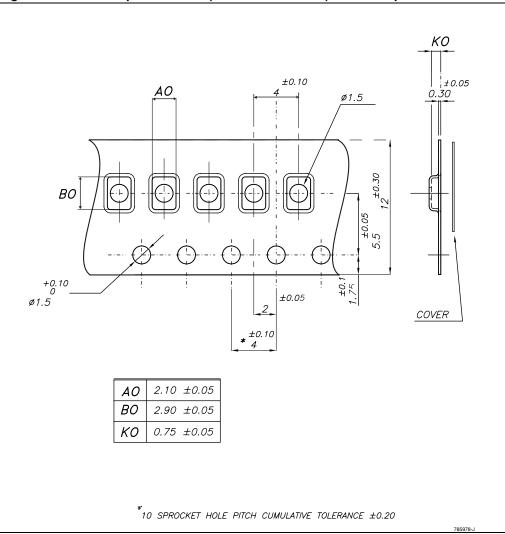


Figure 10. Carrier tape for QFN16 (2.6 x 1.8 x 0.55 mm) - 0.40 mm pitch

16/19

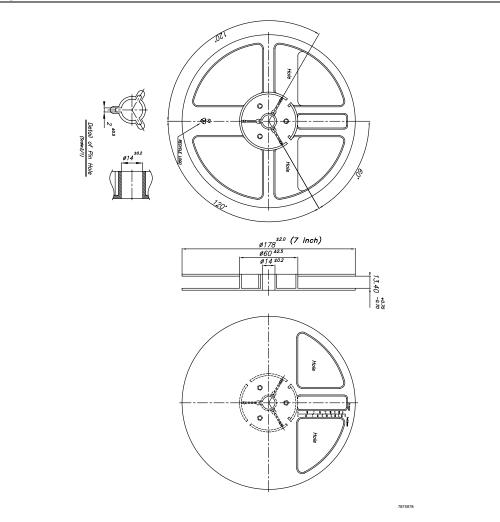


Figure 11. Reel information for QFN16 (2.6 x 1.8 x 0.55 mm) - 0.40 mm pitch

8 Revision history

Table 13. Document revision history

Date	Revision	Changes
07-Sep-2009	1	Initial release.

18/19

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

