APD module C10508

Variable gain and stable detection even at high gains

Along with an APD, current-to-voltage conversion circuit, and high-voltage power supply circuit, the C10508 contains a microcontroller to perform temperature compensation based on information from the internal thermosensor. Because temperature coefficients that match the APD temperature characteristics are written in the microprocessor chip, the APD can be operated with a highly stable gain over a wide temperature range even at high gain levels. The gain can be changed by the switch on the board or a command from a PC.

Features

- Gain fluctuation with temperature: $\pm 5 \%$ Max.
($\mathrm{M}=250, \mathrm{Ta}=0$ to $40^{\circ} \mathrm{C}$)
- Easily adjustable gain:

Adjustable by switch or by PC command

- Easy handling: $\pm 5 \mathrm{~V}$ supply voltage
- Compact and lightweight

Block diagram

Applications

- APD evaluation
- Power meter
- Low-light-level detection

Photoelectric sensitivity vs. cut-off frequency

KACCB0115EA

APD module C10508

General ratings

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Supply voltage	Vs	+5 V	+4.6	+5.0	+5.4	V
		-5 V	-4.6	-5.0	-5.4	V
Current consumption		+5 V	-	+50	+75	mA
		-5 V	-	-15	-25	mA

Absolute maximum ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Value	Unit
Positive supply voltage	Vp	+6	V
Negative supply voltage	Vn	-6	V
Maximum input light intensity	-	10	mW
Operating temperature	Topr	0 to +60	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-30 to +70	${ }^{\circ} \mathrm{C}$

* No condensation
- Specifications (Typ. $\mathrm{Ta}=25^{\circ} \mathrm{C}, \lambda=800 \mathrm{~nm}$, unless otherwise noted)

Parameter		Symbol	Condition		Value		Unit
Active area		A			\$1.0		mm
Spectral response range		λ			400 to 1000		nm
Peak sensitivity wavelength		λp			800		nm
Photo sensitivity		S	$\mathrm{M}=1, \lambda=800 \mathrm{~nm}$		0.5		A/W
Feedback resistance		Rf		-	10	-	$\mathrm{k} \Omega$
Latter-stage amplifier gain		-		-	10	-	times
Output polarity		-		Positive			-
Cut-off frequency	High band	fc	$\mathrm{M}=10$ to 250, -3 dB	8	10	-	MHz
	Low band			-	DC	-	-
APD gain		M		Adjustable by switch or serial communication			-
Temperature stability of gain		-	$\begin{aligned} & \mathrm{M}=10 \text { to } 250 \\ & \mathrm{Ta}=0^{\circ} \mathrm{C} \text { to } 40^{\circ} \mathrm{C} \end{aligned}$	-	-	± 5	\%
Photoelectric sensitivity		-	$\mathrm{M}=250, \lambda=800 \mathrm{~nm}$	1.0×10^{7}	1.25×10^{7}	1.5×10^{7}	V/W
Noise equivalent power		NEP	$\mathrm{M}=250, \lambda=800 \mathrm{~nm}$	-	0.02	0.04	$\mathrm{pW} / \mathrm{Hz}^{1 / 2}$
Minimum detection limit		-	$\mathrm{M}=250, \lambda=800 \mathrm{~nm}$	-	65	130	pW rms
Saturation input light intensity		-	$\mathrm{M}=250, \lambda=800 \mathrm{~nm}$	-	0.24	-	$\mu \mathrm{W}$
Interface		-			RS-232C		

Spectral response

KACCB0183EA

- Frequency response

KACCB0184EB

Gain temperature characteristic

KACCB0185EA

Response to stepped light

$\mathrm{Ta}=25^{\circ} \mathrm{C}$, gain $\mathrm{M}=250$, input pulse width $=1 \mu \mathrm{~s}$ X-axis: 200 ns/div., Y-axis: $100 \mathrm{mV} / \mathrm{div}$.

Dimensional outline (unit: mm , tolerance unless otherwise noted: ± 0.3)

* Position accuracy of effective active area with respect to the APD package: $\pm 0.3 \mathrm{~mm}$

KACCA0236EB

- Changing the gain
- Changing the gain by the rotary switch

The rotary switch on the PC board allows you to change the gain. Gain setting for each switch number is shown below.

- Changing the gain by command from the PC

Setting the rotary switch to " 9 " enters PC control mode. In this mode, the gain can be set to any integer value from 5 to 400 times.
Note that this gain setting is lost when the power is turned off.

- Communication with PC
- Setting

Bound rate: 9600 bps
Data bits: 8 bits
Parity: none
Stop bit: 1 bit
Flow control: none

- Command

Command	Description
\#UG	This command inquires the currently set gain value. Default gain is 10.
\#US	This command sets the gain used with switch "9". Setting range is from 5 to 400 . An error occurs if the setting is outside this range. The gain is set to the same value as switch "8" when the power is turned on.
\#UW	This command sets the gain used with switch "8". Setting range is from 5 to 400 . An error occurs if the setting is outside this range. The setting is retained even after the power is turned off.

- Transmitted data format (ASCII code: 9 characters)

9	8	6	5	3	2	1
\#	AA	XXXX			<CR>	<LF>
No.						
9	\#					
8-7	Comm					
6-3	Data (4					
2-1	Termin	rn				

- Received data format (ASCII code: 9 characters)

9	8	7	6	5	4	3	2	1
* or \$	AA		XXXX				<CR>	<LF>
No.	Description							
9	* (OK) or \$ (Error)							
8-7	Command (2 bytes: echo back)							
6-3	Data (4 bytes: 0000 . 9999)							
2-1	Terminator (2 bytes: carriage return + line feed)							

Sample software

Sample software is included on the CD-ROM that comes with the C10508. The software allows controlling the C10508 from a PC. Use this to check the operation of the C10508.

- Operation screen of sample software

