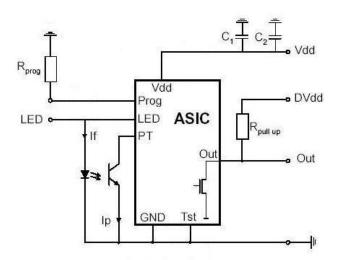
SCCW77400A / SCCW77400B Product Preview

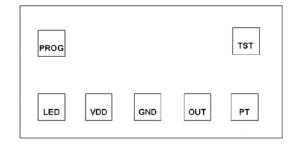
The SCCW77400 is an ASIC for reflective optical switch. Embedded with an infrared light emitting diode (LED) and a phototransistor, this ASIC controls the infrared emitter, read the detector-signal and convert it into a digital signal. The reflective interrupter will be implemented into mobile communication devices.

ON Semiconductor

http://onsemi.com


Features

- Low current consumption: 40u A.
- Operating voltage 2.3 V to 3.6 V.
- Adjustable LED current.
- Adjustable Threshold current.


Typical Applications

Short to medium distance proximity sensor for:

- Cell phone
- PDAs
- Portable entertainment devices.

Figure 1: Typical Application Circuit

CHIP LAYOUT

(Chip dimensions and arrangement of bond pads. Pads for test and trim could be added)

ORDERING INFORMATION

Orderable Part Number	Version
SCCW77400A	ROSa_Long
SCCW77400B	ROSa

ON Semiconductor Preliminary Specification –SCCW77400– ISSUE: 3.0 – Friday, June 05, 2009 This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

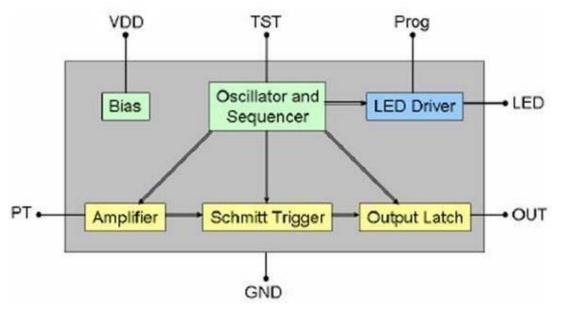


Figure 2: Simplified Block Diagram

PIN FUNCTION DESCRIPTION

PIN	PIN NAME	TYPE	DESCRIPTION	
1	VDD	POWER	Supply voltage	
2	GND	POWER	Ground	
3	OUT	OUTPUT	Digital output, NMOS open drain	
4	LED	OUTPUT	ED anode, supplies current to anode of emitter	
5	PT	INPUT	Analog input from phototransistor	
6	PROG	INPUT	Tune the LED current by connecting external resistor	
7	TST	INPUT	Digital pin, accelerate the system.	

MAXIMUM RATINGS (NOTE 1)

Rating	Symbol	Value	Unit
VDD: Power Supply Voltage (Note 2)	VDD	-0.3 to +6.0	V
Input and output pin(Note 2)	Led,Pt,	-0.3 to +6.0	V
	Prog, Tst		
Output pin(Note 3)	Out	-0.3 to +6.0	V
Human Body Model (HBM) ESD Rating are (Note 4)	ESD HBM	2000	V
Machine Model (MM) ESD Rating are (Note 4)	ESD MM	200	V
Latch-up protection (Note 5)	LU	20	mA
Storage Temperature Range	Ts	-40 to +150	°C
Operating Junction Temperature Range	TJ	-40 to +125	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Notes:

- 1. Maximum electrical ratings are defined as those values beyond which damage to the device may occur.
- 2. According to JEDEC standard JESD22-A108B.
- 3. Max current 25mA.
- This device series contains ESD protection and passes the following tests: Human Body Model (HBM) +/-2.0 kV per JEDEC standard: JESD22-A114 for all pins. Machine Model (MM) +/-200 V per JEDEC standard: JESD22-A115 for all pins.
- 5. Latch up Current Maximum Rating: ±20 mA per JEDEC standard: JESD78 class I.

OPERATING CONDITIONS (NOTE 6)

Rating	Symbol	Value	Unit
Analog supply voltage	VDD	+2.3 to +3.6	V
Digital supply voltage (Note7)	DVDD	+1.7 to +3.6	V
Supply voltage ripple (Note8)	dVDD	±0.3	V
Full operational ambient temperature range	Та	-40 to +85	°C

Notes:

- 6. Device functionality is guaranteed within operational limits.
- 7. See Figure 1: "Typical application circuit".
- 8. Voltage difference on VDD, frequency range: 0 to 20 kHz. Never below 2.3V.

SCCW77400

ON Semiconductor Confidential Proprietary

ELECTRICAL CHARACTERISTICS Min & Max Limits apply for T_A between -40°C to +85°C and for V_{DD} between 2.3 V to 3.6 V (Unless otherwise noted). Typical values are referenced to T_A = + 25 °C and V_{DD} = 3.0 V (Unless otherwise noted).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{MEAN}	Current consumption without I_{LED} and I_{PT}	Without external load, TST="Low"	-	20	40	μA
I _{MEAN,TM}	Current consumption for operation in permanent test mode (without I_{LED} and I_{PT}). (Note 9)	Without external load, TST="High"	-	280	600	μA
LED drive	er					
I _{LED,ON}	DC emitter on current (R _{PROG} = ∞)	V_{DD} = 3.0 V , V_{LED} = 1.4 V	9	10	11	mA
I _{LED,ON}	DC emitter on current (R_{PROG} = 450 Ω) (Note 10)	V _{DD} = 3.0 V , V _{LED} = 1.7 V	45	50	55	mA
I _{LED,ON}	DC emitter on current (R_{PROG} = 100 Ω) (Note 10)		50 98 128	78 119 157	115 180 225	mA
I _{LED,ON}	DC emitter on current (R_{PROG} = 220 Ω) (Note 9,10)		45 67 85	56 84 106	80 125 160	mA
I _{LED,ON}	DC emitter on current (R_{PROG} = 330 Ω) (Note 9,10)		37 52 65	47 67 81	70 100 120	mA
$I_{\text{LED,OFF}}$	Emitter off current		-	-	1	μA
G _{PROG}	Current programming gain (Note 10,11)	$450 < R_{prog} < 10k\Omega$	5.4	6	6.6	
Receiver	and Schmitt Trigger					
M	Dhototropointer biog voltage	Up to $I_{INDC} = 1000 \mu A$	0.8* V _{DD}	-	-	V
$V_{CE,BIAS}$	Phototransistor bias voltage	I _{INDC} from 1000 to 2000µA	0.4* V _{DD}	-	-	V
I _{INDC}	Max. ambient light level(dc) Ambient light suppression - Version A :(long ROSa)	$V_{DD} = 2.3 V$ $V_{DD} = 3 V$ $V_{DD} = 3.6 V$	250 400 450	500 700 700	- -	μA
I _{INDC}	Max. ambient light level(dc) Ambient light suppression - Version B :(ROSa)		70	-	-	μA
I _{ST,HIGH}	Switching threshold (Note 9) Output Vo: L to H (Independent of LED on/off) - Version A: (Iong ROSa) - Version B: (ROSa)	Level below dc-light level,@25°C, max ambient light current 100µA	11 76.5	12 85	13 93.5	μA
I _{ST,HIGH}	Switching threshold (Note 9) Output Vo: L to H (Independent of LED on/off) - Version A: (Iong ROSa) - Version B: (ROSa)	Level below dc-light level max ambient light current I _{INDC}	8 70	12 85	16 100	μA
I _{INDCMAX}	Max. ambient light level(dc)(Note 12) Ambient light suppression - Version A :(long ROSa)	$V_{DD} = 2.3 V$ $V_{DD} = 3 V$ $V_{DD} = 3.6V$	800 1000 1500		- - -	μA
I _{ST,HYST}	(Note 9)	Ambient light level up to I _{INDC}	10 10	15 15	30	%

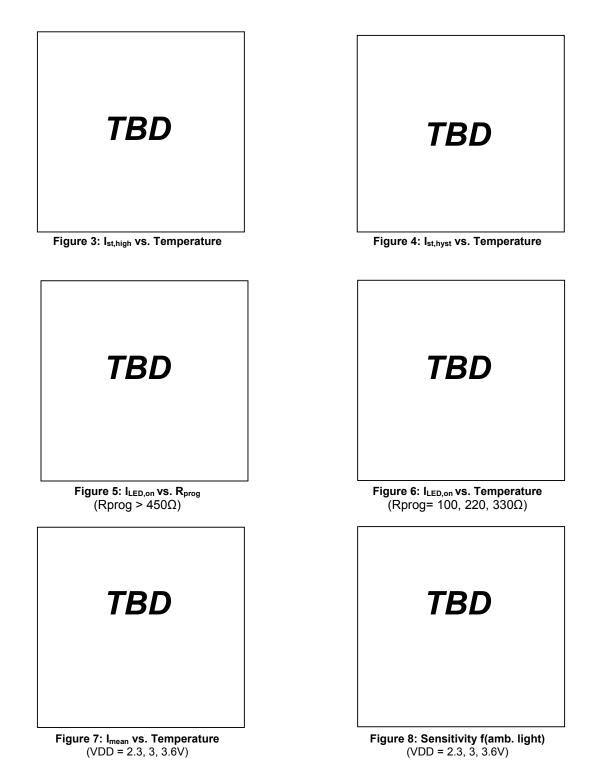
Notes:

9. Guaranteed by design and characterized.

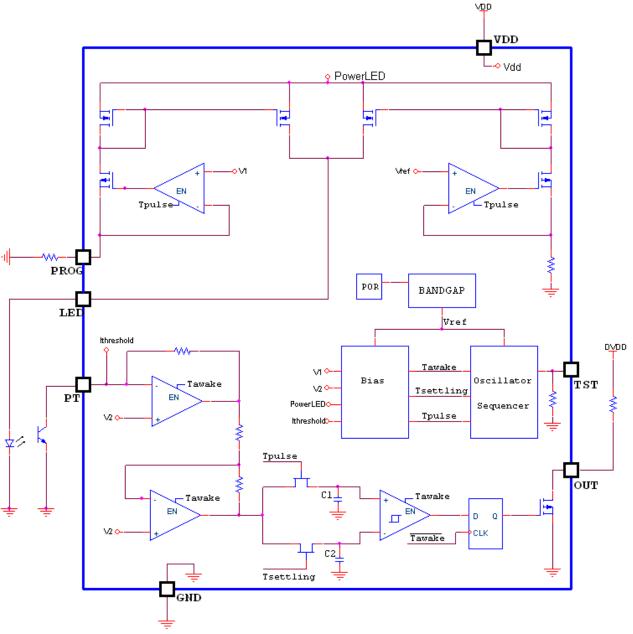
10. R_{PROG} tolerance -/+ 1%.

11. ILED, ON current remains linear for R_{PROG} up to infinity. See Figure 11.

12. Guaranteed functionality, but threshold maybe out of range.


ELECTRICAL CHARACTERISTICS Min & Max Limits apply for T_A between -40°C to +85°C and for V_{DD} between 2.3 V to 3.6 V (Unless otherwise noted). Typical values are referenced to T_A = + 25 °C and V_{IN} = 3.0 V (Unless otherwise noted).

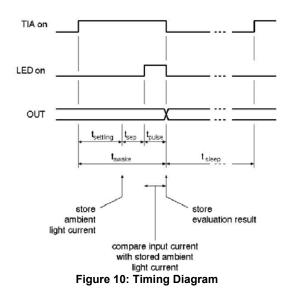
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
TST Inpu	t					
VIL	Digital low level input voltage		-	-	0.3* V _{DD}	V
V _{IH}	Digital high level input voltage		0.7* V _{DD}	-	-	V
IIL	Low level input current		0	-	145	μA
IIH	High level input current		0	-	460	μA
R _{PD}	Internal pull down resistor	TST-Input	8	30	37	kΩ
Output						
V _{OH}	High level output voltage	See figure 1	0.8*DV _{DD}	-	3.6	V
I _{OH}	High level output current	OUT='High' V _{OUT} = 3.6V	-	-	1	μA
V _{ol} L	Low level output voltage	$I_{OL} = 8mA$ ($V_{DD} = 2.3V$)	-	-	0.34	V
		$I_{OL} = 10 \text{mA}$ (V _{DD} = 2.3V)	-	-	0.4	V
		$I_{OL} = 18mA$ ($V_{DD} = 2.3V$)	-	-	0.6	V
		I _{OL} = 23mA (V _{DD} = 2.3V)	-	-	0.8	V
Rds _{on}	Output ON resistance		-	12	-	Ω
Oscillato	r and Sequencer	•	•			
T _{pulse}	Pulse time		30.8	44	57.2	μs
T _{sep}	Separation time (Note 13)		30.8	44	57.2	μs
T _{awake}	Awake time		123.2	-	228.8	μs
Ŧ		TST="low"	62.95		116.91	ms
T _{sleep}	Sleep time	TST="high"	369.6	1 -	686.4	μs
T _{start}	Start-up time	TST="low" , V _{DD} rise time up to 2 ms.	62.95	90	116.91	ms
V _{dd,start}	Minimum required supply voltage for startup		1.6	1.8	-	V


Notes:

13. Guaranteed by design.

TYPICAL OPERATING CHARACTERISTICS

DETAIL OPERATING DESCRIPTION



Functional Descriptions

Oscillator and Sequencer

The operation of the ASIC is controlled by a sequencer witch is clocked by an internal oscillator. The switch operates in a pulsed mode to realize low current consumption. Most of the time the ASIC is in sleeps mode T_{SLEEP} . After the start-up sequence, the active phase starts with enabling the transimpedance amplifier. After a settling time T_{SETTLING} the CDS Schmitt trigger stores the received photo current caused by ambient light and transistor leakage current. After expiration of the separation time T_{SEP} the LED is switched on (T_{PLUSE}) and the CDS Schmitt trigger begins to compare the difference between the new photo-current and the stored one with taking into account

the appropriate switching threshold. The result of the comparison is store in a latch and occurs at the output (see Figure 10: Timing Diagram)

For shortening production test time the sleep time T_{SLEEP} can be decreased by a "High" signal on pin TST.

LED Driver

The LED driver generates a regulated current pulse for the LED anode for a defined period triggered by the sequencer (see Figure 10: Timing Diagram). During the on-phase of the LED current can be adapted by the R_{PROG} resistor connected to the pin PROG of the ASIC according to the following formula:

$$I_{led} = I_{led,on} + G_{prog} \cdot \frac{V_{dd}}{R_{prog}} \qquad \text{For } \mathsf{R}_{\mathsf{PROG}} > 450\Omega.$$

The current gain G_{PROG} has a typical value of 6. By means of the external resistor R_{PROG} the LED current can be programmed between typical 10mA and 58mA for R_{PROG} superior to 450 Ω .

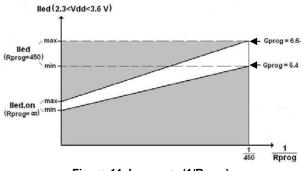
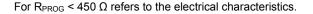



Figure 11. I_{LED,ON} vs. (1/R_{PROG})

TIA Amplifier

The transimpedance amplifier (TIA) converts the collector current from the phototransistor to a voltage. The TIA has a low impedance input regulated voltage $V_{CE,BIAS}$, witch is ratio metric to the supply voltage VDD.

CDS Schmitt trigger

The implemented Schmitt trigger uses correlated double sampling (CDS). The first phototransistor readout is performed with the LED turned off in order to detect the ambient light level and the phototransistor leakage current. This value is stored for further comparison. The second measurement is done with LED on in order to detect the reflective signal. The difference between the both samples must be larger than the upper threshold $I_{ST,HIGH}$ to switch the output of the Schmitt trigger into the "High" state. Respectively, the difference between the both samples must be lower than the lower threshold $I_{ST,LOW}$ to switch into the "Low" state. If the difference is between both thresholds, the Schmitt trigger does not change its state.

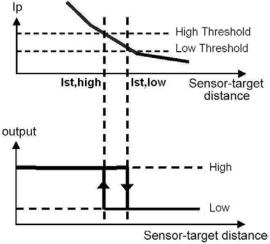


Figure 12. Output vs. photocurrent

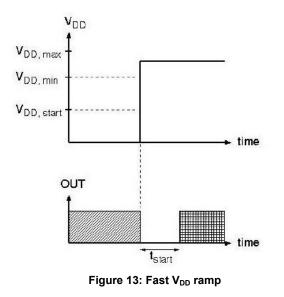
The hysteresis is performed by addition of the threshold ($I_{THRESHOLD}$) current during the first phototransistor readout to the ambient light current. The added threshold current is $I_{ST,HIGH}$ when output is "*Low*" and $I_{ST,LOW}$ (see the following formula) when output is "*High*".

$$I_{st,low} = (1 - I_{st,hyst}) \times I_{st,high}$$

Bias

The bias current generator supplies the other blocks with appropriate bias currents during the appropriate timing phase.

	V1(V)	V2(V)	PowerLED(V)	Threshold(A)
T _{AWAKE}	NA	$V_{\text{CE,BIAS}}$	NA	NA
TSETTLING	NA	V _{CE,BIAS}	0	OUT ='L': I _{ST,HIGH} OUT='H': I _{ST,LOW}
T _{PULSE}	0.2*VDD	$V_{\text{CE},\text{BIAS}}$	VDD	0
T _{SLEEP}	0	0	0	0


Output

When the voltage supply is powered, the digital signal from the Schmitt trigger is latched in a D-type flip-flop to bridge the sleep time. The flip-flop controls an open drain NMOS low-side output stage allowing the output to be read at any time.

When the power supply is not connected, sensor is in off mode and the output is always high. And there is no current via output pin to/from component.

Condition	VDD set to operational voltage
Output state	DVDD set to operational voltage
	Active (Output is high or low depending on state of interrupter)

Condition	VDD set floating ("open")
Output state	DVDD set to operational voltage
	High (Current consumption minimized via component)

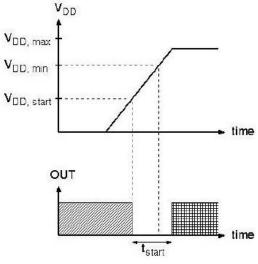
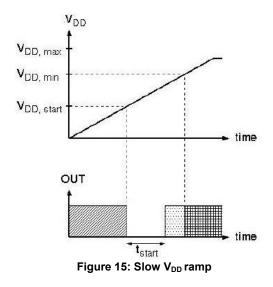
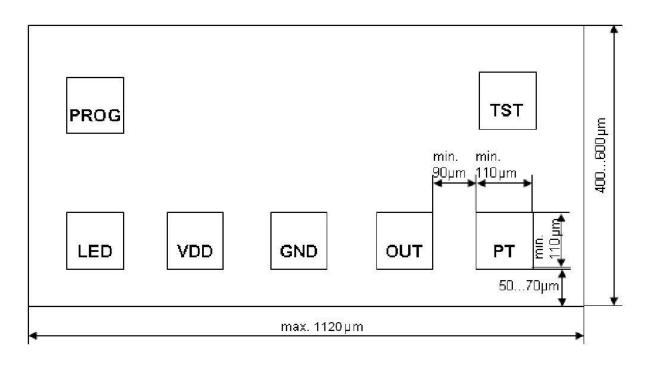



Figure 14: Moderate V_{DD} ramp

output states:

undefined high impedance or low


wol 📋

- high impedance or low depending on photo current without guaranteed functionality
- high impedance or low depending on photo current with guaranteed functionality

Mechanical data

Delivery	Tested, inked and unsawn wafer
Scribe line	80µm
Sawing grid	Мах. 1120µm x 600µm
Chip thickness	$250\pm10\mu m$, grinded and wet etched
Pad opening	Min. 110µm x 110µm

Chip layout

Date	Revision	Change	Author
7-Nov	1.0	Creation of document	S. BRAS
28-Nov	1.1	Updates: • Threshold current limits • Product name • Chip layout	S. BRAS
2 - Dec	2.0	Updates according to customer remarks: • Max rating table • Operating condition table • Electrical characteristics • Typical operating characteristics • Functional description	S. BRAS
10 - Dec	2.1	Updates: • T _{START} time	S. BRAS
16 - Dec	2.2	Updates (Operating condition table): • T _{START} time • Voltage condition on LED pin	S. BRAS
26 - Jan	2.3	 Updates: Operating condition T_{START} time. Operating condition G_{PROG} parameter. Addition Figure 11. 	S. BRAS
26 - Fev	2.4	Updates: • Chip thickness.	S. BRAS
12 -Mar	2.5	OPN table added page 1Typo product preview page 1	S. BRAS
5 -June	3.0	Electrical table updates according to design review and OSRAM target spec 2.0	S. BRAS

PARAMETERS AND FUNCTIONS UP DATE: