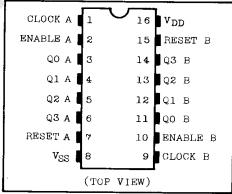
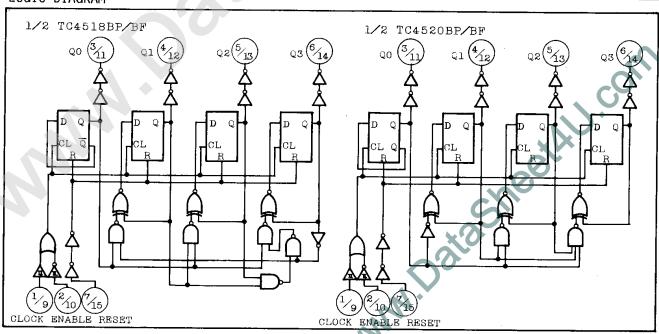

TC4518BP/BF, TC4520BP/BF

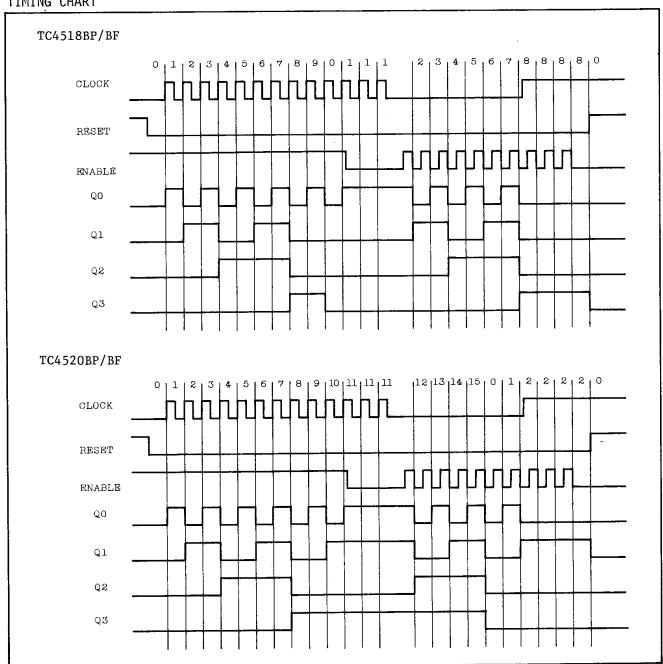
TC4518BP/TC4518BF DUAL BCD UP COUNTER TC4520BO/TC4520BF DUAL BINARY UP COUNTER

TC4518BP/BF and TC4520BP/BF are up counters of BCD or 4 bit binary.


Since both of TC4518BP/BF and TC4520BP/BF contain two independent circuits of counters with the same functions in one package, counting or frequency division of two BCD digits or eight binary bits can be achieved with one IC. The counters can be reset to "0" (Q0 \sim Q3="L") by giving "H" level signal to RESET input regardless of other inputs. The counting condition is changed by the rising edge of CLOCK input if ENABLE="H" or by the falling edge of ENABLE if CLOCK="L".


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V_{SS} -0.5 $\sim V_{SS}$ +20	· V
Input Voltage	VIN	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Output Voltage	VOUT	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	- 40 ∿ 85	°C
Storage Temperature Range	Tstg	- 65 √ 150	°C
Lead Temp./Time	T _{so1}	260°C • 10sec	


PIN ASSIGNMENT

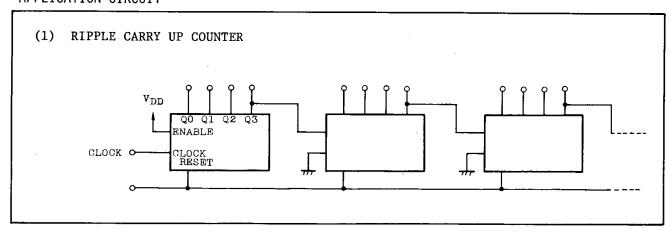
LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS ($V_{SS}=0V$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$	3		18	77
Input Voltage	VIN	0		v_{DD}	· ·

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

CHARACTERISTIC		SYMBOL	TEST CONDITION	v_{DD}	-40°C		25°C			85°C		UNIT	
		0 111202	1201 0011011	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.		
High-Level Output Voltage			 	5	4.95	-	4.95	5.00	_	4.95	_		
		v _{OH}	V _{IN} =V _{SS} , V _{DD}	10	9.95	-	9.95	10.00	_	9.95	-	v	
			, IN , 22, UD	15	14.95	_	14.95	15.00		14.95	_		
Low-Level			 I _{OUT} <1μΑ	5	_	0.05	_	0.00	0.05	-	0.05		
Output Voltage	oltage	VOL	V _{IN} =V _{SS} , V _{DD}	10	_	0.05	-	0.00	0.05	-	0.05		
<u> </u>				- 15	-	0.05	_	0.00	0.05	-	0.05		
			V _{OH} =4.6V	5	-0.61	_	-0.51	-1.0		-0.42	-		
Output H	ioh		$V_{OH}=2.5V$	5	-2.5	_	-2.1	-4.0		-1.7	-		
Current	-6 11	· I _{OH}	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	l .	-1.1	-		
Current			V _{OH} =13.5V	15	-4.0	- ·	-3.4	-9.0	_	-2.8	-	mA	
		-	V _{IN} =V _{SS} , V _{DD}										
		I _{OL}	V _{OL} =0.4V	5	0.61	-	0.51	1.2		0.42	-		
Output L	ow		V _{OL} =0.5V	10	1.5	-	1.3	3.2	l	1.1	_		
Current			V _{OL} =1.5V	15	4.0	-	3.4	12.0	-	2.8	-		
			V _{IN} =V _{SS} , V _{DD}										
 Input Hi:	Tourse Mark		V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V	5 10	3.5 7.0	_	3.5 7.0	2.75	-	3.5	-		
Voltage	gii	VIH	V _{OUT} =1.5V,13.5V		11.0		11.0	5.5 8.25	_	7.0	_		
Voltage			I _{OUT} <1μA	10	11.0	-	11.0	0.25	-	11.0	-		
	<u>-</u>		V _{OUT} =0.5V, 4.5V	5	_	1.5	_	2.25	1.5			v	
Input Lo	w		V _{OUT} =1.0V, 9.0V	10	_	3.0	_	4.0	3.0	_	1.5 3.0		
Voltage		v_{IL}	V _{OUT} =1.5V,13.5V	15	_	4.0	_	6.75	4.0	_	4.0	İ	
_			I _{OUT} <1 _µ A					0.75	7.0		7.0		
	"H"					-							
Input	Level I _{IH}		V _{IH} =18V	18	-	0.1	-	10-5	0.1	-	1.0		
Current	''L''	${ m I}_{ m IL}$	V _{TL} =0V	18		-0.1	_	- 10 ⁻⁵	-0.1		-1.0		
	Leve1											μА	
Quiescent	<u> </u>			5	-	5		0.005	5	-	150		
Device Cu		I _{DD}	$v_{IN}=v_{SS}, v_{DD}$	10	-	10		0.010	10	-	300		
			*	15	-	20	-	0.015	20	-	600		


^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

•				-				
CHARACTERISTIC	SYMBOL	TEST CONDITION	$V_{\mathrm{DD}}(\mathrm{V})$	MIN.	TYP.	MAX.	UNIT	
	tTLH		. 5	-	70	200		
Output Transition Time	1		10	-	35	100		
	tTHL		15	_	30	80		
Dun and an Dalon Time	t _{pLH}		5	-	160	560		
Propagation Delay Time			10	_	75	230	ns	
(CLOCK, ENABLE - Q)	t _{pHL}		15	_	60	160		
Description Dolay Time			5	_	110	560		
Propagation Delay Time	tpHL		10		55	230		
(RESET - Q)			15	_	40	160		
			5	1.5	6	_		
Max. Clock Frequency	f _{CL}		10	· 3	14		MHz	
			15	4	18			
Max. Clock Input Rise/	trCL		5					
Fall Time			10	No Limit			μs	
raii iime	tfCL		15					
Max. Input Rise/Fall	tr		5		μ5			
Time			10	No Limit				
(ENABLE)	t _f		15					
			,5	-	30	200		
Min. Clock Pulse Width	t _W		10	_	15	100		
			15	-	10	70		
Min. Pulse Width	t _W		5	-	35	250		
			10	-	20	110		
(ENABLE)			15	_	15	80	ns	
Min. Pulse Width (RESET)			5	_	45	250		
	t _{WH}		10	_	20	110		
			15		15	80		
Min. Removal Time			5	_	-	0		
	trem		10	-	-	0		
			15	-	-	0		
	1	<u> </u>	<u> </u>	+				

WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS WAVEFORM 1 20ns CLOCK 50% 50% 20ns 90% 90% 50% 50% ENABLE 10% $^{\mathrm{t}}\mathrm{THL}$ 90% 50% 50% Q 50**%** 10% 10% рLН ^tpHL t_{pLH} $^{ m t}_{ m pHL}$ WAVEFORM 2 20ns 20ns 90**%** 90% 50% RESET 50% 10% 10% 20ns ${^{\text{t}}\!W\!H}$ rem 🗕 ENABLE, 90% 50% CLOCK Q 50**%**

APPLICATION CIRCUIT

APPLICATION CIRCUIT (Continued) (2) PARALLEL CARRY UP COUNTER TC4518BP/BF CLOCK TC4520BP/BF TC4520BP/BF

CLOCK O