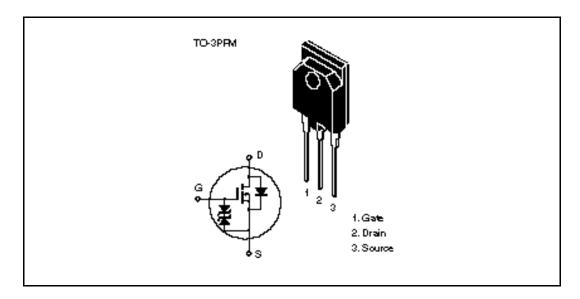
2SJ218

Silicon P-Channel MOS FET

HITACHI


Application

High speed power switching

Features

- Low on-resistance
- High speed switching
- 4 V gate drive device
 - Can be driven from 5 V source
- Suitable for motor drive, DC-DC converter, power switch and solenoid drive

Outline

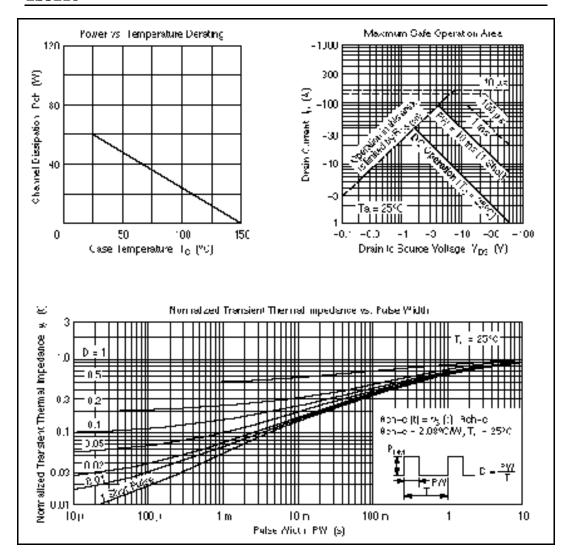
2SJ218

Absolute Maximum Ratings ($Ta = 25^{\circ}C$)

Item	Symbol	Ratings	Unit
Drain to source voltage	$V_{\scriptscriptstyle DSS}$	-60	V
Gate to source voltage	V_{GSS}	±20	V
Drain current	I _D	– 45	A
Drain peak current	I _{D(pulse)} *1	-180	A
Body to drain diode reverse drain current	I _{DR}	– 45	A
Channel dissipation	Pch*2	60	W
Channel temperature	Tch	150	°C
Storage temperature	Tstg	-55 to +150	°C

Notes: 1. PW \leq 10 μ s, duty cycle \leq 1%

2. Value at $T_c = 25$ °C


Electrical Characteristics ($Ta = 25^{\circ}C$)

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Drain to source breakdown voltage	$V_{(BR)DSS}$	-60	_	_	V	$I_{D} = -10 \text{ mA}, V_{GS} = 0$
Gate to source breakdown voltage	$V_{(BR)GSS}$	±20	_	_	V	$I_{G} = \pm 100 \ \mu A, \ V_{DS} = 0$
Gate to source leak current	I _{GSS}	_	_	±10	μΑ	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0$
Zero gate voltage drain current	I _{DSS}	_	_	-250	μΑ	$V_{DS} = -50 \text{ V}, V_{GS} = 0$
Gate to source cutoff voltage	$V_{\rm GS(off)}$	-1.0	_	-2.0	V	$I_{D} = -1 \text{ mA}, V_{DS} = -10 \text{ V}$
Static drain to source on state	$R_{\scriptscriptstyle DS(on)}$	_	0.033	0.042	Ω	$I_D = -20 \text{ A}, V_{GS} = -10 \text{ V}^{*1}$
resistance		_	0.045	0.06	_	$I_D = -20 \text{ A}, V_{GS} = -4 \text{ V}^{*1}$
Forward transfer admittance	y _{fs}	16	25	_	S	$I_D = -20 \text{ A}, V_{DS} = -10 \text{ V}^{*1}$
Input capacitance	Ciss	_	3800	_	pF	$V_{DS} = -10 \text{ V}, V_{GS} = 0,$
Output capacitance	Coss	_	2000	_	pF	f = 1 MHz
Reverse transfer capacitance	Crss	_	490	_	pF	_
Turn-on delay time	t _{d(on)}	_	30	_	ns	$I_D = -20 \text{ A}, V_{GS} = -10 \text{ V},$
Rise time	t _r	_	235	_	ns	$R_L = 1.5 \Omega$
Turn-off delay time	t _{d(off)}	_	670	_	ns	_
Fall time	t _f	_	450	_	ns	_
Body to drain diode forward voltage	V_{DF}	_	-1.35	_	V	$I_F = -45 \text{ A}, V_{GS} = 0$
Body to drain diode reverse recovery time	t _{rr}	_	300	_	ns	$I_F = -45 \text{ A}, V_{GS} = 0,$ $di_F/dt = 50 \text{ A}/\mu\text{s}$

Note: 1. Pulse test

See characteristic curves of 2SJ217

2SJ218

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

HITACHI

Hitachi, Ltd.

Semiconductor & IC Div. Nappon Bidg., 2-6-2, Ohte-mediti, Chiyode-ku, Tokyo 100, Japan Tat Tokyo (03, 3270-2111 Fex: (03, 3270-5109

For further in forme I on write to:

Histori America, Utd. Semiconductor & IC Div. 2000 Sierra Point Partway Brisbana, CA. 94005-1835 U.S.A. Tet 445-589-8000

Tet 415-589-8300 Fex: 415-583-4207 Hitachi Burope GmbH
Bedronic Componente Group
Continental Burope
Dornacher Straße 3
D-88522 Feldkirchen
München
Tet (1894-94) 80.0
Fax: 08949 29:30.00

Hitachi Burope Ltd.
Bectronic Componente Div.
Northarn Burope Headquerters
Whitebrook Ferk
Lower Cook hem Road
Maidenhead
Berkehire SL68YA
United Kingdon
Tet 0628-585000
Fex: 0628-778222

Hitachi Asia Pta, Ltd 45 Collyer Quay \$20-00 Hitachi Tower Snappore 0404 Tet 535-2400 Fex: 535-4533

Hitschi Asia (Hong Kond) Ltd. Unit 706, North Tower, World Finance Centre, Herbour City, Centron Road Taim Sha Talu, Kowloon Hong Kond Tet 27:359248 Fax: 27:30807 f

HITACHI