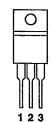
Siliconix incorporated

IRF9620/9621/9622/9623

P-Channel Enhancement Mode Transistors


T-39-19

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (V)	r _{DS(ON)} (Ω)	I _D (A)
IRF9620	200	1.5	3.5
IRF9621	150	1.5	3.5
IRF9622	200	2.4	3.0
IRF9623	150	2.4	3.0

TOP VIEW

DRAIN (Connected to TAB) SOURCE

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C Unless Otherwise Noted)¹

		IRF					
PARAMETERS/TEST CONDITIONS Gate-Source Voltage		SYMBOL V _{GS}	9620	9621 ±20	9622 ± 20	9623 ±20	UNITS
			±20				
Continuous Drain Current	$T_C = 25$ °C	l _D	3.5	3.5	3.0	3.0	
	T _C = 100°C		2.0	2.0	1.5	1.5	A
Pulsed Drain Current ²		l _{DM}	14	14	12	12	1
Avalanche Current (See Figure 9)	Current (See Figure 9)		3.5	3.5	3.5	3.5	1
Repetitive Avalanche Energy ³	L = 0.1 mH	E _{AR}	0.6	0.6	0.6	0.6	mJ
Power Dissipation	$T_C = 25$ °C	PD	40	40	40	40	w
	$T_C = 100$ °C		16	16	16	16	1
Operating Junction & Storage Temperature Range T _J , 1		T _J , T _{stg}	-55 to 150			°C	
Lead Temperature (1/16" from case for 10 sec.)		TL	300				

THERMAL RESISTANCE RATINGS¹

THERMAL RESISTANCE	SYMBOL	TYPICAL	MAXIMUM	UNITS
Junction-to-Case	R _{thJC}		3.12	
Junction-to-Ambient	R _{thJA}		80	K/W
Case-to-Sink	R _{thCS}	1.0		

¹Negative signs for current and voltage ratings have been omitted for the sake of clarity.

²Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, Figure 11).

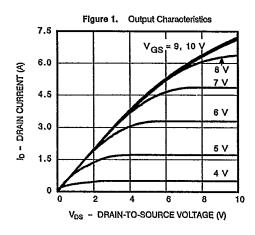
³Duly cycle ≤ 1%.

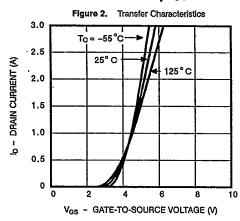
4-169

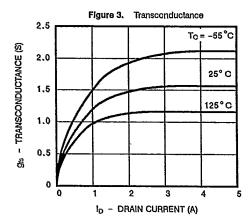
IRF9620/9621/9622/9623

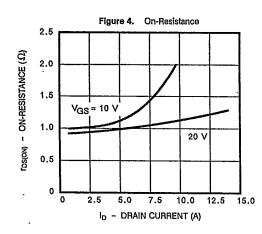
A	Silico	xinc
	incora	arated

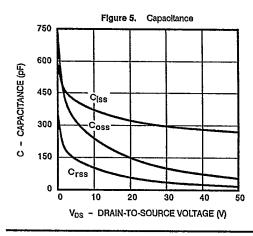
P-Channel Device - Negative Signs Have					LIMITS		г
PARAMETER							
		SYMBOL	TEST CONDITIONS	TYP	MIN	MAX	UNIT
STATIC							
Drain-Source Breakdown Voltage	IRF9620, 9622 IRF9621, 9623	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA		200 150		٧
Gate Threshold Voltage		V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$		2.0	4.0	
Gate-Body Leakage		igss	$V_{DS} = 0 \text{ V, } V_{GS} = \pm 20 \text{ V}$			±500	nA
Zero Gate Voltage Drain Current		loss	$V_{DS} = V_{(BR)DSS}, V_{GS} = 0 V$			250	μА
			$V_{DS} = 0.8 \text{ x V}_{(BR)DSS}, V_{GS} = 0 \text{ V}, T_{J} = 125^{\circ}\text{C}$			1000	1
On-State Drain Current ¹	IRF9620, 9621 IRF9622, 9623	ID(ON)	$V_{OS} = 10 \text{ V}, V_{GS} = 10 \text{ V}$		3,5 3.0		Α
	IRF9620, 9621 IRF9622, 9623	r _{DS(ON)}	$V_{GS} = 10 \text{ V, } I_{D} = 1.5 \text{ A}$	1.0 1.5		1.5 2.4	Ω
	IRF9620, 9621 IRF9622, 9623		V _{GS} = 10 V, I _D = 1.5 A T _J = 125°C	1.75 2.60		2,7 4.3	
Forward Transconductance ¹		g _{fs}	V _{DS} = 15 V, I _D = 1,5 A	1.4	1.0		s
DYNAMIC							
Input Capacitance		Ciss	C _{iss}			400	
Output Capacitance		Coss	$V_{GS} = 0 \text{ V, } V_{DS} = 25 \text{ V, f} = 1 \text{ MHz}$	110		125	рF
Reverse Transfer Capacitance		C _{rss}		40		45	1
Total Gate Charge ²		Qg		17		22	
Gate-Source Charge ²		Q _{gs}	$V_{DS} = 0.8 \times V_{(BR)DSS}, V_{GS} = 10 \text{ V, } I_{D} = 4 \text{ A}$	1.8			nC
Gate-Drain Charge ²		Q _{gd}		8.6			L
Turn-On Delay Time ²		t _{d(on)}		10		40	
Rise Time ²		ţ	$V_{DD} = 100 \text{ V, R}_L = 25 \Omega$	23		50	ns
Turn-Off Delay Time ²		t _{d(off)}	$I_{\rm D} \simeq$ 1.5 A, $V_{\rm GEN} = 10$ V, $P_{\rm G} = 25 \Omega$	45		50	
Fall Time ²		ţ		31		40	<u> </u>
SOURCE-DRAIN DI	ODE RATINGS	AND CHAR	ACTERISTICS (T _C = 25°C)				
Continuous Current	IRF9620, 9621 IRF9622, 9623	ls				3.5 3.0	A
Pulsed Current ³	IRF9620, 9621 IRF9622, 9623	Ism				14 12	
Forward Voltage ¹	IRF9620, 9621 IRF9622, 9623	V _{SÖ}	I _F = I _S , V _{GS} ≈ 0 V			7.0 6,8	V
Reverse Recovery Time		tπ	i _F = I _S , di _F /dt = 100 A/μs	105			ns
Reverse Recovery Charge		Q _{rr}	1	0,23	 	+	μ(

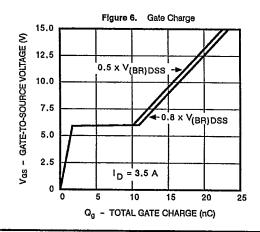

¹Pulse test: Pu'se Width \leq 300 μseo, Duty Cycle \leq 2%. ²Independent of operating temperature. ³Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, Figure 11).

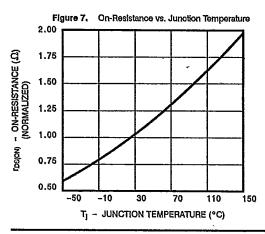


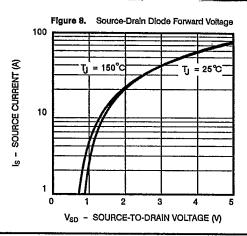

IRF9620/9621/9622/9623


TYPICAL CHARACTERISTICS (25°C Unless Otherwise Specified)

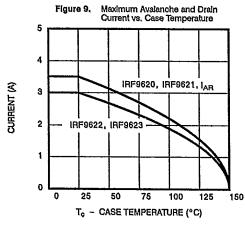

T-39-19

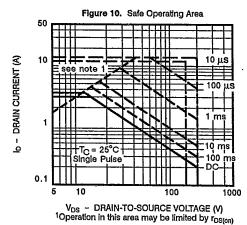


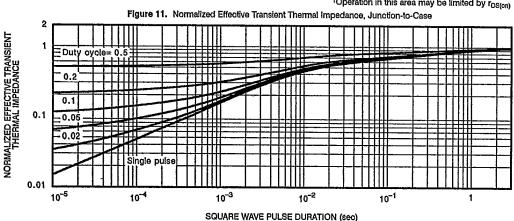

4-171


IRF9620/9621/9622/9623

Siliconix incorporated


TYPICAL CHARACTERISTICS (Cont'd)


T-39-19



THERMAL RATINGS

4-172

Ē