<u>2SK2147-01</u>

SIPMOS® FUJI POWER MOS-FET

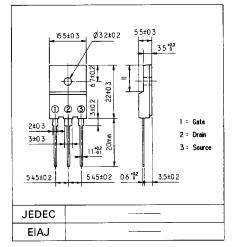
N-CHANNEL SILICON POWER MOS-FET

Features

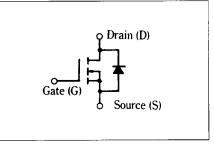
- High speed switching
- Low on-resistance
- No secondary breakdown
- Low driving power
- High voltage
- $V_{GS} = \pm 30V$ Guarantee
- Avalanche-proof

Applications

- Switching regulators
- UPS
- DC-DC converters
- General purpose power amplifier


Max. Ratings and Characteristics

Absolute Maximum Ratings(Tc=25°C) (unless otherwise specified)


Items	Symbols	Ratings	Units	
Drain-source voltage	V _{DS}	900	V	
Drain-gate voltage ($R_{GS} = 20K\Omega$)	V _{DGR}	900	V	
Continuous drain current	ID	6	А	
Pulsed drain current	I _{D(puls)}	18	А	
Gate-source voltage	V _{GS}	±30	V	
Max. power dissipation	PD	80	W	
Operating and storage	T _{ch}	150	°C	
temperature range	T _{stg}	$-55 \sim +150$	°C	

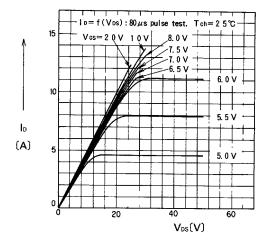
FAP-II SERIES

Outline Drawings

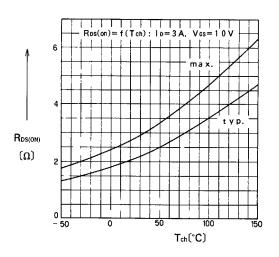
Equivalent Circuit Schematic

●Electrical Characteristics(Tc=25°C) (unless otherwise specified)

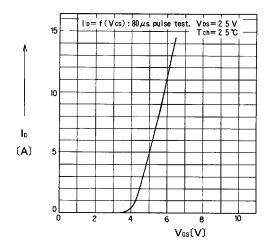
ltems	Symbols	Test Conditions	Min.	Тур.	Max.	Units
Drain-source breakdown voltage	V _{(BR)DSS}	$I_{D} = 1mA$ $V_{GS} = 0V$	900			V
Gate threshold voltage	V _{GS(th)}	$I_D = 1mA$ $V_{DS} = V_{GS}$	2.5	3.5	5.0	V
		$V_{DS} = 900V$ $T_{ch} = 25^{\circ}C$		10	500	μA
	I _{DSS}	$V_{GS} = 0V$ $T_{ch} = 125^{\circ}C$		0.2	1.0	mA
Gate-source leakage current	I _{GSS}	$V_{GS} = \pm 30V V_{DS} = 0V$		10	100	nA
Drain-source on-state resistance	R _{DS(on)}	$I_D = 3A$ $V_{GS} = 10V$		2.1	2.8	Ω
Forward transconductance	g _{fs}	$I_{\rm D}=3A$ $V_{\rm DS}=25V$	2.0	4.5		S
Input capacitance	C _{1ss}	$V_{DS} = 25V$		1200	1800	
Output capacitance	Coss	$V_{GS} = 0V$		140	210	pF
Reverse transfer capacitance	Crss	f = 1MHz		50	75	
Turn-on time ton	td _(on)	$V_{cc} = 600V I_{\rm p} = 3A$		35	55	
$(t_{on} = t_{d(on)} + t_r)$	t _r	$V_{cc} = 000 V I_D = 3A$ $V_{cs} = 10V$ $R_{cs} = 25\Omega$		110	170	- ns
Turn-off time toff	td _(off)			150	230	
$(t_{off} = t_{d(off)} + t_f)$	tr			100	150	
Avalanche capability	I _{AV}	$L = 100 \mu H T_{ch} = 25^{\circ}C$	6			A
Continuous reverse drain current	I _{DR}				6	A
Pulsed reverse drain current	I _{DRM}				18	A
Diode forward on-voltage	V _{SD}	$I_F = 2 \times I_{DR}$ $V_{GS} = 0V$ $T_{ch} = 25^{\circ}C$		1.0	1.5	V
Reverse recovery time	t _{rr}	$I_{F} = I_{DR} V_{GS} = 0V$		800		ns
Reverse recovery charge	Q _{rr}	$-dI_{\rm F}/d_{\rm t} = 100 {\rm A}/\mu {\rm s}$ $T_{\rm ch} = 25^{\circ}{\rm C}$		5		μC

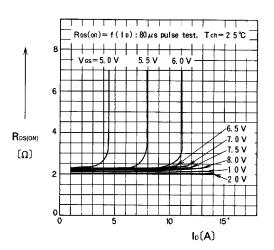

Thermal Characteristics

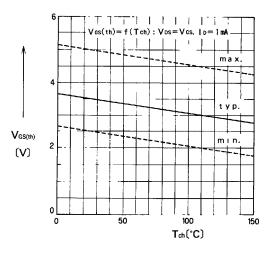
Items	Symbols	Test Conditions	Min.	Тур.	Max.	Units
Thermal resistance	R _{th(ch-a)}	channel to air			30.0	°C/W
	R _{th(ch-c)}	channel to case			1.56	°C/W

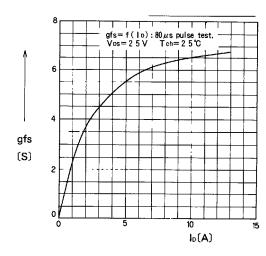

Downloaded from Elcodis.com electronic components distributor

2SK2147-01

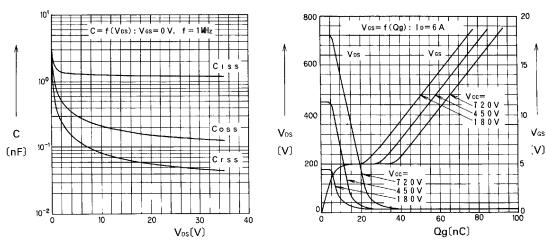

Characteristics


Typical Output Characteristics

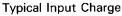

Drain-Source on-State Resistance vs. Tch

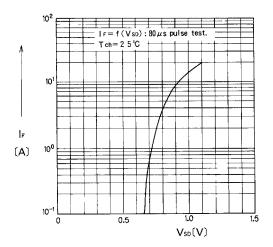

Typical Transfer Characteristics

Typical Drain-Source on-State Resistance vs. ID

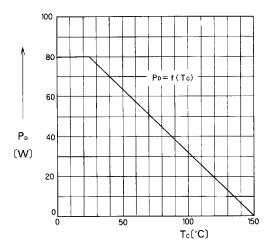


Gate Threshold Voltage vs. Tch

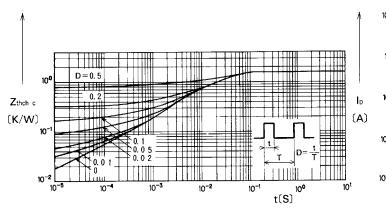


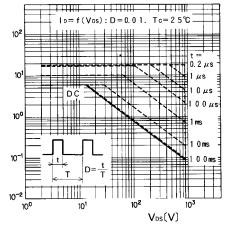

Typical Forward Transconductance vs. ID

2SK2147-01



Typical Capacitance vs. VDs




Forward Characteristics of Reverse Diode

Allowable Power Dissipation vs. Tc

Transient Thermal Impedance

Safe Operating Area