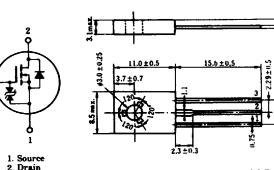
2SK1270-


■ 4496205 0013281 T97 ■HIT4

HITACHI/(OPTOELECTRONICS) LLE D -

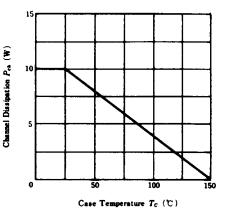
SILICON N-CHÁNNEL MOS FET HIGH SPEED POWER SWITCHING

FEATURES

- Low On-Resistance
- High Speed Switching
- 4 V Gate Drive Device
 Can be driven from 5 V source
- Suitable for Motor Drive, DC-DC Converter, Power
 - Switch and Solenoid Drive

2. Drain 3. Gate (Dimensions in mm)

3


(JEDEC TO-126 MOD.)

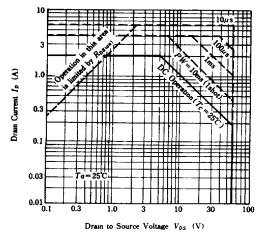
POWER VS. TEMPERATURE DERATING 2

58 4 0.5

BABSOLUTE MAXIMUM RATINGS (*Ta*=25°C)

Item	Symbol	Rating	Unit	
Drain-Source Voltage	Voss	60	v	
Gate-Source Voltage	Vess	± 20	v	
Drain Current	ID	2	A	
Drain Peak Current	ID (pulse)*	6	A	
Body-Drain Diode		0	A	
Reverse Drain Current	IDR	2		
Channel Dissipation	P **	10	w	
Channel Temperature	Tch	150	°C	
Storage Temperature	Trig	-55 - +150	°C	

* PW $\leq 10\mu$ s, duty cycle $\leq 1\%$ * * Value at $T_c - 25^{\circ}C$


ELECTRICAL CHARACTERISTICS (*Ta*=25°C)

Item	Symbol	Test Condition	min.	typ.	max.	Unit
	V(BR)DSS	$I_p = 10 \text{mA}, V_{GS} = 0$	60	typ.		v
Drain-Source Breakdown Voltage						
Gate-Source Breakdown Voltage	V(BR)GSS	$I_c = \pm 100 \mu A, V_{DS} = 0$	±20			v
Gate-Source Leak Current	Icss	$V_{GS} = \pm 16 \mathrm{V}, V_{DS} = 0$	-	—	±10	μA
Zero Gate Voltage Drain Current	IDSS	$V_{DS} = 50 V, V_{GS} = 0$	-	ļ	100	μA
Gate-Source Cutoff Voltage	Vascos,	$I_D = 1 \mathrm{mA}, V_{DS} = 10 \mathrm{V}$	1.0	_	2.0	v
Static Drain-Source	$I_D = 1 \text{ A}, \ V_{GS} = 10 \text{ V} \bullet$		0.3	0.4	Ω	
on State Resistance	RDSLon	$I_D = 1A$, $V_{GS} = 4V$ *		0.4	0.55	
Forward Transfer Admittance	y /=	$I_0 = 1 \text{A}, V_{DS} = 10 \text{V}^*$	0.9	1.5		s
Input Capacitance	С	$- V_{DS} = 10V, V_{CS} = 0, \\ - f = 1MHz$	- 1	140	_	pF
Output Capacitance	Coss		—	70		pF
Reverse Transfer Capacitance	C - 3.8			20	—	pF
Turn-on Delay Time	tdi on i	$I_D = 1A, V_{CS} = 10V,$ $R_L = 30\Omega$		3		ns
Rise Time	t,		_	12		ns
Turn-off Delay Time	td(off)		-	50	_	ns
Fall Time	tf		_	30	_	ns
Body-Drain Diode Forward Voltage	VDF	$I_F = 2A, V_{CS} = 0$	-	0.9	_	v
Body-Drain Diode		$I_F=2A, V_{GS}=0,$	_	50	_	ns
Reverse Recovery Time	τ.,	$d_{1F}/dt = 50 \mathrm{A}/\mu \mathrm{s}$				

*Pulse Test

HITACHI/(OPTOELECTRONICS)

MAXIMUM SAFE OPERATION AREA

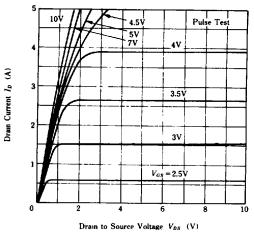
TYPICAL TRANSFER CHARACTERISTICS

 $V_{ps} = 10 \dot{V}$

Pulse Test

1

4


3

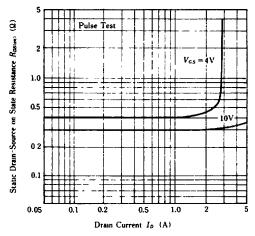
2

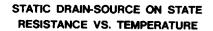
0

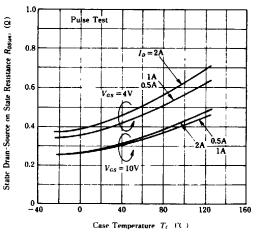
Drain Current In (A)

TYPICAL OUTPUT CHARACTERISTICS

DRAIN-SOURCE SATURATION VOLTAGE VS. GATE-SOURCE VOLTAGE

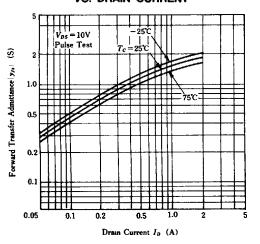

STATIC DRAIN-SOURCE ON STATE RESISTANCE VS. DRAIN CURRENT


2


Gate to Source Voltage V_{GS} (V)

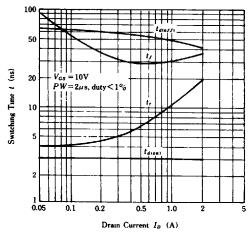
25°C

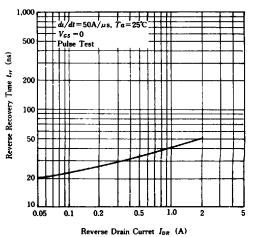
5



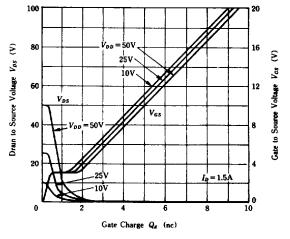
504

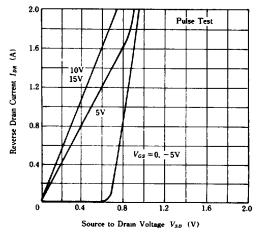
Powered by ICminer.com Electronic-Library Service CopyRight 2003


FORWARD TRANSFER ADMITTANCE VS. DRAIN CURRENT


HITACHI/(OPTOELECTRONICS.

TYPICAL CAPACITANCE **VS. DRAIN-SOURCE VOLTAGE** 1,000 $\frac{V_{LS}=0}{f=1MHz}$ 300 C ... 100 Capacitance C (pF) 30 Cm 10 3 1 0 10 20 30 40 50 Drain to Source Voltage VDS (V)


SWITCHING CHARACTERISTICS


FORWARD TRANSFER ADMITTANCE VS. FREQUENCY

DYNAMIC INPUT CHARACTERISTICS

505

Powered by ICminer.com Electronic-Library Service CopyRight 2003