

FAST SWITCHING N-CHANNEL SILICON POWER MOS FET INDUSTRIAL USE

FEATURES

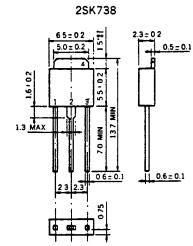
- Suitable for switching power supplies, actuater controls, and pulse circuits.
- Low R_{DS(on})
- No second breakdown
- 4 V Gate Drive Logic level -
- Designed for Hybrid Integrated Circuits

ABSOLUTE MAXIMUM RATINGS (T_a = 25 °C)

	-		
Drain to Source Voltage	V _{DSS}	30	v
Gate to Source Voltage	V _{GSS}	±20	v
Continuous Drain Current	D(DC)	±2.0	Α
Peak Drain Current	D(pulse)*	±8.0	Α
Total Power Dissipation	PT **	20	W
Total Power Dissipation at 25 °C Ambient Temperature	PT***	2.0	w
Channel Temperature	Tch	150	°C
Storage Temperature	T _{stg}	-55 to +150	°C
• PW ⊈ 300 µs, Duty Cycle ≦ 10 %			

** T_c = 25 °C

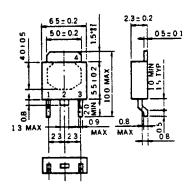
*** Mounted on ceramic substrate of 2.5 cm² x 0.7 mm

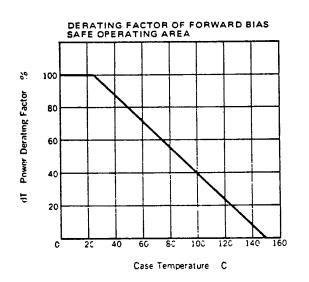

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

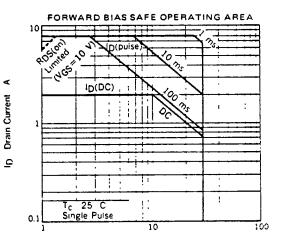
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS	
Drain Leakage Current	IDSS	-	• • • • •	10	- μΑ	V _{DS} = 30 V, V _{GS} = 0	
Gate to Source Leakage Current	IGSS			±100	nA	V _{GS} = ±20 V, V _{DS} = 0	
Gate to Source Cutoff Voltage	VGS(off)	1.0		2.5	v	V _{DS} = 10 V, I _D = 1 mA	
Forward Transfer Admittance	IV fs 1	1.0	•		S	V _{DS} = 10 V, 1 _D = 1 A	
Drain to Source On-State Resistance	R _{DS(on)}	····	0.1	0.17	Ω	V _{GS} = 10 V, I _D = 1 A	
Drain to Source On-State Resistance	RDS(on)		0.15	0.25	Ω	V _{GS} = 4 V, 1 _D = 0.8 A	
Input Capacitance	Ciss		550 pF		pF	— V _{DS} = 10 V, V _{GS} = 0 — f = 1 MH₂	
Output Capacitance	Coss	300		00 pF			
Reverse Transfer Capacitance	C _{rss}		150		pF		
Turn-On Delay Time	td(on)		10		ns	ID = 1 A, Vcc ≐ 15 V	
Rise Time	tr	t _r		20 ns		VGS(on) * 10 V	
Turn-Off Delay Time	td (off)			80 n	ns	—— R _L = 15 Ω —— R _{in} = 10 Ω	
Fall Time	t _f		20		ns		

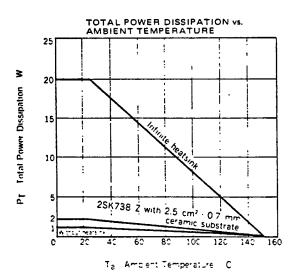
NEC cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

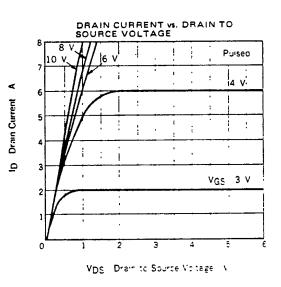
6427525 N E C ELECTRONICS INC 98D 18915 D T • 37 • 07 98 DE 6427525 0018915 5

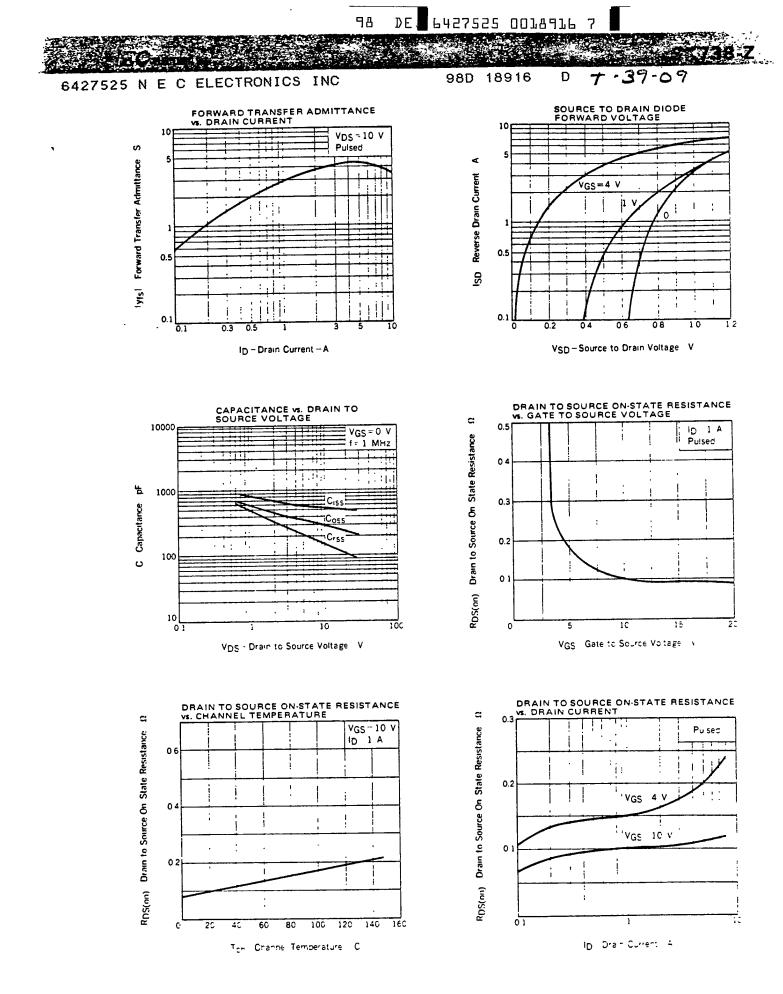

PACKAGE DIMENSIONS (Unit : mm)



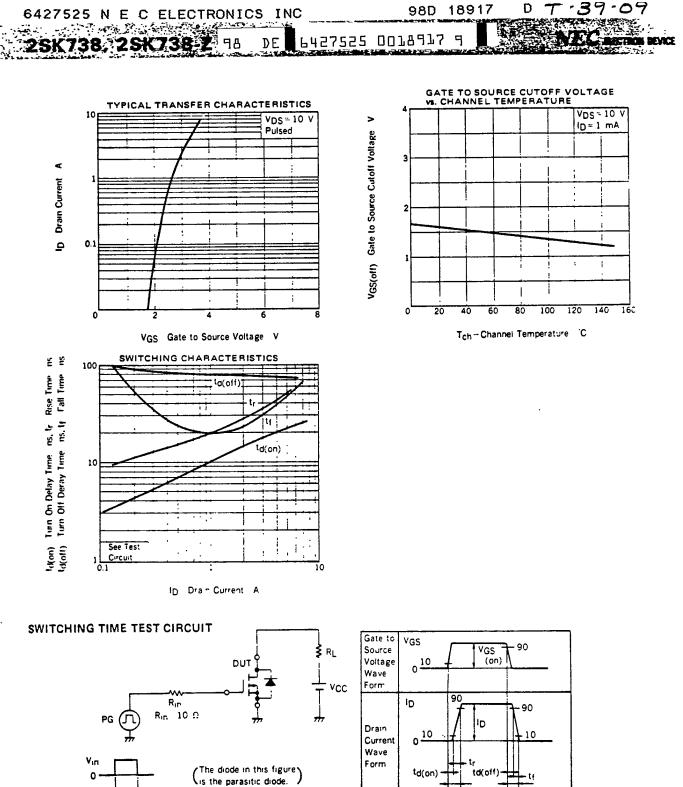



Ì

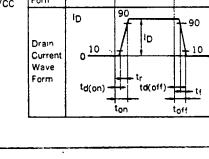




VDS Drain to Source Voltage V



2


Downloaded from Elcodis.com electronic components distributor

З

T=1 us Duty Cycle := 1

٥

.

*linear

-

TC-1816 November 1986M Printed in Japan

4