P-Channel 60-V (D-S) MOSFET

PRODUCT SUMMARY			
$\mathrm{V}_{\text {(BR) }{ }^{\text {dSS (min) }} \text { (}}(\mathrm{V})$	$\mathrm{R}_{\mathrm{DS}(\mathrm{on)} \text { (} \Omega \text {) }}$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}(\mathrm{V})$	$\mathrm{I}_{\mathrm{D}}(\mathrm{mA})$
-60	$4 \mathrm{at} \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}$	-1 to-3.0	-500

Ordering Information: Si1025X-T1-E3 (Lead (Pb)-free)
Si1025X-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES

- Halogen-free Option Available
- TrenchFET ${ }^{\circledR}$ Power MOSFETs
- High-Side Switching
- Low On-Resistance: 4Ω
- Low Threshold: - 2 V (typ.)
- Fast Switching Speed: 20 ns (typ.)
- Low Input Capacitance: 23 pF (typ.)
- Miniature Package
- Gate-Source ESD Protected: 2000 V

BENEFITS

- Ease in Driving Switches
- Low Offset Voltage
- Low-Voltage Operation
- High-Speed Circuits
- Easily Driven Without Buffer
- Small Board Area

APPLICATIONS

- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories, Transistors etc.
- Battery Operated Systems
- Power Supply Converter Circuits
- Solid State Relays

ABSOLUTE MAXIMUM RATINGS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Parameter		Symbol	5 s	Steady State	UnitV
Drain-Source Voltage		V_{DS}	-60		
Gate-Source Voltage		V_{GS}	± 20		
Continuous Drain Current ($\left.\mathrm{T}_{J}=150{ }^{\circ} \mathrm{C}\right)^{\text {a }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	I_{D}	-200	-190	mA
	$\mathrm{T}_{\text {A }}=85^{\circ} \mathrm{C}$		-145	-135	
Pulsed Drain Current ${ }^{\text {b }}$		I_{DM}	- 650		
Continuous Source Current (Diode Conduction) ${ }^{\text {a }}$		I_{s}	-450	- 380	
Maximum Power Dissipation ${ }^{\text {a }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	280	250	mW
	$\mathrm{T}_{\text {A }}=85^{\circ} \mathrm{C}$		145	130	
Operating Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	- 55 to 150		${ }^{\circ} \mathrm{C}$
Gate-Source ESD Rating (HBM, Method 3015)		ESD	2000		V

Notes:
a. Surface Mounted on FR4 board.
b. Pulse width limited by maximum junction temperature.

SPECIFICATIONS $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise noted

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Unit
Static						
Drain-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR)DSS }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$	-60			V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=-0.25 \mathrm{~mA}$	-1		-3.0	
Gate-Body Leakage	IGSS	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 10 \mathrm{~V}$			± 200	nA
		$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 5 \mathrm{~V}$			± 100	
Zero Gate Voltage Drain Current	I DSs	$\mathrm{V}_{\mathrm{DS}}=-50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			-25	
		$\mathrm{V}_{\text {DS }}=-50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$			-250	
On-State Drain Current ${ }^{\text {a }}$	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$	-50			mA
		$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$	-600			
Drain-Source On-Resistance ${ }^{\text {a }}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-25 \mathrm{~mA}$			8	Ω
		$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mathrm{~mA}$			4	
		$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			6	
Forward Transconductance ${ }^{\text {a }}$	g_{fs}	$V_{D S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}$		100		mS
Diode Forward Voltage ${ }^{\text {a }}$	$\mathrm{V}_{\text {SD }}$	$\mathrm{I}_{\mathrm{S}}=-200 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			-1.4	V

Dynamic ${ }^{\text {b }}$				
Total Gate Charge	Q_{g}	$\mathrm{V}_{\mathrm{DS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}} \cong-500 \mathrm{~mA}$	1.7	$n C$
Gate-Source Charge	Q_{gs}		0.26	
Gate-Drain Charge	Q_{gd}		0.46	
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\mathrm{V}_{\mathrm{DS}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	23	pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		10	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		5	
Switching ${ }^{\text {b, }}$ c				
Turn-On Time	t_{ON}	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=-25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{I}_{\mathrm{D}} \cong-165 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{GEN}}=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=10 \Omega \end{gathered}$	20	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		35	

Notes:
a. Pulse test; pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
b. For DESIGN AID ONLY, not subject to production testing.
c. Switching time is essentially independent of operating temperature.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

TYPICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Vishay Siliconix
TYPICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?71433.

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

