

MAS6282

This is preliminary information on a new product under development. Micro Analog Systems Oy reserves the right to make any

IC FOR 6.50 - 40.00 MHz VCTCXO

- Min. Supply Voltage 2.6 V
- Max. Frequency 40 MHz
- **True Sine Wave Output**
- **CMOS Output**
- Frequency Stability ±2.0 ppm
- Suitable for Ultra Small **VCTCXO**
- **Very Low Phase Noise**

DESCRIPTION

The MAS6282 is an integrated circuit well suited to VCTCXO for mobile communication. Temperature calibration is achieved in three calibration temperatures only. The trimming is done through a serial bus and the calibration information is stored in an internal PROM.

To build a VCTCXO only a crystal is required in addition to MAS6282. The compensation method is working continuously analog. generating any steps or other interference.

Output is either CMOS or a true sine wave resulting in lower harmonics than with clipped sine wave output.

FEATURES

- Very small size
- Minimum Vdd 2.6V
- No voltage reference capacitor needed
- Programmable VC-sensitivity
- Divider option selectable by a PROM bit
- Output waveform options: sine wave or CMOS
- Output peak voltage (amplitude) option selectable by a PROM bit in sine wave version

APPLICATIONS

- VCTCXO modules for mobile phones
- VCTCXO modules for other applications

BLOCK DIAGRAM

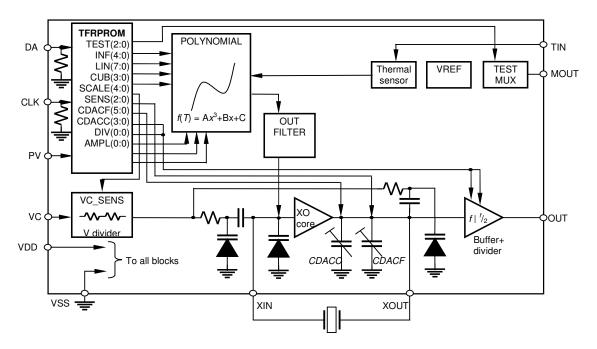


Figure 1. Block diagram of MAS6282.

PIN DESCRIPTION

Pin Description MAS6282A	Symbol	x-coordinate	y-coordinate
XO Input (crystal connection)	XIN	185	1229
Power Supply Voltage	VDD	436	1229
Serial Bus Data Input	DA	1071	1229
Serial Bus Clock Input	CLK	1342	1229
Buffered Output	OUT	1612	1229
Voltage Control Input	VC	209	152
XO Output (crystal connection)	XOUT	477	152
Temperature Input / Output	TIN	780	152
Programming Input	PV	1071	152
Test Multiplexer Output	MOUT	1335	152
Power Supply Ground	VSS	1612	152

Note: Because the substrate of the die is internally connected to VSS, the die has to be connected to VSS or left floating. Please make sure that VSS is the first pad to be bonded. Pick-and-place and all component assembly are recommended to be performed in ESD protected area.

Note: Pad coordinates are measured from the left bottom corner of the chip to the center of the pads. The coordinates may vary depending on sawing width and location, however, distances between pads are accurate. **Note:** Test Multiplexer Output is for testing only and must not be connected in an end user application.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit	Note
Supply Voltage	$V_{DD} - V_{SS}$	-0.3	6.0	V	
Input Voltage	V _{IN}	V _{SS} -0.3	$V_{DD} + 0.3$	V	1)
Power Dissipation	P _{MAX}		40	mW	2)
Storage Temperature	T _{ST}	- 55	150	°C	
Latchup Current Limit	I _{LUT}	±100		mA	

Note: Stresses beyond the values listed may cause a permanent damage to the device. The device may not operate under these conditions, but it will not be destroyed.

Note: This is a CMOS device and therefore it should be handled carefully to avoid any damage by static voltages (ESD).

Note 1: Not valid for programming pin PV

Note 2: Value depends on a thermal resistance of the used package.

RECOMMENDED OPERATION CONDITIONS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Note
Supply voltage	V_{DD}		2.6	2.8	5.3	V	
Operating temperature	T _{OP}		-40		+85	°C	
Crystal load capacitance	C _L			8		pF	1)
Crystal pulling sensitivity	S		18		30	ppm/pF	
Crystal Rs	Rs			20	50	Ω	

Note 1: CDACF = 32 and CDACC = 8

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Min	Тур	Max	Unit	Note
Crystal frequency range		f _c	13.00		40.00	MHz	1)
Output frequency range		f _o	6.50		40.00	MHz	1)
Voltage control range		V _C	0	1.3	V_{DD}	V	
Voltage control sensitivity (SEN	S=7)	V _{CSENS}		10		ppm/V	2)
Frequency vs. supply voltage		dfo			±0.2	ppm	3) 8)
Frequency vs. load change		df _o			±0.2	ppm	4) 8)
Frequency vs. supply voltage		df _o			±0.2	ppm	3) 9)
Frequency vs. load change		dfo			±0.2	ppm	4) 9)
Output voltage (10 kΩ 10 pF)		V _{out}	0.6	0.8/1.0		Vpp	5) 8)
Output voltage (10 kΩ 10 pF)		V _{out}			V_{DD}	Vpp	9)
Rise and Fall Time (10 – 15 pF)				3		ns	9)
Duty Cycle			45		55	%	9)
Power Consumption		Р			15	mW	7)
Harmonic Distortion				-25		dBc	8)
Supply current (Vdd = 2.8 V, f _c =26 MHz)		I_{DD}		1.8		mA	8)
Supply current (Vdd = 2.8 V, f _c =40 MHz)		I_{DD}		2.0		mA	8)
Supply current (Vdd = 2.8 V, f _c =26 MHz)		I_{DD}		TBD		mA	9)
Supply current (Vdd = 2.8 V, f _c =40 MHz)		I_{DD}		5.5		mA	9)
Compensation Range ±2.0 ppm		T _C	-30		85	°C	
Compensation Range ±2.5 ppm		T _C	-40		85	°C	
Compensation Range linear par	t	a1	-0.7		0.0	ppm/K	
Compensation Inflection Point	Compensation Inflection Point		20.5		36	°C	
Compensation Range Cubic Part		a3		95		ppm ² /K ³	
Amplitude Start up Time		T_{START}		2		ms	
@ 10Hz					-90		
@ 100)Hz	φ _n			-113	dBc/Hz	
Phase noise @ 1kl	Hz				-136		6)
@ 104	кHz				-148		
@ 100)kHz				-155		

Note 1: Frequency division by two is selected by PROM bit DIV: 0=no division, 1=div by 2. Thus IC output frequency range is 6.5 MHz – 40 MHz.

Note 2: Depending on a crystal pulling.

Note 3: $V_{DD} \pm 5\%$. DA must be high during measurement.

Note 4: $R_L = 10 \text{ k}\Omega \pm 10\%$, $C = 10 \text{ pF} \pm 10\%$. DA must be in high state during measurement.

Note 5: 0.8 V / 1.0 V output is selected by PROM bit AMPL: 0 = 0.8 Vpp, 1 = 1.0 Vpp, sine wave mode only.

Note 6: Not measured in production testing; guaranteed by design.

Note 7: Max power consumption is 15 mW when maximum V_{DD} is used.

Note 8: Sine wave output.

Note 9: CMOS output.

IC OUTLINE

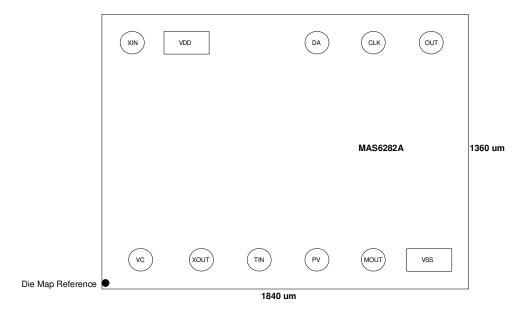


Figure 2. IC outline.

Note 1: MAS6282 pads are round with 80 μm diameter at opening, except both VDD and VSS are rectangular 180 x 80 μm .

Note 2: Pins CLK, DA and PV can either be connected to VSS or left floating, and pin TIN must be left floating in VCTCXO module end-user application.

Note 3: Die map reference is the actual left bottom corner of the sawn chip.

Note 4: See coordinates in pin description on page 2.

SAMPLES IN SBDIL 20 PACKAGE

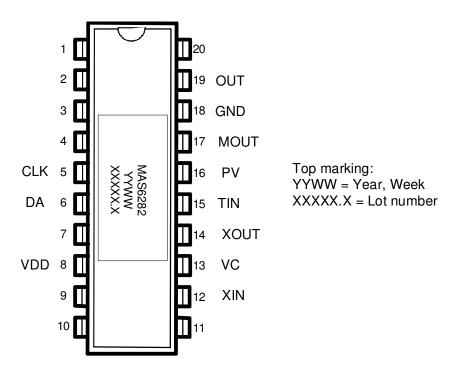


Figure 14. MAS6282 package.

ORDERING INFORMATION

Product Code	Product	Package	Comments
MAS6282AA1WA900	IC for 6.5MHz to 40MHz VCTCXO, sine wave output	EWS tested wafers 215 μm	Die Size 1.840 x 1.380 mm
MAS6282AB1WA900	IC for 6.5MHz to 40MHz VCTCXO, CMOS output	EWS tested wafers 215 µm	Die Size 1.840 x 1.380 mm

Contact Micro Analog Systems Oy for other wafer thickness options.

♦ The formation of product code

Product name	Design version	Package type	Delivery format
MAS6282	AA1 = sine wave output	WA9 = 215 µm thick EWS tested wafer	00 = bare wafer
	AB1 = CMOS output		

LOCAL DISTRIBUTOR					

MICRO ANALOG SYSTEMS OY CONTACTS

Micro Analog Systems Oy	Tel. (09) 80 521
Kamreerintie 2, P.O. Box 51	Tel. Int. +358 9 80 521
FIN-02771 Espoo, FINLAND	Telefax +358 9 805 3213
http://www.mas-ov.com	Email: info@mas-oy.com

NOTICE

Micro Analog Systems Oy reserves the right to make changes to the products contained in this data sheet in order to improve the design or performance and to supply the best possible products. Micro Analog Systems Oy assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights unless otherwise specified in this data sheet, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Micro Analog Systems Oy makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification.