International **IOR** Rectifier

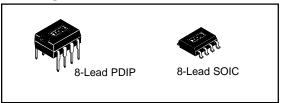
Data Sheet No. PD60193

IR21093(S)

Features

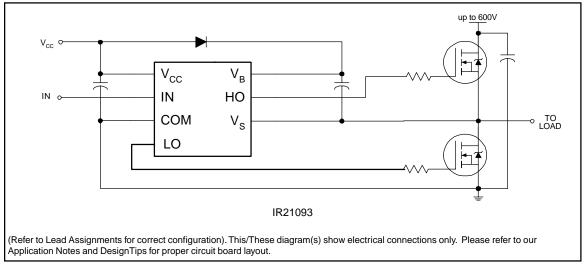
- Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout for both channels
- 3.3V, 5V and 15V input logic compatible
- Cross-conduction prevention logic
- Matched propagation delay for both channels
 High side output in phase with IN input
- High side output in phase with IN input
 Logic and power ground +/- 5V offset
- Logic and power ground +/- 5
 Internal 540ns dead-time
- Lower di/dt gate driver for better noise immunity

Description


The IR21093(S) are high voltage, high speed power MOSFET and IGBT drivers with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high

HALF-BRIDGE DRIVER

Product Summary


00V max.
0 mA / 250 mA
10 - 20V
750 & 200 ns
540 ns

Packages

pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.

Typical Connection

www.irf.com

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Min.	Max.	Units		
VB	High side floating absolute voltage		-0.3	625			
Vs	High side floating supply offset voltage		V _B - 25	V _B + 0.3			
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3	v		
V _{CC}	Low side and logic fixed supply voltage		-0.3	25			
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3			
VIN	Logic input voltage		V _{SS} - 0.3	V _{CC} + 0.3			
dV _S /dt	Allowable offset supply voltage transient		_	50	V/ns		
PD	Package power dissipation @ $T_A \le +25^{\circ}C$	(8 Lead PDIP)	—	1.0			
		(8 Lead SOIC)		0.625	W		
RthJA	Thermal resistance, junction to ambient	(8 Lead PDIP)	—	125			
		(8 Lead SOIC)	_	200	°C/W		
TJ	Junction temperature		—	150			
Τ _S	Storage temperature		-50	150	°C		
TL	Lead temperature (soldering, 10 seconds)		_	300			

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

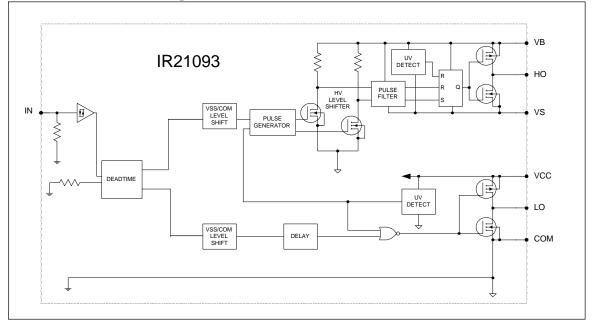
Symbol	Definition	Min.	Max.	Units
VB	High side floating supply absolute voltage	V _S + 10	V _S + 20	
VS	High side floating supply offset voltage	Note 1	600	
V _{HO}	High side floating output voltage	VS	VB	
V _{CC}	Low side and logic fixed supply voltage	10	20	V
V _{LO}	Low side output voltage	0	V _{CC}	
VIN	Logic input voltage	Vss	Vcc	
T _A	Ambient temperature	-40	125	°C

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15V, C_L = 1000 pF, and T_A = 25°C, unless otherwise specified.

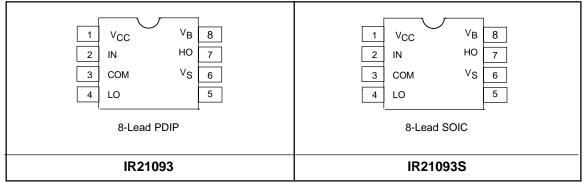
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	750	950		$V_{S} = 0V$
toff	Turn-off propagation delay	-	200	280		$V_{S} = 0V \text{ or } 600V$
MT	Delay matching, HS & LS turn-on/off	_	0	70		
tr	Turn-on rise time	_	150	220		$V_{S} = 0V$
tf	Turn-off fall time	_	50	80	nsec	$V_{S} = 0V$
DT	Deadtime: LO turn-off to HO turn-on(DTLO-HO) &					
	HO turn-off to LO turn-on (DTHO-LO)	400	540	680		
MDT	Deadtime matching = DTLO - HO - DTHO-LO	_	0	60		

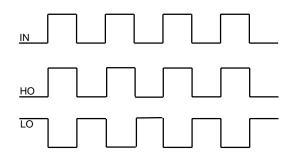

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IL} , V_{IH} and I_{IN} parameters are referenced to COM and are applicable to the respective input leads. The V_O , I_O and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic "1" input voltage for HO & logic "0" for LO	2.9	_	_		$V_{CC} = 10V$ to 20V
VIL	Logic "0" input voltage for HO & logic "1" for LO	_	_	0.8	v	$V_{CC} = 10V$ to 20V
V _{OH}	High level output voltage, V _{BIAS} - V _O	_	0.8	1.4	v	I _O = 20 mA
V _{OL}	Low level output voltage, VO	—	0.3	0.6		I _O = 20 mA
I _{LK}	Offset supply leakage current	_	_	50		$V_{B} = V_{S} = 600V$
I _{QBS}	Quiescent VBS supply current	20	60	150	μA	V _{IN} = 0V or 5V
IQCC	Quiescent V _{CC} supply current	0.4	1.0	1.6	mA	$V_{IN} = 0V \text{ or } 5V$
						RDT = 0
I _{IN+}	Logic "1" input bias current	_	5	20	μA	IN = 5V, SD = 0V
I _{IN-}	Logic "0" input bias current	—	1	2	μΛ	IN = 0V, SD = 5V
V _{CCUV+}	$V_{\mbox{CC}}$ and $V_{\mbox{BS}}$ supply undervoltage positive going	8.0	8.9	9.8		
V _{BSUV+}	threshold					
VCCUV-	$V_{\mbox{CC}}$ and $V_{\mbox{BS}}$ supply undervoltage negative going	7.4	8.2	9.0	V	
VBSUV-	threshold					
V _{ССUVН}	Hysteresis	0.3	0.7	_		
VBSUVH						
I _{O+}	Output high short circuit pulsed vurrent	120	200		mA	V_O = 0V, PW \leq 10 μ s
IO-	Output low short circuit pulsed current	250	350	_		V_{O} = 15V,PW \leq 10 μ s

www.irf.com


Functional Block Diagrams



Lead Definitions

Symbol	Description
IN	Logic input for high and low side gate driver outputs (HO and LO), in phase with HO (referenced to COM)
VB	High side floating supply
HO	High side gate drive output
VS	High side floating supply return
V _{CC}	Low side and logic fixed supply
LO	Low side gate drive output
СОМ	Low side return

Lead Assignments

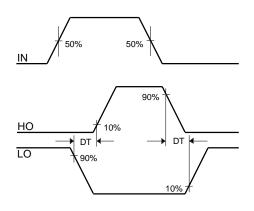


Figure 3. Deadtime Waveform Definitions

 $\frac{IN(LO)}{IN(HO)}$ $\frac{1}{t_{on}}$ $\frac{t_{r}}{10\%}$ $\frac{t_{r}}{10\%}$ $\frac{t_{r}}{10\%}$

Figure 2. Switching Time Waveform Definitions

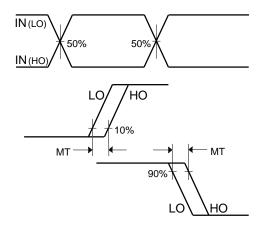
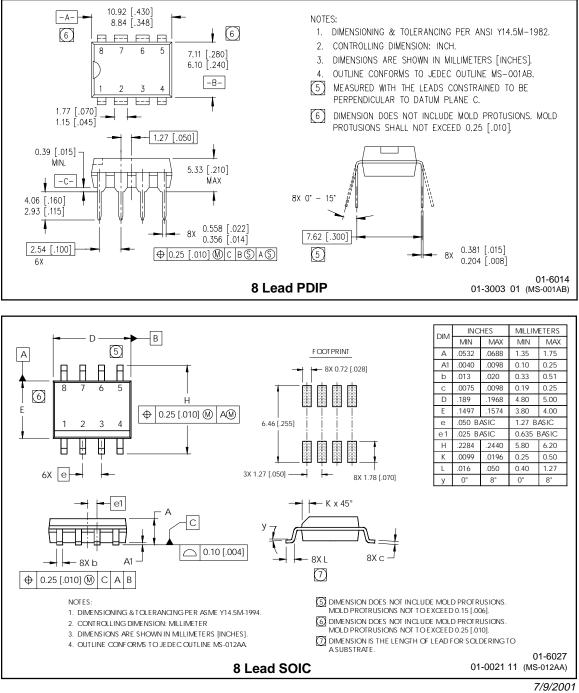



Figure 4. Delay Matching Waveform Definitions

www.irf.com

Case Outlines

6