

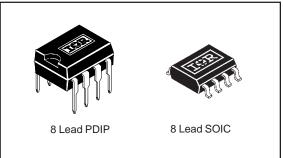
Preliminary Data Sheet No. PD60132I

IR21541

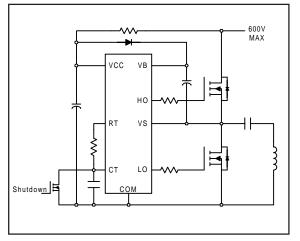
SELF-OSCILLATING HALF-BRIDGE DRIVER

Features

- Integrated 600V half-bridge gate driver
- 15.6V zener clamp on Vcc
- True micropower start up
- Tighter initial deadtime control
- Low temperature coefficient deadtime
- Shutdown feature (1/6th Vcc) on C_T pin
- Increased undervoltage lockout Hysteresis (1V)
- Lower power level-shifting circuit
- Constant LO, HO pulse widths at startup
- Lower di/dt gate driver for better noise immunity
- High side output in phase with RT
- Excellent latch immunity on all inputs and outputs
- ESD protection on all leads


Description

The IR21541 is an improved version of the popular IR2152 gate driver IC, and incorporates a high voltage half-bridge gate driver with a front end oscillator similar to the industry standard CMOS 555 timer. The IR21541 provides more functionality and is easier to use than previous ICs. A shutdown feature has been designed into the CT pin, so that both gate driver outputs can be disabled using a low voltage control signal. In addition, the gate driver output pulse widths are the same once the rising undervoltage lockout threshold on V_{CC} has been reached, resulting in a more stable profile of frequency vs time at startup. Noise immunity has been improved significantly, both by lowering the peak di/dt of the gate drivers, and by increasing the undervoltage lockout hysteresis to 1V. Finally, special attention has been payed to maximizing the latch immunity of the device, and providing comprehensive ESD protection on all pins.


Product Summary

Voffset	600V max.
Duty Cycle	50%
T _r /Tp	80/40ns
V _{clamp}	15.6V
Deadtime (typ.)	0.6 µs

Packages

Typical Connection

Absolute Maximum Ratings

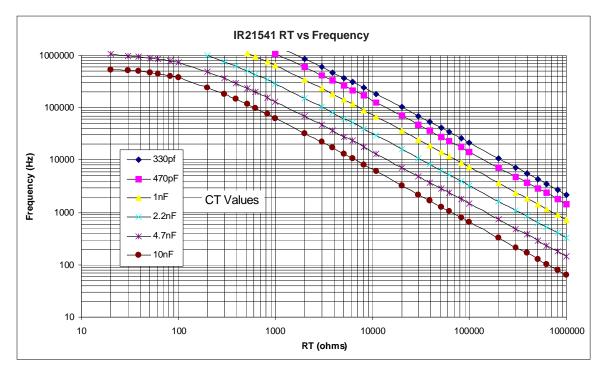
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
VB	High side floating supply voltage	-0.3	625		
Vs	High side floating supply offset voltage		V _B - 25	V _B + 0.3	
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3	
VLO	Low side output voltage		-0.3	V _{CC} + 0.3	V
VRT	R _T pin voltage		-0.3	V _{CC} + 0.3	
V _{CT}	C _T pin voltage		-0.3	V _{CC} + 0.3	
I _{CC}	Supply current (note 1)		—	25	mA
I _{RT}	R _T pin current		-5	5	
dV _s /dt	Allowable offset voltage slew rate		-50	50	V/ns
PD	Maximum power dissipation @ $T_A \le +25^{\circ}C$	(8 Lead DIP)	_	1.0	w
		(8 Lead SOIC)	—	0.625	vv
Rth _{JA}	Thermal resistance, junction to ambient (8 Lead DIP)		_	125	°C/W
		(8 Lead SOIC)	—	200	·C/vv
TJ	Junction temperature		-55	150	
TS	Storage temperature	-55	150	°C	
ΤL	Lead temperature (soldering, 10 seconds)		—	300	

Recommended Operating Conditions

For proper operation the device should be used within the recommended conditions.

Symbol	Definition	Min.	Max.	Units
V _{BS}	High side floating supply voltage	V _{CC} - 0.7	V _{CLAMP}	
Vs	Steady state high side floating supply offset voltage	-3.0 (note 2)	600	V
V _{CC}	Supply voltage	10	VCLAMP	
ICC	Supply current	(note 3)	5	mA
ТJ	Junction temperature	-40	125	°C


Note 1: This IC contains a zener clamp structure between the chip V_{CC} and COM which has a nominal breakdown voltage of 15.6V. Please note that this supply pin should not be driven by a DC, low impedance power source greater than the V_{CLAMP} specified in the Electrical Characteristics section.

Note 2: Care should be taken to avoid output switching conditions where the V_S node flies inductively below ground by more than 5V.

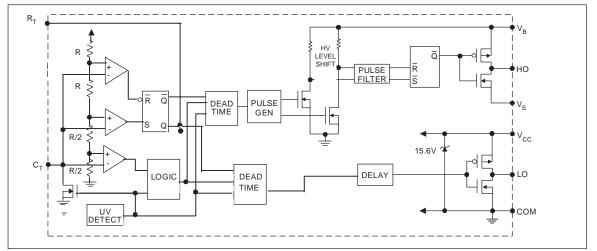
Note 3: Enough current should br supplied to the V_{CC} pin of the IC to keep the internal 15.6V zener diode clamping the voltage at this pin.

Recommended Component Values

Symbol	Component	Min.	Max.	Units
RT	Timing resistor value	10	—	kΩ
CT	C _T pin capacitor value	330	—	pF

Electrical Characteristics

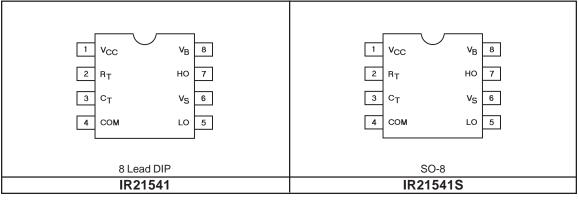
 V_{BIAS} (V_{CC}, V_{BS}) = 12V, C_L = 1000 pF, C_T = 1 nF and T_A = 25°C unless otherwise specified. The V_{IN}, V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

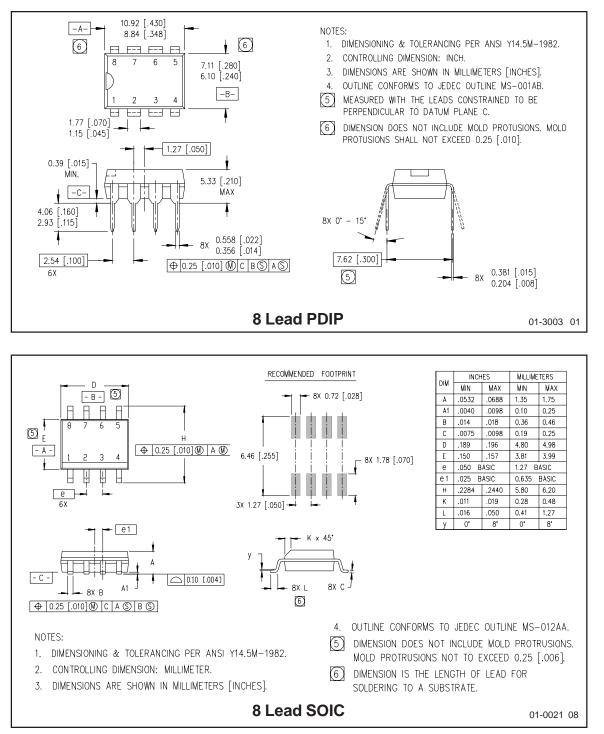

Low Voltage Supply Characteristics						
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{CCUV+}	Rising V _{CC} undervoltage lockout threshold	8.1	9.0	9.9		
VCCUV-	Falling V _{CC} undervoltage lockout threshold	7.2	8.0	8.8	V	
VCCUVH	V _{CC} undervoltage lockout Hysteresis	0.5	1.0	1.5		
IQCCUV	Micropower startup V _{CC} supply current	—	75	150	μA	$V_{CC} \leq V_{CCUV}$
lacc	Quiescent V _{CC} supply current	—	500	950	μΛ	
VCLAMP	V _{CC} zener clamp voltage	14.4	15.6	16.8	V	$I_{CC} = 5mA$

International **10** Rectifier

Electrical Characteristics (cont.)

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
IQBSUV	Micropower startup V _{BS} supply current		0	10		V _{CC} ≤ V _{CCUV} -
I _{QBS}	Quiescent VBS supply current	_	30	50	μΑ	
VBSMIN	Minimum required V _{BS} voltage for proper	_	4.0	5.0	V	V _{CC} =V _{CCUV+} + 0.1
	functionality from R _T to HO					
ILK	Offset supply leakage current	-	—	50	μΑ	$V_B = V_S = 600V$
Oscillat	or I/O Characteristics	·				
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
f _{osc}	Oscillator frequency	19.4	20	20.6	kHz	R _T = 36.9kΩ
000		94	100	106		RT = 7.43kΩ
d	RT pin duty cycle	48	50	52	%	fo < 100kHz
Іст	CT pin current		0.001	1.0	uA	
Істиу	UV-mode CT pin pulldown current	0.30	0.70	1.2	mA	$V_{CC} = 7V$
VCT+	Upper CT ramp voltage threshold	—	8.0	—		
√ст-	Lower CT ramp voltage threshold	—	4.0	—	V	
VCTSD	CT voltage shutdown threshold	1.8	2.1	2.4	Ť	
V _{RT+}	High-level RT output voltage, VCC - VRT	—	10	50		I _{RT} = 100μA
		-	100	300		I _{RT} = 1mA
VRT-	Low-level RT output voltage	—	10	50	Ī	I _{RT} = 100μA
		-	100	300	mV	I _{RT} = 1mA
Vrtuv	UV-mode RT output voltage	—	0	100		VCC ≤ VCCUV-
Vrtsd	SD-Mode RT output voltage, VCC - VRT	—	10	50	1	I _{RT} = 100μA, V _{CT} = 0V
		_	10	300		$I_{RT} = 1mA,$ $V_{CT} = 0V$
Gate Dr	iver Output Characteristics			1	1	
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{OH}	High level output voltage, VBIAS -VO	_	0	100		I _O = OA
VOL	Low-level output voltage, VO		0	100		I _O = OA
VOL_UV	UV-mode output voltage, VO	_	0	100	mV	I _O = OA
						V _{CC} ≤ V _{CCUV} -
tr	Output rise time	<u> </u>	80	150		
tf	Output fall time	- 1	45	100	nsec	
t _{sd}	Shutdown propogation delay	-	660	- 1	1	
td	Output deadtime (HO or LO)	0.35	0.60	0.85	μsec	


Functional Block Diagram


Lead Definitions

Symbol	Description
V _{CC}	Logic and internal gate drive supply voltage
RT	Oscillator timing resistor input
CT	Oscillator timing capacitor input
COM	IC power and signal ground
LO	Low side gate driver output
Vs	High voltage floating supply return
НО	High side gate driver output
VB	High side gate driver floating supply

Lead Assignments

International

6

International

IR21541

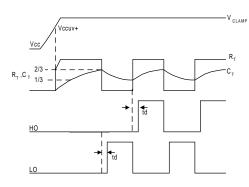


Figure 1. Input/Output Timing Diagram

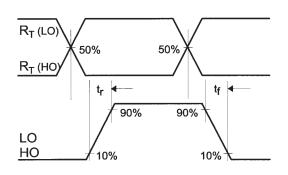


Figure 3. Deadtime Waveform Definitions

International

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T 3Z2 Tel: (905) 453-2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: 65 838 4630 IR TAIWAN: 16 Fl. Suite D..207, Sec.2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 3/1/99