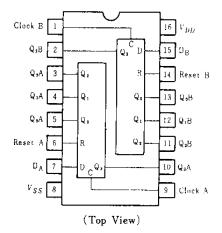
HD14015B

Dual 4-bit Static Shift Register

The HD14015B dual 4-bit static shift register consists of two identical, independent 4-state serial-input/parallel-output registers. Each register has independent Clock and Reset inputs with a single serial Data input. The register states are type D master-slave flipflops. Data is shifted from one stage to the next during the positive-going clock transition. Each register can be cleared when a high level is applied on the Reset line.

FEATURES


Reset Input Buffer

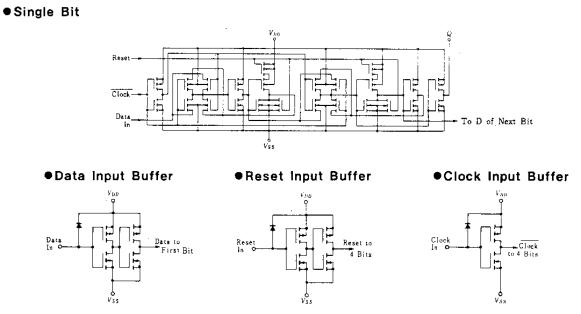
CIRCUIT SCHEMATIC

Quiescent Current = 5nA/pkg typ @5V Supply Voltage Range = 3 to 18V High Fanout > 50 Input Impedance = $10^{12} \Omega$ typ. Low Input Capacitance = 5pF typ. Toggle Rate = 6MHz @10V Capable of Driving One Low-power Schottky TTL Load Over the Rated Temperature Range

Data Input Buffer Clock Input Buffer Control Deter Clock Input Buffer Clock Input

PIN ARRANGEMENT

TRUTH TABLE • Clocked Operation(Synchronous)

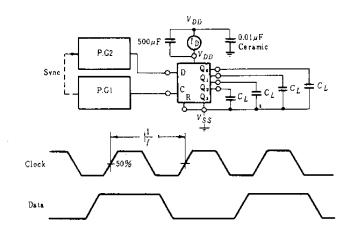

	•	•••••
D	Qn	Q n+1
0	0	0
0	1	0
1	0	1
1	1	1

Note) $Q_{n+1} = Dn$, Reset = 0

Direct Operation(Asynchronous)

Reset	Q
0	Q
1	0

Note) Clock=D=Don't Care

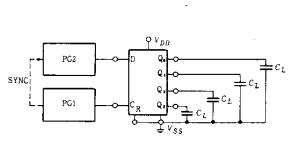


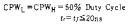
	S			-40°C		25° C			85 ℃		
Characteristic	Symbol	$V_{DD}(\mathbf{V})$	Test Conditions	min	max	min	typ	max	min	max	Unit
Output Voltage	Vol	5.0	$V_{in} = V_{DD}$ or 0	-	0.05	_	0	0.05		0.05	v
		10		-	0.05	· - ·	0	0.05	_	0.05	
		15			0.05	-	0	0.05	-	0.05	
		5.0	$V_{in} = 0$ or V_{DD}	4.95		4.95	5.0	-	4.95	—	
	Voн	10		9.95		9.95	10	-	9.95	_	v
		15		14.95		14.95	15		14.95	-	
- 6	1	5.0	$V_{out} = 4.5 \text{ or } 0.5 \text{V}$		1.5	_	2.25	1.5	-	1.5	v
	ViL	10	$V_{aul} = 9.0 \text{ or } 1.0 \text{V}$	-	3.0	-	4.50	3.0	-	3.0	
1 . 17 1/		15	$V_{vut} = 13.5 \text{ or } 1.5 \text{V}$		4.0	-	6.75	4.0	_	4.0	
Input Voltage		5.0	$V_{out} = 0.5$ or $4.5V$	3.5	_	3.5	2.75		3.5	-	v
	Vin	10	$V_{out} = 1.0 \text{ or } 9.0 \text{V}$	7.0	_	7.0	5.50	_	7.0	-	
	-	15	$V_{out} = 1.5 \text{ or } 13.5 \text{V}$	11.0	_	11.0	8.25	—	11.0	-	
	Іон	5.0	$V_{OH} = 2.5 \text{ V}$	-1.0	_	-0.8	-1.7		-0.6	-]	mA
		5.0	$V_{OH} = 4.6 \text{ V}$	-0.2		-0.16	-0.36	—	-0.12	-	
Output Drive Current		10	$V_{OH} = 9.5 V$	-0.5		-0.4	-0.9	_	-0.3	_	
		15	$V_{OH} = 13.5 \mathrm{V}$	-1.4	_	-1.2	-3.5	_	-1.0	-	
	Ιοι	5.0	$V_{OL} = 0.4 \text{ V}$	0.52	_	0.44	0.88	_	0.36	_	mA
		10	$V_{OL} = 0.5 V$	1.3	-	1.1	2.25	. —	0.9	-	
		15	$V_{0L} = 1.5 V$	3.6	_	3.0	8.8	_	2.4	_	
Input Current	Iin	15		-	= 0.3	-	±0.00001	± 0.3	-	±1.0	μ.
Input Capacitance	Cin	-	$V_{in} = 0$	-	—		5.0	7.5	-	_	P
Quiescent Current	IDD	5.0	Zero Signal, per Package	-	20		0.005	20		150	μA
		10		_	40	-	0.010	40	· -	300	
		15		_	80		0.015	80		600	
	IT	5.0	Dynamic + I_{0D} , $C_L = 50 \text{pF}$		_	_	1.2	_		-	
Total Supply Current*		10	$f = 1 \mathrm{kHz},$		—		- 2.4				μA
		15	per Gate		- I	_	3.6				

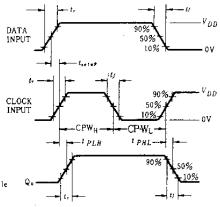
ELECTRICAL CHARACTERISTICS

* To calculate total supply current at frequency other than 1kHz.

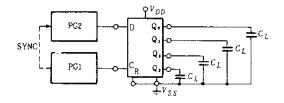
•POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

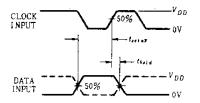


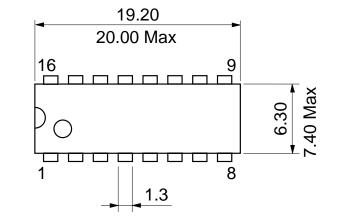



Characteristic		Symbol	$V_{DD}(\mathbf{V})$	min	typ	max	Unit	
Output Rise Time			5.0	_	180	400	ns	
		t r	10	_	90	200		
			15	-	65	160		
			5.0	_	170	250		
Output Fall Time		ts	10		70	150	ns	
		-	15	_	50	80		
	Clock,		5.0		310	1000	ns	
	Data		10	—	125	400		
Propagation Delay	Data	tрiн,	15	_	90	265		
Time		1PHI.	5.0	_	460	1000		
	Reset		10	_	180	400		
			15	-	120	265		
Clock Pulse Width		PWc	5.0	500	185	_	ns	
			10	200	85			
			15	150	55	_	-	
Clock Pulse Frequency			5.0	<u> </u>	2.0	1.0		
		PRF		—	6.0	2.5	MHz	
			15	_	7.5	3.0	-	
Clock Pulse Rise and Fall Time				_		15		
		e tr, tj	10	-	_	15	μs	
			15		_	15		
Reset Pulse Width			5.0	500	200	_]	
		PW_R		200	80		ns	
		 	15	150	60	_	_	
Setup Time			5.0	500	100			
		lsetup	10	100	50		ns	
			15	75	40	_	1	

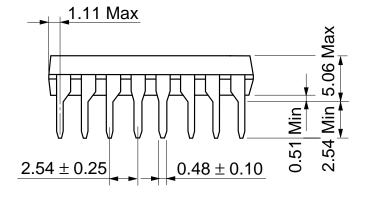
SWITCHING CHARACTERISTICS ($C_L = 50 \text{pF}, Ta = 25^{\circ}\text{C}$)

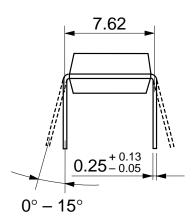

SWITCHING TIME TEST CIRCUIT



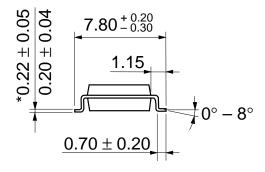


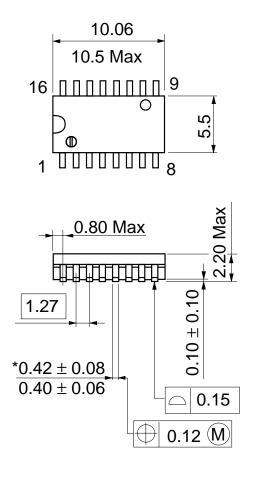
•Setup and Hold Time Test Circuit and Waveforms



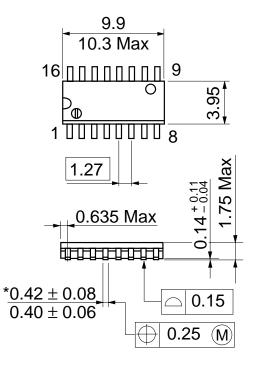


Unit: mm

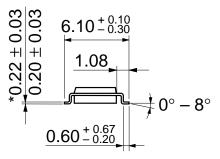



Hitachi Code	DP-16
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	1.07 g

Unit: mm

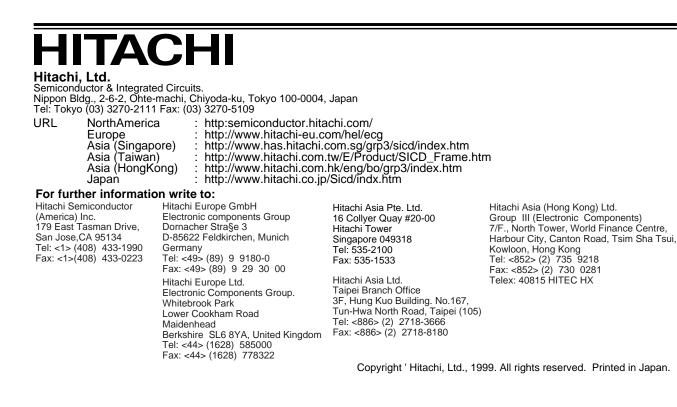


Hitachi Code	FP-16DA			
JEDEC				
EIAJ	Conforms			
Weight (reference value)	0.24 g			


*Dimension including the plating thickness Base material dimension

Unit: mm

*Dimension including the plating thickness Base material dimension



Hitachi Code	FP-16DN
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	0.15 g

Cautions

- Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI