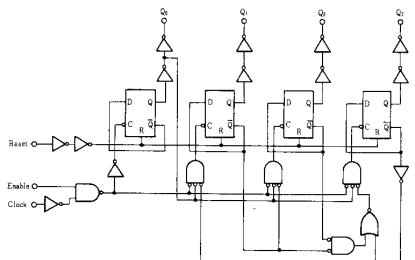
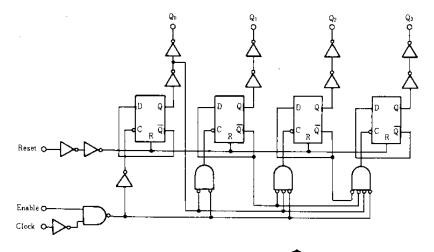
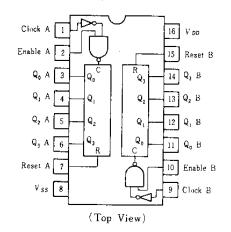
HD14518B, HD14520B


The HD14518B dual BCD counter and the HD14520B dual binary counter consist of two identical, independent, internally synchronous 4-stage counters. The counter stages are type D flipflops, with interchangeable Clock and Enable lines for incrementing on either the positive-going or negative-going transition as required when cascading multiple stages. Each counter can be cleared by applying a high level on the Reset line. In addition, the HD14518B will count out of all undefined states within two clock periods. These complementary MOS up counters find primary use in multi-stage synchronous or ripple counting applications requiring low power dissipation and/or high noise immunity.

FEATURES


- Quiescent Current = 5nA/pkg typ. @5V
- Supply Voltage Range = 3 to 18V
- Internally Synchronous for High Internal and External Speeds
- Logic Edge-clocked Design ... Incremented on Positive Transition of Clock or Negative Transition of Enable
- 6MHz Counting Rate
- Capable of Driving One Low-power Schottky TTL Load Over the Rated Temperature Range

LOGIC DIAGRAM


•HD14518B (1/2)

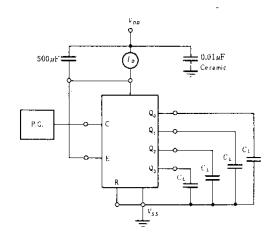
•HD14520B (1/2)

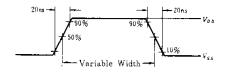
PIN ARRANGEMENT

TRUTH TABLE

Clock	Enable	Reset	Action		
	1	0	Increment Counter		
0		0	Increment Counter		
	×	0	No Change		
×		0	No Change		
\square	0	0	No Change		
1		0	No Change		
×	×	1	$Q_0 \sim Q_3 = 0$		

x=Don't Care

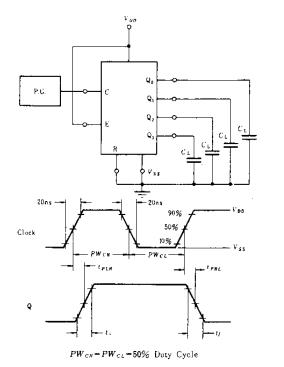

Characterist	Symbol	The Children Here		-40°C		ĺ	25°C			85° C	
Characteristic Sy		$V_{DD}(V_{\cdot})$	(V.) Test Conditions		max	min	typ	max	min	max	Unit
		5.0		. –	0.05	_	0	0.05	_ !	0.05	v
	. Vol	10	$V_{in} = V_{DD}$ or 0	-	0.05	_	0	0.05	_	0.05	
Outwet Maltana E		15		_	0.05	_	· 0	0.05		0.05	
Output Voltage 圧		5.0		4.95	_	4.95	5.0		4.95	—	v
	V _{OH}	10	$V_{in}=0$ or V_{DD}	9.95	-	9.95	10	-	9.95		
		15	5		—	14.95	15	_	14.95	_	
	1	5.0	$V_{out} = 4.5 \text{ or } 0.5 \text{V}$	_	1.5	-	2.25	1.5	-	1.5	1
· •	Vit	10	10 Vout = 9.0 or 1.0V		3.0	_	4.50	3.0	-	3.0	v
1 . 17 l.		15 Vout=13.5V or 1.5V		-	4.0	-	6.75	4.0	—	4.0	
Input Voltage		5.0	5.0 $V_{out} = 0.5 \text{ or } 4.5 \text{V}$			3.5	2.75	-	3.5	_	
	VIH	10	10 $V_{out} = 1.0 \text{ or } 9.0 \text{V}$		_	7.0	5.50	_	7.0	_	v
		15	Vout = 1.5 or 13.5V	11.0	-	11.0	8.25	—	11.0	—	-
Output Drive Current		5.0	$V_{OH} = 2.5 V$	-1.0	—	-0.8	-1.7	-	-0.6	_	mA
	Іон	5.0	$V_{OH} = 4.6 V$	-0.2	—	-0.16	-0.36	—	-0.12	—	
		10	$V_{OH} = 9.5 V$	-0.5	-	-0.4	0,9	_	-0.3	—	
		15	$V_{OH} = 13.5 V$	-1.4	· —	-1.2	-3.5	_	-1.0		
	I oL	5.0	$V_{ol} = 0.4 V$	0.52		0.44	0.88	—	0.36	—	
		10 $V_{OL} = 0.5 V$		1.3	—	I.1	2.25	—	0.9		mA
		15	5 $V_{ot} = 1.5 V$		-	3.0	8.8	—	2.4		
Input Current	I_{in}	15		-	±0.3	—	±0.00001	± 0.3	-	± 1.0	μ
Input Capacitance	Cin		$V_{in} = 0$	-	-	-	5.0	7.5	— .		pl
Quiescent Current		5.0	7	_	20	_	0.005	20	-	150	μA
		10	Zero Signal,	-	40		0.010	40		300	
		15	per Package		80		0.015	80		600	
		5.0	Dynamic $+I_{DD}$,	_	_	-	0.6	i —	-		μA
Total Supply Current*	Ir	10	per Gate		-		1,2	-	-	_	
		15	$C_{\ell} = 50 \mathrm{pF}, f = 1 \mathrm{kHz}$	_	_	_	1.7	_		_	

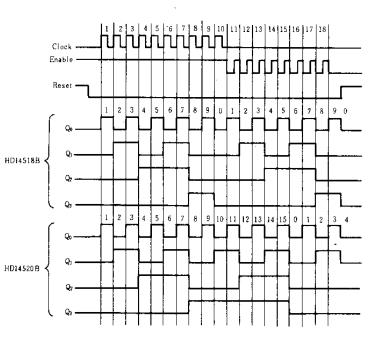

■ ELECTRICAL CHARACTERISTICS

* To calculate total supply current at frequency other than 1kHz.

 $@V_{DD} = 5.0V I_{T} = (0.6 \mu A/kHz) f + I_{DD}, \quad @V_{DD} = 10V I_{T} = (1.2 \mu A/kHz) f + I_{DD}, \quad @V_{DD} = 15V I_{T} = (1.7 \mu A/kHz) f + I_{DD}, \quad @V_{DD} = (1.7 \mu A/kHz) f + I_{DD}, \quad @V_{DD} = (1.7 \mu A/kHz) f + I_{DD}, \quad @V_{DD} = (1.7 \mu A/kHz) f + I_{DD}, \quad @V_{DD} = (1.7 \mu A/kHz) f + I_{DD}, \quad @V_{DD} = (1.7 \mu A/kHz) f + I_{DD}, \quad @V_{DD} = (1.7 \mu A/kHz) f + I_{DD}, \quad @V_{DD} = (1.7 \mu A/kHz) f + I_{DD}, \quad @V_{DD} = (1.7 \mu A/kHz) f + I_{DD}, \quad @V_{DD} = (1.7 \mu A/kHz) f + I_{DD}, \quad$

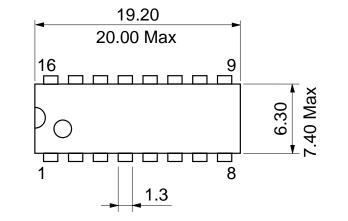
POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

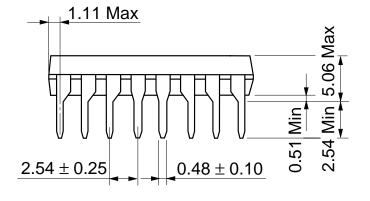


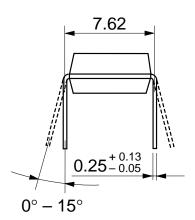

Characterist	ic	Symbol	$V_{DD}(\mathbf{V})$	min	typ	max	· Unit	
Output Rise Time		l.r	5.0		180	360	nš	
			10	_	90	180		
			15	-	65	130		
Output Fall Time.		t _f	5.0		130	250	ns	
			10		50	100		
			15	_	40	80		
	Clock		5.0	_	280	560	ns	
			10		115	230		
Propagation Delay Time		t PLH.	15		80	160		
r ropagation Delay Time	Reset		5.0		440	800		
		t phl	10		160	300		
			15	_	110	220		
Clock Pulse Width		PW _{CH} , PW _{CL}	5.0	200	100	_	ns	
			10	100	50			
			15	70	35			
Clock Frequency		PRF	5.0	—	5.0	2.5	MHz	
			10	—	10.0	5.0		
			15	_	15.0	7.5	1	
Clock Pulse or Enable Rise and Fall Time		tr, ty	5.0	_	_	15	μs	
			10	_	_	15		
			15	—	—	15]	
Enable Pulse Width		PWe	5.0	440	220	_	ns	
			10	200	100	—		
			15	140	70	-	-	
Reset Pulse Width			5.0	250	125	-		
		PW _R	10	110	55	_	ns	
			15	80	40	_		

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}, Ta = 25^{\circ}\text{C}$)

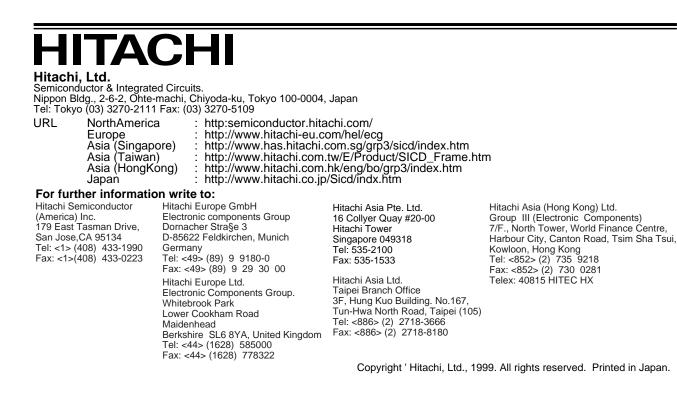
SWITCHING TIME TEST CIRCUIT


TIMIG DIAGRAM




© НІТАСНІ

Unit: mm



Hitachi Code	DP-16
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	1.07 g

Cautions

- Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI