

Film Capacitors

Metallized Polypropylene Film Capacitors (MKP)

Series/Type: B32794 ... B32798

Date: June 2009

© EPCOS AG 2009. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Preliminary Data

Typical applications

Output AC filtering for UPS, solar inverters, drives...

Climatic

- Max. operating temperature: 105 °C
- Climatic category (IEC 60068-1): 40/85/21

Construction

- Dielectric: Metallized polypropilene film
- Plastic case (UL 94 V-0)
- Epoxy resin sealing (UL 94 V-0)

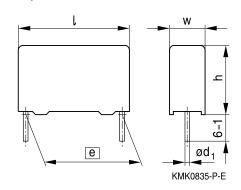
Features

- Optimized AC voltage performance
- High ripple current/frequency capability
- Small dimensions
- For PCB mounting

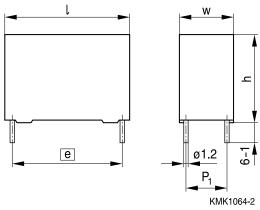
Terminals

- Parallel wire leads, lead-free tinned
- 2-pin and 4-pin versions
- Standard lead lengths: 6 -1 mm
- Special lead lengths available on request

Marking


Manufacturer's logo, date code, rated capacitance (coded), capacitance tolerance (code letter), rated AC voltage

Delivery mode


Bulk (untaped, lead length 6-1 mm)

Dimensional drawings

2-pin version

4-pin version

Dimensions in mm

Version	Lead spacing <u>e</u> ±0.4	Lead diameter d ₁	Туре
2-pin	27.5	0.8	B32794D
2-pin	37.5	1.0	B32796E
4-pin	37.5	1.2	B32796G
4-pin	52.5	1.2	B32798G

MKP AC filtering

Preliminary Data

Overview of available types

Lead spacing 27.5 mm		37.5 mm	37.5 mm		52.5 mm	
Туре	B32794		B32796		B32798	
Page	4		5		6	
V _{RMS} (V AC)	250	300	250	300	250	300
C _R (μF)						
2.0						
2.5						
3.3						
4.0						
5.0						
6.3						
8.0						
10						
12						
15						
16						
20						
22						
25						
30						
34						
40						
45						
55						
75						

B32794

MKP AC filtering

Preliminary Data

Ordering codes and packing units (lead spacing 27.5 mm)

$\overline{V_{RMS}}$	C _R	Max. dimensions	P ₁	Ordering code	I _{RMS}	ESL	ESR	Untaped
		$w \times h \times l$		(composition see	60 °C		10 kHz	
				below)	10 kHz			
V AC	μF	mm	mm		Α	nΗ	mΩ	pcs./MOQ
250	2.5	$11.0 \times 19.0 \times 31.5$	_	B32794D2255+000	4	24	14.1	2352
	4.0	$11.0 \times 21.0 \times 31.5$	_	B32794D2405+000	6	25	9.1	2352
	6.3	$15.0 \times 24.5 \times 31.5$	_	B32794D2635+000	8	26	6.1	1680
	10	$16.0 \times 32.0 \times 31.5$	_	B32794D2106+000	11	27	4.2	1064
	15	$22.0 \times 36.5 \times 31.5$	_	B32794D2156+000	14	28	3.1	784
300	2.0	$11.0 \times 19.0 \times 31.5$	_	B32794D3205+000	4	24	15.6	2352
	3.3	$13.5 \times 23.0 \times 31.5$	_	B32794D3335+000	6	25	9.7	1932
	5.0	$14.0 \times 24.5 \times 31.5$	_	B32794D3505+000	7	26	6.7	1848
	8.0	$18.0 \times 33.0 \times 31.5$	_	B32794D3805+000	10	27	4.6	952
	12	$22.0\times36.5\times31.5$	_	B32794D3126+000	13	28	3.5	784

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

 $J = \pm 5\%$

B32796

MKP AC filtering

Preliminary Data

Ordering codes and packing units (lead spacing 37.5 mm)

$\overline{V_{RMS}}$	C_R	Max. dimensions	P ₁	Ordering code	I _{RMS}	ESL	ESR	Untaped
		$w \times h \times I$		(composition see	60 °C		10 kHz	
				below)	10 kHz			
V AC	μF	mm	mm		Α	nΗ	mΩ	pcs./MOQ
250	22	$20.0 \times 39.5 \times 42.0$	_	B32796E2226+000	14	30	3.2	640
	22	$20.0\times39.5\times42.0$	10.2	B32796G2226+000	15	30	3.2	640
	25	$28.0 \times 37.0 \times 42.0$	_	B32796E2256+000	16	30	2.9	440
	25	$28.0 \times 37.0 \times 42.0$	10.2	B32796G2256+000	17	30	2.9	440
	40	$30.0 \times 45.0 \times 42.0$	_	B32796E2406+000	22	33	1.9	400
	40	$30.0 \times 45.0 \times 42.0$	20.3	B32796G2406+000	23	33	1.9	400
	45	$33.0 \times 48.0 \times 42.5$	20.3	B32796G2456+000	24	33	1.9	192
300	16	$20.0\times39.5\times42.0$	_	B32796E3166+000	13	30	3.9	640
	16	$20.0 \times 39.5 \times 42.0$	10.2	B32796G3166+000	14	30	3.9	640
	20	$28.0 \times 37.0 \times 42.0$	_	B32796E3206+000	15	30	3.1	440
	20	$28.0 \times 37.0 \times 42.0$	10.2	B32796G3206+000	16	30	3.1	440
	30	$30.0 \times 45.0 \times 42.0$	_	B32796E3306+000	20	33	2.2	400
	30	$30.0 \times 45.0 \times 42.0$	20.3	B32796G3306+000	21	33	2.2	400
	34	$33.0 \times 48.0 \times 42.5$	20.3	B32796G3346+000	22	33	1.9	192

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

 $J = \pm 5\%$

B32798

MKP AC filtering

Preliminary Data

Ordering codes and packing units (lead spacing 52.5 mm)

$\overline{V_{RMS}}$	C_R	Max. dimensions	P ₁	Ordering code	I _{RMS}	ESL	ESR	Untaped
		$w \times h \times I$		(composition see	60 °C		10 kHz	
				below)	10 kHz			
V AC	μF	mm	mm		Α	nΗ	mΩ	pcs./MOQ
250	55	$30.0\times45.0\times57.5$	20.3	B32798G2556+000	21	35	2.7	280
	75	$35.0\times50.0\times57.5$	20.3	B32798G2756+000	26	38	2.1	108
300	40	$30.0\times45.0\times57.5$	20.3	B32798G3406+000	19	35	3.2	280
	55	$35.0\times50.0\times57.5$	20.3	B32798G3556+000	24	38	2.5	108

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

 $J = \pm 5\%$

MKP AC filtering

Preliminary Data

Technical data

Reference standard: IEC 6107	All data given at T = 20 °C	unlace atharwica enacified
Tielelelice Stalldard, ILC 0101	. All data diversal 1 – 20 C.	. นเ แองง บแ เอเ พเงอ งมอบแเอน.

	given at 1 - 20 0, amend outletwi	oo opcomea.
e range (case)	Max. operating temperature, T _{op,n}	_{nax} +105 °C
	Upper category temperature T _{max}	+85 °C
	Lower category temperature T _{min}	–40 °C
	Note: At T > 85 °C de-rating for	
	V _{RMS} (V AC) should be 1.5%/°C	
nge	2% respect to the value measure	d at 25 °C
Rine	30 000 s	_
t		
dity ≤ 65%		
d values)		
terminals	1.5 · V _{RMS} (AC) or 2.3 · V _{RMS} (DC) for 10 s
	$1.65 \cdot V_{RMS}$ (AC) or $2.5 \cdot V_{RMS}$ (D0	C) for 2 s
nal to case (10 s)	2 · V _{RMS} + 1000 V AC (min. 2000	V AC) at 50 Hz
overvoltage for	1.3 · V _{RMS}	
s (max 1 min/day)		
nt (A)	$I_{P,mov} = C_P \cdot \frac{dV}{dt}$	
		dity
n heat test	•	uity ≤5%
p		
	Insulation resistance R _{ins}	≥ 50% of minimum as-delivered values
		14 (Test Nb)
Failure rate λ	300 fit	
Service life t _{st}	> 60 000 h at V _{BMS}	
	For conversion to other operating chapter "Reliability", page .	conditions, refer to
Failure criteria:		
	Short/open circuit	
Total failure	Short/open circuit	
Failure due to	Capacitance change ∆C/C	≥ 10%
variation of	Dissipation factor change Δ tan δ	> 4 · upper limit value
parameters	Insulation resistance R _{ins}	$<$ 1500 M Ω
		(C _R ≤0.33μF)
	or time constant $\tau = C_R \cdot R_{ins}$	$< 500 \text{ s } (C_R \le 0.33 \mu\text{F})$
	e range (case) nge R _{ins} t dity ≤ 65% d values) terminals nal to case (10 s) overvoltage for s (max 1 min/day) nt (A) p heat test e Failure rate λ Service life t _{SL} Failure due to variation of	$\begin{array}{c} \text{Upper category temperature T_{max}} \\ \text{Lower category temperature T_{min}} \\ \text{Note: At T > 85 °C de-rating for} \\ \text{V}_{\text{RMS}} \text{ (V AC) should be 1.5%/°C} \\ \text{Inge} \\ \text{2% respect to the value measure} \\ \text{R}_{\text{ins}} \\ \text{30 000 s} \\ \text{terminals} \\ \text{30 000 s} \\ \text{terminals} \\ \text{1.5 \cdot V}_{\text{RMS}} \text{ (AC) or 2.3 \cdot V}_{\text{RMS}} \text{ (DC)} \\ \text{1.65 \cdot V}_{\text{RMS}} \text{ (AC) or 2.5 \cdot V}_{\text{RMS}} \text{ (DC)} \\ \text{1.65 \cdot V}_{\text{RMS}} \text{ (AC) or 2.5 \cdot V}_{\text{RMS}} \text{ (DC)} \\ \text{1.65 \cdot V}_{\text{RMS}} \text{ (AC) or 2.5 \cdot V}_{\text{RMS}} \text{ (DC)} \\ \text{1.3 \cdot V}_{\text{RMS}} \\ \text{1.3 \cdot V}_{\text{RMS}} \\ \text{1.3 \cdot V}_{\text{RMS}} \\ \text{1.4 (A)} \\ \text{1.5 \cdot V}_{\text{RMS}} = C_{\text{R}} \cdot \frac{\text{dV}}{\text{dt}} \\ \text{1.5 \cdot V}_{\text{RMS}} = C_{\text{R}} \cdot \frac{\text{dV}}{\text{dt}} \\ \text{1.6 \cdot V}_{\text{RMS}} = C_{\text{R}} \cdot \frac{\text{dV}}{\text{dt}} \\ \text{1.7 \cdot V}_{\text{RMS}} \\ \text{1.8 \cdot V}_{\text{RMS}} \\ \text{1.9 \cdot V}_{\text{RMS}} = C_{\text{R}} \cdot \frac{\text{dV}}{\text{dt}} \\ $

MKP AC filtering

Preliminary Data

Pulse handling capability

"dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in $V/\mu s$.

Note:

The values of dV/dt provided below must not be exceeded in order to avoid damaging the capacitor.

dV/dt values

Lead spacing	27.5 mm		37.5 mm		52.5 mm	
Туре	B32794		B32796		B32798	
V _{RMS} (V AC)	250	300	250	300	250	300
C _R (µF)	dV/dt in V/μs					
2.0	_	31	_	_	_	_
2.5	27	_	_	_	_	_
3.3	_	31	_	_	_	_
4.0	27	_	_	_	_	_
5.0	_	31	_	_	_	_
6.3	27	_	_	_	_	_
8.0	_	31	_	_	_	_
10	27	_	_	_	_	_
12	_	31	_	_	_	_
15	27	_	_	_	_	_
16	_	_	_	21	_	_
20	_	_	_	21	_	_
22	_	_	19	_	_	_
25	_	_	19	_	_	_
30	_	_	_	21	_	_
34	_	_	_	21	_	_
40	_	=	19	_	_	14
45		=	19	_	_	_
55		_	_	_	12	14
75	_	_	_	_	12	_

MKP AC filtering

Preliminary Data

Mounting guidelines

1 Soldering

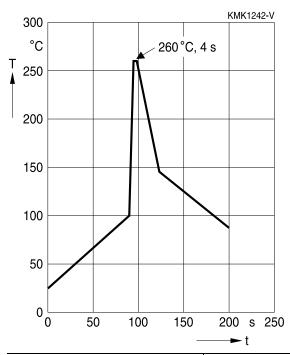
1.1 Solderability of leads

The solderability of terminal leads is tested to IEC 60068-2-20, test Ta, method 1.

Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2, test Ba: 4 h exposure to dry heat at 155 °C). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur.

Solder bath temperature	235 ±5 °C
Soldering time	2.0 ±0.5 s
Immersion depth	2.0 +0/-0.5 mm from capacitor body or seating plane
Evaluation criteria:	
Visual inspection	Wetting of wire surface by new solder ≥90%, free-flowing solder

1.2 Resistance to soldering heat


Resistance to soldering heat is tested to IEC 60068-2-20, test Tb, method 1A. Conditions:

Series	S	Solder bath temperature	Soldering time
MKT	boxed (except $2.5 \times 6.5 \times 7.2$ mm) coated	260 ±5 °C	10 ±1 s
	uncoated (lead spacing > 10 mm)		
MFP			
MKP	(lead spacing > 7.5 mm)		
MKT	boxed (case $2.5 \times 6.5 \times 7.2$ mm)		5 ±1 s
MKP	(lead spacing ≤ 7.5 mm)		< 4 s
MKT	uncoated (lead spacing ≤ 10 mm) insulated (B32559)		recommended soldering profile for MKT uncoated (lead spacing ≤ 10 mm) and
			insulated (B32559)

MKP AC filtering

Immersion depth	2.0 +0/-0.5 mm from capacitor body or seating plane
Shield	Heat-absorbing board, (1.5 \pm 0.5) mm thick, between capacitor body and liquid solder
Evaluation criteria:	
Visual inspection	No visible damage
$\Delta C/C_0$	2% for MKT/MKP/MFP
40,0 0	5% for EMI suppression capacitors
$tan \ \delta$	As specified in sectional specification

MKP AC filtering

Preliminary Data

1.3 General notes on soldering

Permissible heat exposure loads on film capacitors are primarily characterized by the upper category temperature T_{max} . Long exposure to temperatures above this type-related temperature limit can lead to changes in the plastic dielectric and thus change irreversibly a capacitor's electrical characteristics. For short exposures (as in practical soldering processes) the heat load (and thus the possible effects on a capacitor) will also depend on other factors like:

- Pre-heating temperature and time
- Forced cooling immediately after soldering
- Terminal characteristics:
 diameter, length, thermal resistance, special configurations (e.g. crimping)
- Height of capacitor above solder bath
- Shadowing by neighboring components
- Additional heating due to heat dissipation by neighboring components
- Use of solder-resist coatings

The overheating associated with some of these factors can usually be reduced by suitable countermeasures. For example, if a pre-heating step cannot be avoided, an additional or reinforced cooling process may possibly have to be included.

EPCOS recommends the following conditions:

- Pre-heating with a maximum temperature of 110 °C
- Temperature inside the capacitor should not exceed the following limits:
 - MKP/MFP 110 °C
 - MKT 160 °C
- When SMD components are used together with leaded ones, the leaded film capacitors should not pass into the SMD adhesive curing oven. The leaded components should be assembled after the SMD curing step.
- Leaded film capacitors are not suitable for reflow soldering.

Uncoated capacitors

For uncoated MKT capacitors with lead spacings ≤10 mm (B32560/B32561) the following measures are recommended:

- pre-heating to not more than 110 °C in the preheater phase
- rapid cooling after soldering

MKP AC filtering

Preliminary Data

2 Cleaning

To determine whether the following solvents, often used to remove flux residues and other substances, are suitable for the capacitors described, refer to the table below:

Туре	Ethanol, isopropanol, n-propanol	n-propanol-water mixtures, water with surface tension-reducing tensides (neutral)	Solvent from table A (see next page)	Solvent from table B (see next page)
MKT	Suitable	Unsuitable	In part suitable	Unsuitable
(uncoated)				
MKT, MKP, MFP		Suitable	Suitable	
(coated/boxed)				

Even when suitable solvents are used, a reversible change of the electrical characteristics may occur in uncoated capacitors immediately after they are washed. Thus it is always recommended to dry the components (e.g. 4 h at 70 °C) before they are subjected to subsequent electrical testing.

Table AManufacturers' designations for trifluoro-trichloro-ethane-based cleaning solvents (selection)

Trifluoro-trichloro-	Mixtures of trifluoro-trichloro-ethane with ethanol and	Manufacturer
ethane	isopropanol	
Freon TF	Freon TE 35; Freon TP 35; Freon TES	Du Pont
Frigen 113 TR	Frigen 113 TR-E; Frigen 113 TR-P; Frigen TR-E 35	Hoechst
Arklone P	Arklone A; Arklone L; Arklone K	ICI
Kaltron 113 MDR	Kaltron 113 MDA; Kaltron 113 MDI; Kaltron 113 MDI 35	Kali-Chemie
Flugene 113	Flugene 113 E; Flugene 113 IPA	Rhone-Progil

Table B (worldwide banned substances)

Manufacturers' designations for unsuitable cleaning solvents (selection)

Mixtures of chlorinated hydrocarbons and ketones with fluorated hydrocarbons	Manufacturer
Freon TMC; Freon TC	Du Pont
Arklone E	ICI
Kaltron 113 MDD; Kaltron 113 MDK	Kali-Chemie
Flugene 113 CM	Rhone-Progil

MKP AC filtering

Preliminary Data

3 Embedding of capacitors in finished assemblies

In many applications, finished circuit assemblies are embedded in plastic resins. In this case, both chemical and thermal influences of the embedding ("potting") and curing processes must be taken into account.

Our experience has shown that the following potting materials can be recommended: non-flexible epoxy resins with acid-anhydride hardeners; chemically inert, non-conducting fillers; maximum curing temperature of $100\,^{\circ}$ C.

Caution:

Consult us first if you wish to embed uncoated types!

MKP AC filtering

Preliminary Data

Cautions and warnings

- Do not exceed the upper category temperature (UCT).
- Do not apply any mechanical stress to the capacitor terminals.
- Avoid any compressive, tensile or flexural stress.
- Do not move the capacitor after it has been soldered to the PC board.
- Do not pick up the PC board by the soldered capacitor.
- Do not place the capacitor on a PC board whose PTH hole spacing differs from the specified lead spacing.
- Do not exceed the specified time or temperature limits during soldering.
- Avoid external energy inputs, such as fire or electricity.
- Avoid overload of the capacitors.

The table below summarizes the safety instructions that must always be observed. A detailed description can be found in the relevant sections of the chapters "General technical information" and "Mounting guidelines".

Topic	Safety information	Reference chapter "General technical information"
Storage conditions	Make sure that capacitors are stored within the specified range of time, temperature and humidity conditions.	4.5 "Storage conditions"
Flammability	Avoid external energy, such as fire or electricity (passive flammability), avoid overload of the capacitors (active flammability) and consider the flammability of materials.	5.3 "Flammability"
Resistance to vibration	Do not exceed the tested ability to withstand vibration. The capacitors are tested to IEC 60068-2-6. EPCOS offers film capacitors specially designed for operation under more severe vibration regimes such as those found in automotive applications. Consult our catalog "Film Capacitors for Automotive Electronics".	5.2 "Resistance to vibration"

MKP AC filtering

Topic	Safety information	Reference chapter "Mounting guidelines"
Soldering	Do not exceed the specified time or temperature limits during soldering.	1 "Soldering"
Cleaning	Use only suitable solvents for cleaning capacitors.	2 "Cleaning"
Embedding of capacitors in finished assemblies	When embedding finished circuit assemblies in plastic resins, chemical and thermal influences must be taken into account. Caution: Consult us first, if you also wish to embed other uncoated component types!	3 "Embedding of capacitors in finished assemblies"

MKP AC filtering

Preliminary Data

Symbols and terms

Symbol	English	German
α	Heat transfer coefficient	Wärmeübergangszahl
α_{C}	Temperature coefficient of capacitance	Temperaturkoeffizient der Kapazität
Α	Capacitor surface area	Kondensatoroberfläche
$eta_{ extsf{C}}$	Humidity coefficient of capacitance	Feuchtekoeffizient der Kapazität
С	Capacitance	Kapazität
C_R	Rated capacitance	Nennkapazität
ΔC	Absolute capacitance change	Absolute Kapazitätsänderung
Δ C/C	Relative capacitance change (relative	Relative Kapazitätsänderung (relative
	deviation of actual value)	Abweichung vom Ist-Wert)
$\Delta \text{C/C}_{\text{R}}$	Capacitance tolerance (relative deviation	Kapazitätstoleranz (relative Abweichung
	from rated capacitance)	vom Nennwert)
dt	Time differential	Differentielle Zeit
Δt	Time interval	Zeitintervall
ΔT	Absolute temperature change	Absolute Temperaturänderung
	(self-heating)	(Selbsterwärmung)
$\Delta tan \delta$	Absolute change of dissipation factor	Absolute Änderung des Verlustfaktors
ΔV	Absolute voltage change	Absolute Spannungsänderung
dV/dt	Time differential of voltage function (rate	Differentielle Spannungsänderung
	of voltage rise)	(Spannungsflankensteilheit)
$\Delta V/\Delta t$	Voltage change per time interval	Spannungsänderung pro Zeitintervall
E	Activation energy for diffusion	Aktivierungsenergie zur Diffusion
ESL	Self-inductance	Eigeninduktivität
ESR	Equivalent series resistance	Ersatz-Serienwiderstand
f	Frequency	Frequenz
f_1	Frequency limit for reducing permissible	Grenzfrequenz für thermisch bedingte
	AC voltage due to thermal limits	Reduzierung der zulässigen
		Wechselspannung
f_2	Frequency limit for reducing permissible	Grenzfrequenz für strombedingte
	AC voltage due to current limit	Reduzierung der zulässigen
		Wechselspannung
f _r	Resonant frequency	Resonanzfrequenz
F_D	Thermal acceleration factor for diffusion	Therm. Beschleunigungsfaktor zur Diffusion
F_T	Derating factor	Deratingfaktor
i	Current (peak)	Stromspitze
I_{C}	Category current (max. continuous	Kategoriestrom (max. Dauerstrom)
	current)	

MKP AC filtering

Symbol	English	German
I _{RMS}	(Sinusoidal) alternating current,	(Sinusförmiger) Wechselstrom
	root-mean-square value	
i_z	Capacitance drift	Inkonstanz der Kapazität
k_0	Pulse characteristic	Impulskennwert
Ls	Series inductance	Serieninduktivität
λ	Failure rate	Ausfallrate
λ_{o}	Constant failure rate during useful	Konstante Ausfallrate in der
	service life	Nutzungsphase
λ_{test}	Failure rate, determined by tests	Experimentell ermittelte Ausfallrate
P_{diss}	Dissipated power	Abgegebene Verlustleistung
P_{gen}	Generated power	Erzeugte Verlustleistung
Q	Heat energy	Wärmeenergie
ρ	Density of water vapor in air	Dichte von Wasserdampf in Luft
R	Universal molar constant for gases	Allg. Molarkonstante für Gas
R	Ohmic resistance of discharge circuit	Ohmscher Widerstand des
		Entladekreises
R_{i}	Internal resistance	Innenwiderstand
R_{ins}	Insulation resistance	Isolationswiderstand
R_P	Parallel resistance	Parallelwiderstand
R_{s}	Series resistance	Serienwiderstand
S	severity (humidity test)	Schärfegrad (Feuchtetest)
t	Time	Zeit
Т	Temperature	Temperatur
τ	Time constant	Zeitkonstante
tan δ	Dissipation factor	Verlustfaktor
$tan \; \delta_{\scriptscriptstyle D}$	Dielectric component of dissipation factor	Dielektrischer Anteil des Verlustfaktors
$tan \; \delta_{\scriptscriptstyle P}$	Parallel component of dissipation factor	Parallelanteil des Verlfustfaktors
tan δ_{S}	Series component of dissipation factor	Serienanteil des Verlustfaktors
T_A	Ambient temperature	Umgebungstemperatur
T_{max}	Upper category temperature	Obere Kategorietemperatur
T_{min}	Lower category temperature	Untere Kategorietemperatur
t _{OL}	Operating life at operating temperature	Betriebszeit bei Betriebstemperatur und
	and voltage	-spannung
T_{op}	Operating temperature	Beriebstemperatur
T _R	Rated temperature	Nenntemperatur
T_{ref}	Reference temperature	Referenztemperatur
t_{SL}	Reference service life	Referenz-Lebensdauer
V _{AC}	AC voltage	Wechselspannung

MKP AC filtering

Symbol	English	German
$\overline{V_{C}}$	Category voltage	Kategoriespannung
$V_{\text{C,RMS}}$	Category AC voltage	(Sinusförmige)
		Kategorie-Wechselspannung
V_{CD}	Corona-discharge onset voltage	Teilentlade-Einsatzspannung
V_{ch}	Charging voltage	Ladespannung
V_{DC}	DC voltage	Gleichspannung
V_{FB}	Fly-back capacitor voltage	Spannung (Flyback)
V_{i}	Input voltage	Eingangsspannung
V_{o}	Output voltage	Ausgangssspannung
V_{op}	Operating voltage	Betriebsspannung
V_p	Peak pulse voltage	Impuls-Spitzenspannung
V_{pp}	Peak-to-peak voltage Impedance	Spannungshub
V_R	Rated voltage	Nennspannung
v _R	Amplitude of rated AC voltage	Amplitude der Nenn-Wechselspannung
V_{RMS}	(Sinusoidal) alternating voltage,	(Sinusförmige) Wechselspannung
	root-mean-square value	
V_{SC}	S-correction voltage	Spannung bei Anwendung "S-correction"
V_{sn}	Snubber capacitor voltage	Spannung bei Anwendung
		"Beschaltung"
Z	Impedance	Scheinwiderstand
е	Lead spacing	Rastermaß

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CSMP, CSSP, CTVS, DSSP, MiniBlue, MiniCell, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.