

SAW filters for mobile communications

Series/Type: B9201

The following products presented in this data sheet are being withdrawn.

Ordering Code	Substitute Product		Deadline Last Orders	Last Shipments
B39182B9201G810	B39182B9500L310	2008-08-01	2009-01-31	2009-03-15

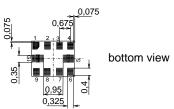
For further information please contact your nearest EPCOS sales office, which will also support you in selecting a suitable substitute. The addresses of our worldwide sales network are presented at www.epcos.com/sales.

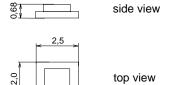
B9201

Low-Loss Dual Band Filter for Mobile Communication

942,5 / 1842,5 MHz

Data Sheet


Features


- Low-loss 2in1 RF filter for mobile telephone GSM900/1800 systems, receive path
- Usable passband:

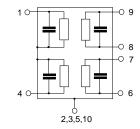
Filter 1 (GSM1800): 75 MHz Filter 2 (GSM900): 35 MHz

- Unbalanced to balanced operation of both filters
- Impedance transformation from 50 Ω to 150 Ω for both filters
- Suitable for GPRS Class 1 to 12
- Ceramic package for Surface Mounted Technology (SMT)

Chip sized SAW package QCS10F

Terminals

■ Ni, gold-plated


Pin configuration

1 Input [Filter 1]
4 Input [Filter 2]

6, 7 Output, balanced [Filter 2] 8, 9 Output, balanced [Filter 1]

2, 3, 5,10 Case ground

Dimensions in mm, approx. weight 12mg

Туре	Ordering code	Marking and Package according to	Packing according to		
B9201	B39182-B9201-G810	C61157-A7-A133	F61074-V8153-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

	_		0.0	T
Operable temperature range	1	- 40 / + 85	°C	
Storage temperature range	$T_{ m stg}$	- 40 / + 85	°C	
DC voltage	$V_{\rm DC}$	3	V	
ESD voltage	$V_{ESD}{}^*$	50*	V	Machine Model, 10 pulses
Input power at				
GSM850, GSM900,				
GSM1800, GSM1900				
Tx bands:				
Filter 1 (GSM1800-Rx)	P_{IN}	12	dBm	peak power of GSM signal,
Filter 2 (GSM900-Rx)	P_{IN}	15	dBm	duty cycle 4:8

^{* -} acc. to JESD22-A115A (Machine Model), 10 negative & 10 positive pulses

B9201

Low-Loss Dual Band Filter for Mobile Communication

942,5 / 1842,5 MHz

Data Sheet

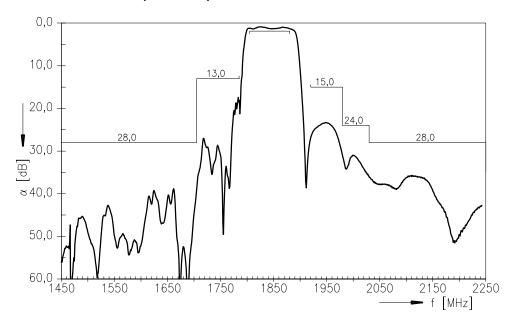
Characteristics Filter 1 (GSM1800)

Operating temperature range: $T = -20 \text{ to } +75^{\circ}\text{C}$

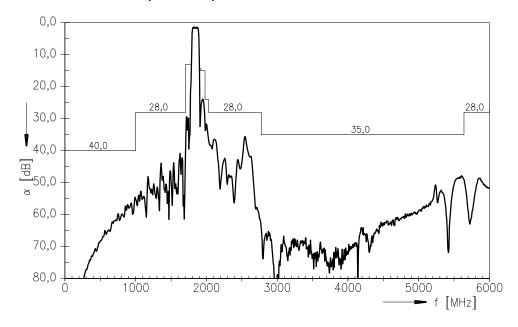
Terminating source impedance: $Z_{\rm S}=50~\Omega$ (unbalanced) Terminating load impedance: $Z_{\rm L}=150~\Omega$ (balanced) || 12nH

				min.	typ.	max.	
Center frequency			f _C	_	1842,5	_	MHz
Maximum insertion attenuation		α_{max}					
1805,0	1880,0	MHz		_	1,5	2,2	dB
1805,0	1880,0	MHz	1)	_	1,4	1,9	dB
Amplitude ripple (p-p)		Δα					
1805,0	1880,0	MHz		_	0,7	1,4	dB
1805,0	1880,0	MHz	1)	_	0,6	1,1	dB
Input VSWR							
1805,0	1880,0	MHz		_	2,0	2,3	
Output VSWR							
1805,0	1880,0	MHz		_	1,9	2,2	
Output amplitude balance (S ₃₁ /	/S ₂₁)						
1805,0	1880,0	MHz		-1,0	-0,6/+0,7	1,0	dB
Output phase balance $(\phi(S_{31})-\phi(S_{21})+180^{\circ})$							
1805,0	1880,0	MHz		-10	-4/+4	10	degree
Attenuation			α_{min}				
10,0	1000,0	MHz		40	54	_	dB
1000,0	1705,0	MHz		28	38	_	dB
1705,0	1785,0	MHz		13	18	_	dB
1920,0	1980,0	MHz		15	23	_	dB
1980,0		MHz		24	30	_	dB
2030,0	2775,0	MHz		28	36	_	dB
2775,0	5640,0	MHz		35	49	_	dB
5640,0	6000,0	MHz		28	49	_	dB

¹⁾ $T = +25 \pm 2^{\circ}C$


SAW Components

Low-Loss Dual Band Filter for Mobile Communication


942,5 / 1842,5 MHz

Data Sheet

Transfer function Filter 1 (GSM1800)

Transfer function Filter 1 (GSM1800) - wideband

B9201

Low-Loss Dual Band Filter for Mobile Communication

942,5 / 1842,5 MHz

Data Sheet

 \equiv MD

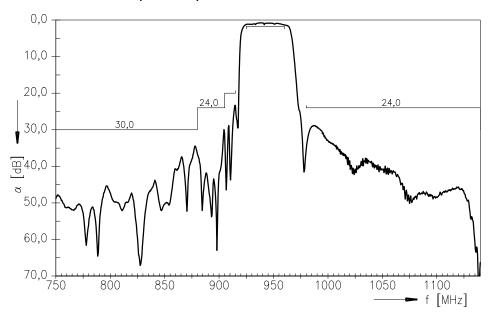
Characteristics Filter 2 (GSM900)

Operating temperature range: $T = -20 \text{ to } +75^{\circ} \text{ C}$

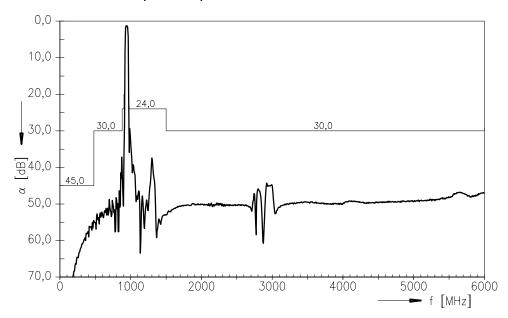
Terminating source impedance: $Z_{\rm S}=50~\Omega$ (unbalanced) Terminating load impedance: $Z_{\rm L}=150~\Omega$ (balanced) || 56nH

		min.	typ.	max.	
Center frequency	$f_{\rm C}$	_	942,50	_	MHz
Maximum insertion attenuation					
925,0 960,0 MF	α _{max} Hz	_	1,5	2,1	dB
925,0 960,0 MF	Hz ¹⁾	_	1,4	1,7	dB
Amplitude ripple (p-p)	Δα				
925,0 960,0 MH	Ηz	_	0,7	1,4	dB
925,0 960,0 MF	Hz ¹⁾	_	0,6	1,0	dB
Input VSWR					
925,0 960,0 MH	Ηz	_	1,8	2,0	
Output VSWR					
925,0 960,0 MH	Ηz	_	1,7	2,0	
Output amplitude balance ($ S_{31}/S_{21} $)					
925,0 960,0 MF	Ηz	-1,0	-0,5/+0,6	1,0	dB
Output phase balance $(\phi(S_{31})-\phi(S_{21})+180^{\circ})$					
925,0 960,0 MF	Ηz	-10	-3/+2	10	degree
Attenuation	α_{min}				
10,0 480,0 MH	Ηz	45	54	_	dB
480,0 880,0 MH	Ηz	30	34	_	dB
880,0 905,0 MH	Ηz	24	30	_	dB
905,0 915,0 MH	Ηz	20	23	_	dB
980,01500,0 MF		24	29	_	dB
1500,06000,0 MF	Ηz	30	44	_	dB

¹⁾ $T = +25 \pm 2^{\circ}C$


SAW Components

Low-Loss Dual Band Filter for Mobile Communication


942,5 / 1842,5 MHz

Data Sheet

Transfer function Filter 2 (GSM900)

Transfer function Filter 2 (GSM900) - wideband

B9201

Low-Loss Dual Band Filter for Mobile Communication

942,5 / 1842,5 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC WT P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2004. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.