

SAW Components

Data Sheet B4926

SAW Components

B4926

bottom view

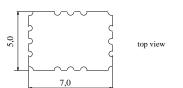
Low-Loss Filter for Mobile Communication

133,2 MHz

Data Sheet

Features

- Low-loss IF filter for mobile telephone
- Channel selection in GSM systems
- Hermetically sealed ceramic SMD package
- Balanced and unbalanced operation possible
- No coupling coil required


Terminals

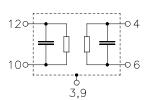
Gold-plated Ni

2,54

Ceramic package QCC12C

Dimensions in mm, approx. weight 0,25 g

Pin configuration


10	Innut

12 Input ground or balanced input

4 Output

6 Output ground or balanced output

3, 9 Case ground 1, 2, 7, 8 To be grounded

Туре	Ordering code	Marking and Package according to	Packing according to		
B4926	B39131-B4926-H310	C61157-A7-A95	F61074-V8710-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	Τ	- 30/+ 85	°C	
Storage temperature range	$T_{\rm stg}$	- 40/ + 85	°C	
DC voltage	$V_{\rm DC}$	5	V	
Source power	$P_{\rm s}$	10	dBm	
ESD	V_{ESD}	50	V	Human Body Model

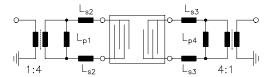
SAW Components

B4926

Low-Loss Filter for Mobile Communication

133,2 MHz

Data Sheet

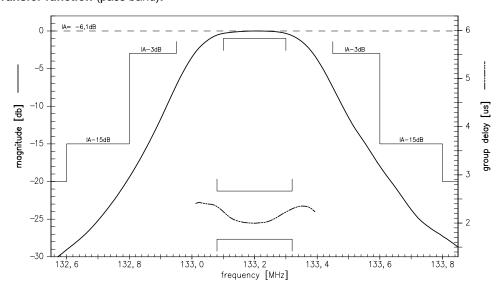

Characteristics

Operating temperature range: $T = -30 \,^{\circ}\text{C} \dots +80 \,^{\circ}\text{C}$ $Z_{\rm S} = 1000~\Omega~||~135~{\rm nH}$ $Z_{\rm L} = 1300~\Omega~||~170~{\rm nH}$ Terminating source impedance: Terminating load impedance:

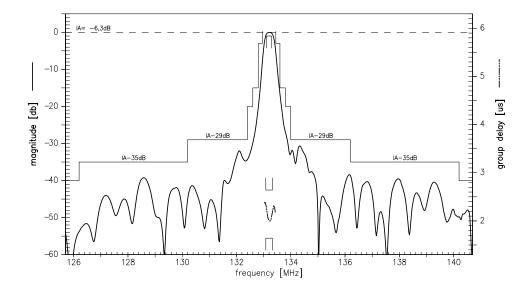
		min.	typ.	max.	
Nominal frequency		_	133,20	_	MHz
Minimum insertion attenuation					
(excluding losses in matching circuit)			4,5	6,0	dB
Amplitude ripple (p-p)	$\Delta \alpha$				
$f_{\rm N}$ - 100,0 kHz $f_{\rm N}$ + 100,0 kHz		_	0,4	1,0	dB
Group delay ripple (p-p)	Δau				
$f_{\rm N}$ - 100,0 kHz $f_{\rm N}$ + 100,0 kHz		_	0,3	1,0	μs
Relative attenuation (relative to α_{min})	α_{rel}				
f_{N} - 30,00 MHz f_{N} - 7,00 MHz		40	48	_	dB
f_{N} - 7,00 MHz f_{N} - 3,00 MHz		35	42	_	dB
f_{N} - 3,00 MHz f_{N} - 0,80 MHz		29	32	_	dB
f_{N} - 0,80 MHz f_{N} - 0,60 MHz		20	29	_	dB
f_{N} - 0,60 MHz f_{N} - 0,40 MHz		15	19	_	dB
$f_{\rm N}$ - 0,40 MHz $f_{\rm N}$ - 0,25 MHz		3	6,5	_	dB
$f_{\rm N}$ + 0,25 MHz $f_{\rm N}$ + 0,40 MHz		3	6,5	_	dB
$f_{\rm N}$ + 0,40 MHz $f_{\rm N}$ + 0,60 MHz		15	17	_	dB
$f_{\rm N}$ + 0,60 MHz $f_{\rm N}$ + 0,80 MHz		20	27	_	dB
$f_{\rm N}$ + 0,80 MHz $f_{\rm N}$ + 3,00 MHz		29	31	_	dB
$f_{\rm N}$ + 3,00 MHz $f_{\rm N}$ + 7,00 MHz		35	39	_	dB
$f_{\rm N}$ + 7,00 MHz $f_{\rm N}$ + 30,00 MHz		40	46	_	dB
Impedance within pass band					
Input: $Z_{IN} = R_{IN} \parallel C_{IN}$		_	1000 10,3.	_	Ω pF
Output: $Z_{OUT} = R_{OUT} \parallel C_{OUT}$		_	1300 8,2	_	Ω pF
Temperature coefficient of frequency 1)		_	- 0,042	_	ppm/K ²
Frequency inversion point	T_0	_	25	_	°C

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

Test matching network to 50 Ω (element values depend on PCB layout):



 $L_{p1} = 82 \text{ nH}$ $L_{s2} = 27 \text{ nH}$ $L_{s3} = 43 \text{ nH}$ $L_{p4} = 82 \text{ nH}$



Transfer function (pass band):

Transfer function (wide band):

SAW Components B4926
Low-Loss Filter for Mobile Communication 133,2 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC WT P.O. Box 80 17 09, D-81617 München

© EPCOS AG 2002. All Rights Reserved. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

The information contained in this brochure describes the type of component and shall not be considered as guaranteed characteristics. Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.