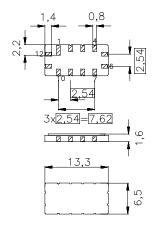


SAW Components

Data Sheet B3640

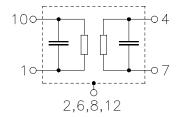
Data Sheet


Ceramic package QCC12

Features

- Low-loss IF filter for DCS base station
- Tx path
- Temperature stable
- Ceramic SMD package

Terminals


Gold plated

Dim. in mm, aprox. weight 0,4 g

Pin configuration

1, 10	Input (balanced)
7	Output
4	Output ground
3, 9	To be grounded
2, 6, 8, 12	Case ground
5, 11	Not connected

Туре	Ordering code	Marking and Package according to	Packing according to		
B3640	B39231-B3640-Z510	C61157-A7-A55	F61074-V8026-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

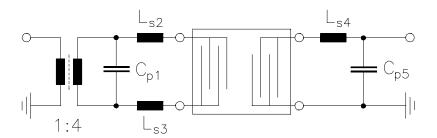
Operable temperature range	T	- 20/+ 75	°C
Storage temperature range	$T_{\rm stg}$	- 40/ + 85	°C
DC voltage	$V_{\rm DC}$	10	V
Source power	P_{s}	10	dBm

Data Sheet

Characteristics

Operating temperature range:

 $T_{\rm A} = -5 - 75\,^{\circ}{\rm C}$ $Z_{\rm S} = 200\,\Omega$ and matching network. $Z_{\rm L} = 50\,\Omega$ and matching network Terminating source impedance: Terminating load impedance:


		min.	typ.	max.	
Nominal frequency	f _N	_	238,0	_	MHz
Minimum insertion attenuation (including matching network)		7	8,5	9,5	dB
Amplitude ripple (p-p)	Δα				
$f_N \pm 100 \text{ kHz}$		_	0,3	1,1	dB
$f_{N} \pm 300 \text{ kHz}$		_	1,9	3,0	dB
Absolute group delay	τ	_	1,5	3	μs
Group delay variation	Δau				
$f_N \pm 100 \text{ kHz}$		_	50	150	ns
$f_{N} \pm 300 \text{ kHz}$		_	90	250	ns
Relative attenuation (relative to α_{min})	$lpha_{rel}$				
$f_N \pm 0.6 \text{ MHz } \dots f_N \pm 0.8 \text{ MHz}$		5	8	_	dB
$f_N \pm 0.8 \; MHz \; \dots \; f_N \pm 1.8 \; MHz$		10	25	_	dB
$f_N \pm 1.8 \; \text{MHz} \; \dots \; f_N \pm 6.0 \; \text{MHz}$		25	45	_	dB
$f_N \pm 6.0 \text{ MHz } \dots f_N \pm 20 \text{ MHz}$		30	41	_	dB
$f_N \pm 20 \text{ MHz } \dots f_N \pm 120 \text{ MHz}$		40	42	_	dB
Temperature coefficient of frequency 1)	TC _f	_	-0,036	_	ppm/K ²
Turnover temperature		_	30	_	°C

 $^{^{1)}}$ Temperature dependance of $f_{\rm c}$: $f_{\rm c}(T_{\rm A})=f_{\rm c}(T_0)(1+TC_{\rm f}(T_{\rm A}-T_0)^2)$

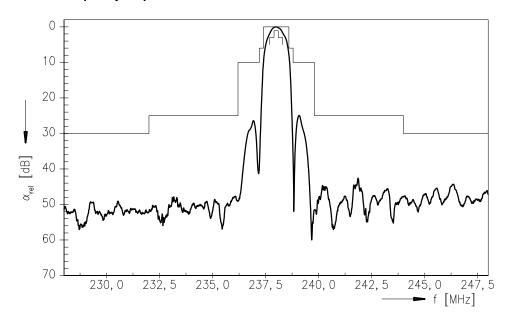
Data Sheet

Matching network (element values depend on pcb layout)

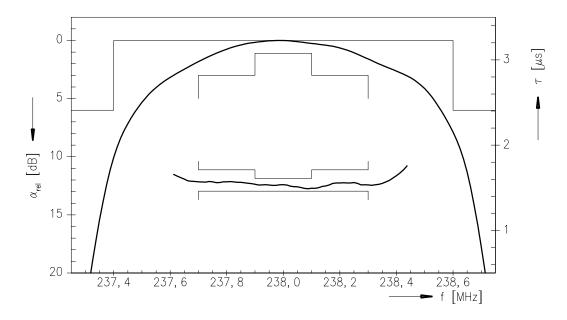
Cp1 = 10 pF

Ls2 = 22 nH

Ls3 = 27 nH


Ls4 = 33 nH

Cp5 = 22 pF



Data Sheet

Normalized frequency response

Normalized frequency response (pass band)

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC IS P.O. Box 80 17 09, D-81617 München

© EPCOS AG 1999. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.