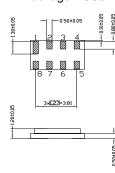


Data Sheet B7302

B7302

Low-Loss Filter for Mobile Communication

360,0 MHz


Data Sheet

Chip Sized SAW Package DCS8A

Features

- Low-loss IF filter for mobile telephone
- Channel selection in GSM, PCN systems
- Chip Sized SAW Package
- No expansion coil

Terminals

■ Gold-plated Ni



Dimensions in mm, approx. weight 0,05 g

Pin configuration

1 2	Input or input ground Input or balanced input
5 6	Output or output ground Output or balanced output

3, 4, 7, 8 Ground

Туре	Ordering code	Marking and Package according to	Packing according to		
B7302	B39361-B7302-A910	C61157-A7-A65	F61074-V8102-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operating temperature range	T	- 20/+ 80	°C
Storage temperature range	$T_{\rm stg}$	- 35/+ 85	°C
DC voltage	$V_{\rm DC}$	3	V
Source power	$P_{\rm s}$	10	dBm

B7302

Low-Loss Filter for Mobile Communication

360,0 MHz

Data Sheet

Characteristics

Operating temperature range: $T = -20 \text{ to } +80 \,^{\circ}\text{C}$ Terminating source impedance: $Z_{\text{S}} = 800 \,\Omega \parallel 160 \,\text{nH}$ Terminating load impedance: $Z_{\text{S}} = 800 \,\Omega \parallel 160 \,\text{nH}$

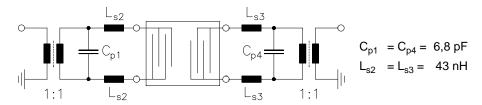
		min.	typ.	max.	
Nominal frequency	f_{N}	_	360,0		MHz
Minimum in aution attanuation					
Minimum insertion attenuation			E 4	6.1	dB
(including losses in matching circuit)	α_{min}	_	5,4	6,1 5.5	1
(excluding losses in matching circuit)		_	5,1	5,5	dB
Amplitude ripple (p-p)					
$f_{\rm N}$ - 67,5 kHz $f_{\rm N}$ + 67,5 kHz		_	0,3	2,0	dB
$f_{\rm N}$ - 80,0 kHz $f_{\rm N}$ + 80,0 kHz		_	0,4	3,0	dB
Group delay ripple (p-p)					
$f_{\rm N}$ - 67,5 kHz $f_{\rm N}$ + 67,5 kHz		_	0,4	1,5	μs
$f_{\rm N}$ - 80,0 kHz $f_{\rm N}$ + 80,0 kHz		_	0,5	2,0	μs
Relative attenuation (relative to α_{min})	$\alpha_{ m rel}$				
f _N – 15 MHz f _N + 3,0 MHz	161	50	60	_	dB
f _N – 3,0 MHz f _N – 1,6 MHz		48 *)	50	_	dB
$f_N - 1.6 \text{ MHz} \dots f_N - 800 \text{ kHz}$		40 +)	56	_	dB
$f_N - 800 \text{ kHz} \dots f_N - 600 \text{ kHz}$		35	46	_	dB
f _N – 600 kHz f _N – 400 kHz		21	41	_	dB
f _N – 400 kHz f _N – 300 kHz		8	24	_	dB
f _N + 300 kHz f _N + 400 kHz		8	17	_	dB
$f_N + 400 \text{ kHz} \dots f_N + 600 \text{ kHz}$		21	26	_	dB
f _N + 600 kHz f _N + 800 kHz		35	38	_	dB
$f_N + 800 \text{ kHz } \dots f_N + 1,6 \text{ MHz}$		40	47	_	dB
$f_N + 1.6 \text{ MHz} \dots f_N + 3.0 \text{ MHz}$		48	59	_	dB
$f_N + 3.0 \text{ MHz} \dots f_N + 15 \text{ MHz}$		50	57	_	dB
Impedance within the pass band					
Input: $Z_{IN} = R_{IN} \parallel C_{IN}$		_	800 1,25	_	$\Omega \parallel pF$
Output: $Z_{OUT} = R_{OUT} \parallel C_{OUT}$			800 1,25		Ω pF
Temperature coefficient of frequency 1)		_	-0,036	_	ppm/K ²
Turnover temperature		_	40		°C

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

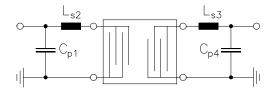
 $^{^*)}$ 358,0 MHz < f < 358,3 MHz: spurious response, B_{3dB} < 150kHz, α_{rel} > 45dB

 $^{^{+)}}$ 358,9 MHz < f < 359,2 MHz: spurious response, B $_{\rm 3dB}$ < 100kHz, $\alpha_{\rm rel}$ > 37dB

B7302


Low-Loss Filter for Mobile Communication

360,0 MHz


Data Sheet

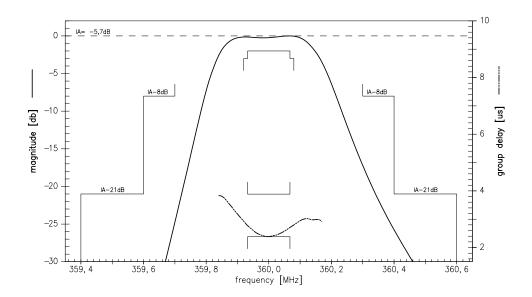
Test matching network to 50\Omega, balanced low pass matching circuit (actual element values depend on PCB layout. Serial inductance values by combination of 39nH / 47nH. S-parameters of transformers TOKO B5FL available on request):

Test matching network to 50 Ω , single-ended or pseudo-balanced (serial inductances splitted up into both signal paths, improved ultimate rejection) low pass matching circuit (actual element values depend on PCB layout):

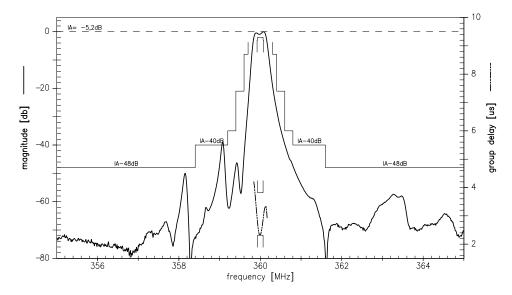
$$C_{p1} = C_{p4} = 5.6 \text{ pF}$$

 $L_{s2} = L_{s3} = 2 \text{ x } 39 \text{ nH}$

SAW Components


Low-Loss Filter for Mobile Communication

Data Sheet


B7302

360,0 MHz

Transfer function (pass band):

Transfer function (wide band):

B7302

Low-Loss Filter for Mobile Communication

360,0 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, OFW E MF P.O. Box 80 17 09, D-81617 München

© EPCOS AG 1999. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.