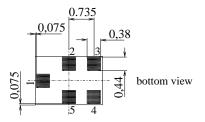


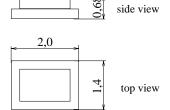
Data Sheet B7845

B7845

Low-Loss Filter for Mobile Communication

881,5 MHz

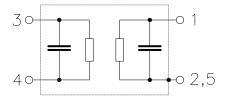

Data Sheet



Features

- Low-loss RF filter for mobile telephone GSM850 systems, receive path
- Very low insertion attenuation
- Low amplitude ripple
- Usable passband 25 MHz
- Unbalanced to balanced operation
- Impedance transformation from 50 Ω to 150 Ω
- Suitable for GPRS Class 1 to 12
- Ceramic Package for Surface Mounted Technology (SMT)

Chip sized SAW package QCS5E


Terminals

■ Ni, gold-plated

Dimensions in mm, approx. weight 0,007 g

Pin configuration

1 Input, unbalanced 3, 4 Output, balanced 2, 5 Case ground

Туре	Ordering code	Marking and Package according to	Packing according to
B7845	B39881-B7845-K410	C61157-A7-A131	F61074-V8151-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	- 40 / + 85	°C	
Storage temperature range	T_{stg}	- 40 / + 85	°C	
DC voltage	$V_{\rm DC}$	5	V	
ESD voltage	$V_{ESD}^{}^{*}$	100*	V	machine model, 10 pulses
Input power at	P_{IN}	15	dBm	peak power of GSM signal,
GSM850, GSM900				duty cycle 4:8
GSM1800 and GSM1900				
Tx bands				

^{*} acc. to JESD22-A115A (Machine Model), 10 negative & 10 positive pulses

B7845

Low-Loss Filter for Mobile Communication

881,5 MHz

Data Sheet

Characteristics

 $T = 25 \,^{\circ}\text{C}$ Operating temperature range: Terminating source impedance:

 $Z_{\rm S} = 50~\Omega$ $Z_{\rm L} = 150~\Omega~||~82~{\rm nH}~{\rm (balanced)}$ Terminating load impedance:

_	881,5	_	MHz
_			
_			
	1,2	1,5	dB
_	0,4	0,6	dB
_	1,5	1,8	
_	1,5	1,8	
45	54	_	dB
45	52	_	dB
30	35	_	dB
26	29	_	dB
28	38	_	dB
40	46	_	dB
-1,0	-0,5 0,0	1,0	dB
-5	-3,0 1,5	5	degree
20	26	_	dB
20	26	_	dB
22	40	_	dB
20	35	_	dB
	45 30 26 28 40 -1,0 -5	- 1,5 - 1,5 45 54 45 52 30 35 26 29 28 38 40 46 -1,0 -0,5 0,0 -5 -3,0 1,5 20 26 20 26 20 26 22 40	- 1,5 1,8 - 1,5 1,8 45 54 — 45 52 — 30 35 — 26 29 — 28 38 — 40 46 — -1,0 -0,5 0,0 1,0 -5 -3,0 1,5 5 20 26 — 20 26 — 20 26 — 22 40 —

B7845

Low-Loss Filter for Mobile Communication

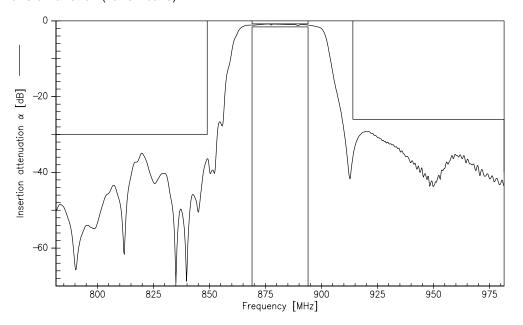
881,5 MHz

Data Sheet

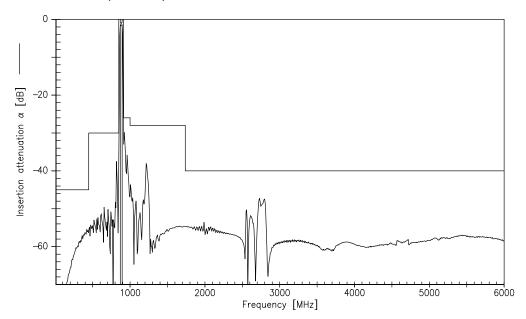
Characteristics

 $T = -20 \text{ to } +75 \,^{\circ}\text{C}$ Operating temperature range:

Terminating source impedance:


 $Z_{\rm S} = 50 \ \Omega$ $Z_{\rm L} = 150 \ \Omega \mid\mid 82 \ {\rm nH} \ ({\rm balanced})$ Terminating load impedance:

				min.	typ.	max.	
Center frequency			$f_{\mathbb{C}}$	_	881,5		MHz
Maximum insertion attenuation			α_{max}				
869,0	894,0	MHz		_	1,3	1,6	dB
Amplitude ripple (p-p)			Δα				
869,0	894,0	MHz		_	0,6	0,8	dB
Input VSWR							
869,0	894,0	MHz		_	1,6	1,8	
Output VSWR							
869,0	894,0	MHz		_	1,6	1,8	
Attenuation							
0,0		MHz		45	54	_	dB
434,0	447,0	MHz		45	52	_	dB
447,0	849,0	MHz		30	35	_	dB
914,01	0,000	MHz		26	29	_	dB
1000,01	738,0	MHz		28	38	_	dB
1738,06	0,000	MHz		40	46	_	dB
Amplitude balance (S ₃₁ /S ₂₁)							
869,0	894,0	MHz		-1,0	-0,6 0,0	1,0	dB
Phase balance $(\phi(S_{31})-\phi(S_{21})+180^{\circ}$	·)						
869,0	894,0	MHz		-5	-3,0 1,5	5	degree
Common mode suppression			S_{sc12}				
869,0	894,0	MHz		20	26	_	dB
824,0	995,0	MHz		20	26	_	dB
1648,0 1	1990,0	MHz		22	40	_	dB
3296,0 3		MHz		20	35	_	dB



Transfer function (narrow band)

Transfer function (wideband)

Low-Loss Filter for Mobile Communication

881,5 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC WT P.O. Box 80 17 09, D-81617 München

© EPCOS AG 2005. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.