# Hope RF

# HP03S.doc

### BAROMETER MODULE

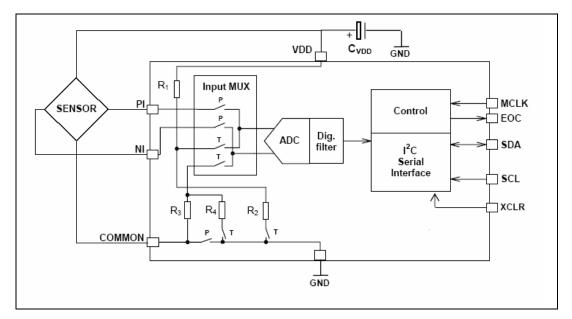
2006-12-15 PRELIMINARY Version: 1.1



- . Integrated pressure sensor
- . Pressure Range 300-1100hpa
- . 16 Bit  $\Sigma$ – $\Delta$  ADC
- . 11 coefficients for software compensation stored on chip
- . I<sup>2</sup>C Serial Interface
- . One system clock line (32768Hz)
- . One hardware controlled reset line
- . Low voltage, low power

### **Description**

The HP03S includes a piezo-resistive pressure sensor and an ADC interface. It provides 16 bit word data for pressure and temperature related voltage. With the help of a highly accurate calibration of the senor, 10 unique coefficients were stored on the chip, thus accurate pressure and temperature reading can be realized. HP03S is a low power, low voltage device with automatic power down switching. I<sup>2</sup>C Serial Interface is used for communications with a microprocessor. Sensor packaging options are DIP or SMD (with metal cap)


### **Features**

- . 15 Bit ADC resolution
- . Supply voltage 2.0v-5.0v
- .-30°C to +85°C operating range

### **Applications**

- . Pressure measurement and control systems
- . Mobile altimeter/barometer systems
- . Weather forecast products
- . Adventure or multi-mode watches

#### **Block Diagram**



# **BAROMETER MODULE**

2006-12-15 PRELIMINARY Version: 1.1

| Pin Name | Pin Number | Туре | Function                                                |
|----------|------------|------|---------------------------------------------------------|
| VSS      | 1          | G    | power ground                                            |
| VDD      | 2          | Р    | power VCC                                               |
| MCLK     | 3          | I    | master clock(32k) input                                 |
| XCLR     | 4          | I    | ADC reset input (keep low when system is in idle state) |
| SDA      | 5          | I/O  | . I <sup>2</sup> C data input and output                |
| SCL      | 6          | I    | I <sup>2</sup> C clock input                            |

<sup>\*</sup> XCLR is to reset the AD converter (active low). During the AD conversion phase, XCLR should stay high. After AD conversion end, keep XCLR pin low before another AD conversion starts.

# **Absolute Maximum Ratings**

| Parameter           | Symbol | Min  | Max | Unit     |
|---------------------|--------|------|-----|----------|
| Supply Voltage      | VDD    | -0.3 | 5.0 | V        |
| Over pressure       | Р      |      | 5   | Bar(abs) |
| Storage Temperature | Tstg   | -30  | 90  | °C       |

**Recommended Operating Conditions** 

| Parameter                   | Symbol | Conditions | Min | Тур | Max  | Unit      |
|-----------------------------|--------|------------|-----|-----|------|-----------|
| Supply Voltage              | VDD    |            | 2.0 | 3   | 5.0  | V         |
| Supply Current              | I      | VDD=3V     |     |     |      | V         |
| during conversion           |        |            |     | 500 |      | μΑ        |
| stand by                    |        |            |     | 1   |      | μA        |
| Operating Pressure Range    | Р      |            | 300 |     | 1100 | hpa (abs) |
| Operating Temperature Range | Т      |            | -30 | 25  | 85   | °C        |
| Conversion Time             | Т      | MCLK=32k   |     |     | 35   | ms        |
| Duty Cycle of MCLK          |        |            | 40% | 50% | 60%  | %         |
| Serial Date Rate            | SCL    |            |     |     | 100  | KHZ       |

# **Pressure and Temperature Output Characteristics**

With the calibration data provided by the HP03S system, it should be able to reach the following characteristics:

| Parameter                         | Symbol | Conditions | Min  | Тур | Max | Unit |
|-----------------------------------|--------|------------|------|-----|-----|------|
| Resolution                        |        |            | 0.1  |     |     | hpa  |
| Accuracy                          |        | 350-1100   | -0.5 |     | 0.5 | hpa  |
| Absolute Pressure Accuracy        |        | 350-1100   | -1.5 |     | 1.5 | hpa  |
| Maximum Error Over<br>Temperature |        | -30~+85    | -2.0 |     | 2.0 | hpa  |
| Long Term Stability               |        | 12 month   |      | 1   |     | hpa  |
| VDD Dependency                    |        | 2.0~5.0    | -1.5 | 0   | 1.5 | hpa  |
| Temperature Accuracy              |        |            | -1.0 |     | 1.0 | °C   |

# Hope RF HP03S.doc

# **BAROMETER MODULE**

2006-12-15 PRELIMINARY Version: 1.1

### **Pressure and Temperature Measurement**

The main function of HP03S system is to convert the uncompensated pressure and temperature signal from a pressure sensor. After the conversion, the following two values can be obtained:

. measured temperature "D2" . measured pressure "D1"

As the sensor is strongly temperature dependent, it is necessary to compensate for these effects. Therefore 7 sensor-specific coefficients are stored on the HP03S at our manufacturing facility, and they allow an accurate software compensation in the application.

### The 7 coefficients are:

| . Sensitivity coefficient                | "C1" |
|------------------------------------------|------|
| . Offset coefficient                     | "C2" |
| . Temperature Coefficient of Sensitivity | "C3" |
| . Temperature Coefficient of Offset      | "C4" |
| . Reference Temperature                  | "C5" |
| . Temperature Coefficient of Temperature | "C6" |
| . Offset Fine Tuning                     | "C7" |

# Parameter Range(Hex:Dec)

|    | Не     | ex     | ]    | Dec   |
|----|--------|--------|------|-------|
| C1 | 0x100  | 0x7fff | 256  | 32767 |
| C2 | 0x00   | 0x1fff | 0    | 8191  |
| C3 | 0x00   | 0x400  | 0    | 1024  |
| C4 | 0x00   | 0x1000 | 0    | 4096  |
| C5 | 0x1000 | 0x8000 | 4096 | 32768 |
| C6 | 0x00   | 0x4000 | 0    | 16384 |
| C7 | 0x960  | 0xA28  | 2400 | 2600  |
| D1 | 0x00   | 0xffff | 0    | 65535 |
| D2 | 0x00   | 0xffff | 0    | 65535 |

## **Pressure and Temperature Calculation:**

Step 1: (calculate offset, sensitivity and final pressure value)

| dUT=D2-C5                      |
|--------------------------------|
| $T = 250 + dUT * C6 / 2 ^ 16$  |
| OFF=(C2+(C4-2048)*dUT/2^14)*4  |
| $SENS = C1 + C3*dUT/2^10$      |
| X= SENS * (D1-7168)/2^14 - OFF |
| P=X*10/2^5+C7                  |

# **BAROMETER MODULE**

2006-12-15 PRELIMINARY Version: 1.1

For altitude measurement system, recommend to use  $P=X*100/2^5+C7*10$  So that better altitude resolution can be achieved

Step 2: (2<sup>nd</sup> order temperature and pressure compensation)

| T>450                                                  | T2=3*C6*(450-T)^2 / 2^26 | P2=3*T2*(P-3500)/2^14 |
|--------------------------------------------------------|--------------------------|-----------------------|
| T<0                                                    | T2=11*C6*(0-T)^2 / 2^26  | P2=3*T2*(P-3500)/2^14 |
| 0= <t=<450< td=""><td>T2=0</td><td>P2=0</td></t=<450<> | T2=0                     | P2=0                  |

| P=P-P2 |  |
|--------|--|
| T=T-T2 |  |

## **Example:**

C1=29908

C2=3724

C3=312

C4=1465

C5=9191

C6=3990

C7 = 2500

D1=30036

D2=4107

dUT = 4107-9191 = -5084

 $T=250-3990*5084/2^16 = -59$ 

OFF =  $(3724 + (1465-2048) * (-5084) / 2^14) * 4 = 15619$ 

 $SENS = 29908 + 312 * (-5084) / 2^10 = 28359$ 

 $X = 28359 * (30036-7168) / 2^14 - 15619 = 23963$ 

 $P = 23963 * 10 / 2^5 + 2500 = 9918 = 9988$ 

T2=11\*3990\*59^2/2^26=2

P2=3\*2\*(9988-3500)/2^14=2

T=-59-2 = -61 = -6.1C

P=9988-2=9986=998.6hpa

# Hope RF HP03S.doc

## **BAROMETER MODULE**

2006-12-15 PRELIMINARY Version: 1.1

#### **Serial Interface**

The I2C interface is used for accessing calibration data as well as reading measurement result from AD conversion.

The HP03SA system has a 2k bits (256\*8) EEPROM built in, and the space in the range of 16 to 127 were dedicated for calibration coefficients and factory testing use only. Any accidental corruption to those data will lead to system failure and can lead to wrong calculated pressure and temperature results (write protection solder option is available, default setting: write protected).

# **Reading Calibration Factor C1 to C7:**

The EEPROM chip address is set to 0, and reading or writing of the EEPROM is fully compatible to AT24C02. Bus drive timing should be referred to the specification of this part.

| Coefficient | EEPROM ADDRESS(decimal) |
|-------------|-------------------------|
| C1(MSB:LSB) | (16:17)                 |
| C2(MSB:LSB) | (18:19)                 |
| C3(MSB:LSB) | (20:21)                 |
| C4(MSB:LSB) | (22:23)                 |
| C5(MSB:LSB) | (24:25)                 |
| C6(MSB:LSB) | (26:27)                 |
| C7(MSB:LSB) | (28:29)                 |
|             |                         |

# Reading Temperature and Pressure value:D1,D2

AD chip I2C address is set to 0xEE (device write address), 0xEF (device read address). In order to get the AD value D1 and D2, you have to follow the following timing sequence:

Pressure Measure:

| S 11101110 A 11111111 A 11110000 A P D S | 11101110 A 11111101 A S 11101111 A MSB A LSB N P |
|------------------------------------------|--------------------------------------------------|
| Select pressure measurement              | Read AD value back                               |

Temperature Measure:

| S 11101110 A 11111111 A 11101000 A P D S | 3 11101110 A 11111101 A S 11101111 A MSB A LSB N P |
|------------------------------------------|----------------------------------------------------|
| Select temperature measurement           | Read AD value back                                 |

# Hope RF HP03S.doc

## **BAROMETER MODULE**

2006-12-15 PRELIMINARY Version: 1.1

S: I2C bus START (refer to AT24C02 EEPROM start command)

P: I2C bus STOP (refer to AT24C02 EEPROM stop command)

A (bold): I2C bus acknowledge by slave (SDA pull low: slave send out bit 0)

A: I2C bus acknowledge by master (SDA pull low: master send out bit 0)

N: I2C bus no acknowledge from master (SDA keep high: master send out bit 1 instead)

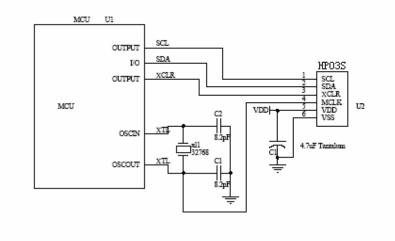
D: delay for 38ms or above

MSB: conversion result (MSB bit clocked out first)

LSB: conversion result (MSB bit clocked out first).

#### Remark:

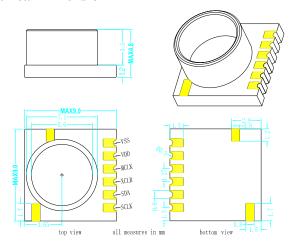
Before start an AD conversion cycle, remember to set XCLR pin high so that the system is no longer in the reset state.


All data read from the module is in hex format.

After first power on, the first read data should be disregarded, and only the second value be used. This can assure that unstable reading after power on reset can be filtered out.

For altitude calculation purpose, use averaging scheme to improve the stability of pressure reading, we recommend making at least 8 times averaging so that it is possible to achieve 0.3m accuracy (about 1 foot).

Like any other semiconductor device, the sensor is sensitive to light. During the application of this sensor, please keep the sensor in dark place to achieve best accuracy.


## **Typical Application Circuit Diagram:**



## **BAROMETER MODULE**

2006-12-15 PRELIMINARY Version: 1.1

#### **HP03SA Mechanical Dimension**



## **Important Notices**

Do not use this product as safety or emergency stop device or in any application where failure of this product could lead in personal injury. Failure to comply with these instructions could result with death or serious injury.

Should buyer purchase or use HOPE RF products for any such unintended or unauthorized application, buyer should indemnify and hold HOPE RF and its officers, employees, affiliates and distributors harmless against all claims, costs, damages and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury associated with such unintended or unauthorized use, even if such claim alleges that HOPE RF was negligent regarding the design or manufacturing of the part.

Hope RF reserves the right, without further notice, to change the product specification and/or information in this document and to improve reliability, functions and design.



#### HOPE MICROELECTRONICS CO.,LTD

Rm B.8/F LiJingGe Emperor Regency 6012 ShenNan Rd., Shenzhen, China

Tel: 86-755-82973805
Fax: 86-755-82973550
Email: sales@hoperf.com
trade@hoperf.com

Website: <a href="http://www.hoperf.com">http://www.hoperf.com</a>
<a href="http://www.hoperf.com">http://www.hoperf.com</a>

http://hoperf.en.alibaba.com

This document may contain preliminary information and is subject to change by Hope Microelectronics without notice. Hope Microelectronics assumes no responsibility or liability for any use of the information contained herein. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Hope Microelectronics or third parties. The products described in this document are not intended for use in implantation or other direct life support applications where malfunction may result in the direct physical harm or injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABILITY OR FITNESS FOR A ARTICULAR PURPOSE, ARE OFFERED IN THIS DOCUMENT.

©2006, HOPE MICROELECTRONICS CO.,LTD. All rights reserved