

MOS INTEGRATED CIRCUIT μ PD70108

V20™ 16-/8-BIT MICROPROCESSOR

The μ PD70108 (V20) is a CMOS 16-/8-bit microprocessor. It has a 16-bit architecture and is equipped with a 8-bit data bus. The μ PD70108 has a powerful instruction set which includes bit processing and packed BCD operation and high speed multiplication/division instructions, etc. and contains an 8080 emulation function. Further, the μ PD70108 contains a standby function which can greatly lower its power consumption. The μ PD70108 is software compatible with the 16-bit microprocessor μ PD70116 (V30TM).

Its functions are described in details in the manual indicated below. Please read this manual before starting design.

- V20, V30 User's Manual Hardware: IEM-871
- 16-bit V Series User's Manual Instruction: IEU-804

FEATURES

- Memory addressing space: 1 M bytes
- Minimum instruction execution time:
 - : 400 ns (5 MHz, 5 V; 70108-5)
 - 250 ns (8 MHz, 5 V; 70108-8)
 - 200 ns (10 MHz, 5 V; 70108-10)
- High-speed multiplication/division instruction:
 - : 3.8 to 11.4 μs (5 MHz, 5 V; 70108-5)
 - 2.4 to 7.1 μs (8 MHz, 5 V; 70108-8)
 - 1.9 to 5.7 μs (10 MHz, 5 V; 70108-10)
- High-speed block transfer instruction:
 - : 625 K words/second (5 MHz, 5 V; 70108-5)
 - 1 M words/second (8 MHz, 5 V; 70108-8)
 - 1.25 M words/second (10 MHz, 5 V; 70108-10)
- Following microprocessors are offered as a dedicated clock pulse generator/driver.

• μ PD71084 : for μ PD70108-5 and -8

• μ PD71011 : for μ PD70108-5 and -8

• μ PD71011-10 : for μ PD70108-10

The information in this document is subject to change without notice.

Document No. IC-1827B (O.D. No. IC-6659D) Date Published June 1994 P Printed in Japan

The mark ★ shows revised points.

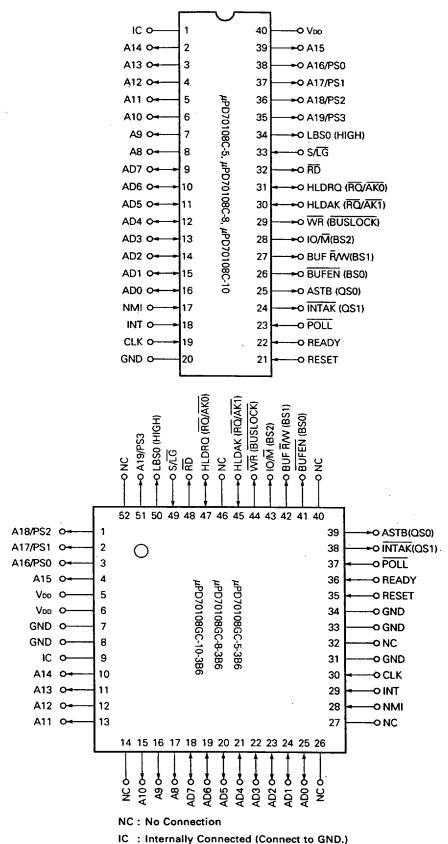
: 🖿 6427525 0063365 108 🖿

© NEC Corporation 1989

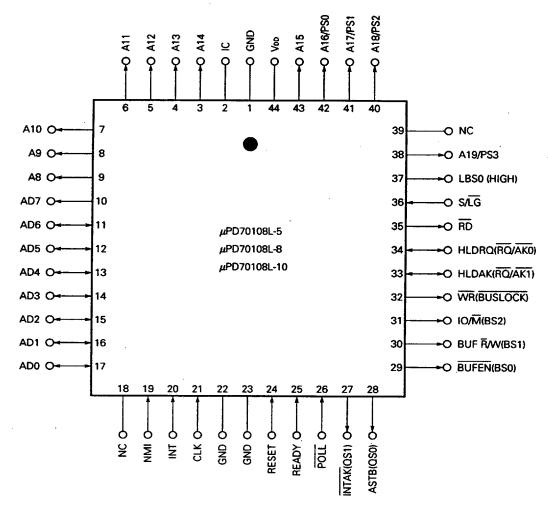
This Material Copyrighted By Its Respective Manufacturer

Downloaded from Elcodis.com electronic components distributor

★ ORDERING INFORMATION


Part Number	Package	Max. operation freq.(MHz			
μPD70108C-5	40-pin plastic DIP (600 mil)	5			
μPD70108C-8	40-pin plastic DIP (600 mil)	8			
μPD70108C-10	40-pin plastic DIP (600 mil)	10			
μPD70108GC-5-3B6	52-pin plastic QFP (☐ 14 mm)	5			
μPD70108GC-8-3B6	52-pin plastic QFP (☐ 14 mm)	8			
μPD70108GC-10-3B6	52-pin plastic QFP (☐ 14 mm)	10			
μPD70108L-5	44-pin plastic QFJ (☐ 650 mil)	5			
μPD70108L-8	44-pin plastic QFJ (☐ 650 mil)	8			
μPD70108L-10	44-pin plastic QFJ (☐ 650 mil)	10			

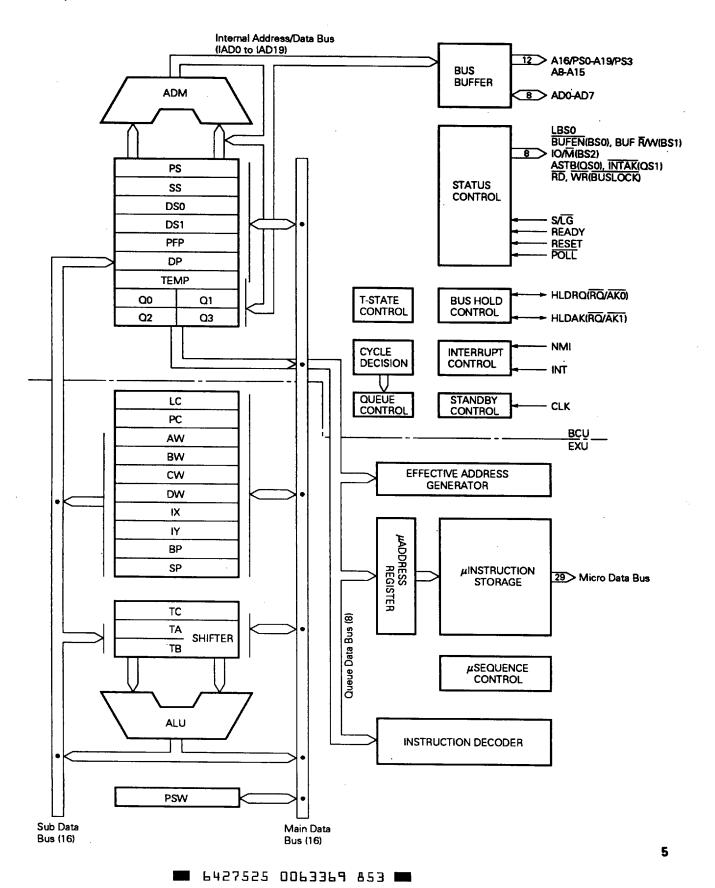
QUALITY GRADE


Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

PIN CONFIGURATION (Top View)

■ 6427525 0063367 T80 ■



NC: No Connection

IC: Internally Connected (Connect to GND.)

μPD70108 BLOCK DIAGRAM

This Material Copyrighted By Its Respective Manufacturer

CONTENTS

1.	PIN F	UNCTIONS	8
2.	REGI	STER CONFIGURATION	14
	2.1	PFP (Prefetch Pointer)	. 14
	2.2	Q0 to Q3 (Prefetch Queue)	. 14
	2.3	DP (Data Pointer)	
	2.4	TEMP (Temporary Communication Register)	. 14
	2.5	Segment Register (PS, SS, DS0, DS1)	. 15
	2.6	ADM (Address Modifier)	. 15
	2.7	General Registers (AW, BW, CW, DW)	15
	2.8	Pointer (SP, BP) and Index Register (IX, IY)	16
	2.9	TA/TB (Temporary Register/Shifter A/B)	16
	2.10	TC (Temporary Register C)	16
	2.11	ALU (Arithmetic & Logic Unit)	16
	2.12	PSW (Program Status Word)	16
	2.13	LC (Loop Counter)	17
	2.14	PC (Program Counter)	17
	2.15	EAG (Effective Address Generator)	17
	2.16	Instruction Decoder	18
	2.17	Microaddress Register	18
	2.18	Microinstruction ROM	18
	2.19	Microinstruction Sequence Circuit	18
3.	HIGH	SPEED EXECUTION OF INSTRUCTIONS	. 19
-	3.1	Dual Data Bus Method	
	3.2	Effective Address Generator	
	3.3	16-/32-Bit Temporary Register/Shifter (TA, TB)	
	3.4	Loop Counter (LC)	
	3.5	PC and PFP	
4.	DESC	RIPTION OF CHARACTERISTIC INSTRUCTIONS	
	4.1	Variable Length Bit Field Operation Instructions	.21
	4.2	Packed BCD Operation Instructions	.23
	4.3	Stack Operation Instructions	.24
	4.4	Array Index Check Instructions	.30
	4.5	Mode Operation Instructions	.31
	4.6	Floating-Point Operation Coprocessor Instruction	.33
5.	INTE	RRUPT OPERATIONS	.34
6.	STAN	IDBY FUNCTIONS	.37
7.	I/O A	DDRESS RESERVE	.37

8.	INSTRUCTION SET	3
9.	ELECTRICAL SPECIFICATIONS	6
10.	PACKAGE DRAWINGS	7
11.	RECOMMENDED SOLDERING CONDITIONS	8

1. PIN FUNCTIONS

There are some pins which work for either a small system or a large system, and others for both small and large systems.

(1) A15 to A8 (Address Bus) ... small/large

These pins output the middle 8 bits of the 20-bit address information. They are 3-state outputs and become high-impedance during hold-acknowledge.

(2) AD7 to AD0 (Address/Data Bus) ... small/large

These are buses for both address and data. They output the lower 8 bits of 20-bit address information and input/output data using the time-division method.

The 16-bit data input/output is divided into two times. The 1st byte is lower and the 2nd byte is higher.

These pins are 3-state inputs/outputs and they become high-impedance during hold-acknowledge and interruption.

(3) NMI (Non-Maskable interrupt) ... small/large

This is an interrupt request input which is non-maskable by software.

This input is active at the rising edge, and it can be detected at any clock cycle. The actual interrupt servicing begins after the completion of executing instruction.

Interrupt start address for the above interrupt is decided by the interrupt vector 2.

After the rising edge, NMI signal must be kept at the high level of the minimum 5 clock cycles. Its priority is shown below. Hold request can be accepted during the NMI acknowledge.

INT < NMI < HLDRQ (small) or RQ (large)

This interrupt can be used for the release of a standby mode.

(4) INT (Maskable Interrupt) ... small/large

This is an interrupt request input which is maskable by software.

This input is active at the high level and can be detected at the last clock cycle of an instruction, then accepted if this input is interrupt enable status (if interrupt enable flag IE is set). The external device checks if the INT interrupt request has been accepted or not by INTAK signal output from the CPU.

INT signal must be kept at a high level until the first INTAK signal is output.

The priority is shown below. If a NMI arises simultaneously, the NMI takes priority over the INT. Hold request can be accepted during the INT acknowledge.

INT < NMI < HLDRQ (small) or RQ (large)

This interrupt can be used for the release of a standby mode.

(5) CLK (Clock) ... small/large

This is an external clock input.

(6) RESET (Reset) ... small/large

This is a CPU reset input which is active at the high level. It takes priority over all operations. After RESET is released, the CPU starts a program from FFFF0H.

RESET input is used not only for usual CPU start, but also for the release of a standby mode.

(7) READY (Ready) ... small/large

When memory or I/O cannot end the read/write operation within the basic access time of the CPU, this signal is requested to be inactivated (at the low level) to generate wait state (TW) in the CPU, and to extend the read/write cycle.

If the READY signal is active (at the high level) at T3 or TW state, the CPU won't generate any wait state.

Since this signal cannot guarantee correct operation unless it satisfies setup/hold time, it should be synchronized with an external device.

(8) POLL (Poll) ... small/large

POLL input is checked by a POLL instruction. If the signal is at the low level, the next instruction is executed. If it is at the high level, POLL input is checked every 5-clock cycle which continues until the signal is at the low level.

These functions are utilized to synchronize the CPU's program with external device operations.

(9) INTAK (Interrupt Acknowledge) ... small

This pin outputs when it receives INT signal. An external device inputs the interrupt vector in synchronization with this signal to the CPU through data buses (AD7 to AD0).

This output is fixed at the high level in a standby mode.

(10) ASTB (Address Strobe) ... small

This is a strobe signal which is output to latch address information into an external latch. Once this output gets at the high level (for about 1/2 clock) in a standby mode, then it is fixed at the low level.

(11) BUFEN (Buffer Enable) ... small

This is a signal used as an output enable signal of external bi-directional buffers. It is output when data is exchanged with memory or I/O, or an interrupt vector is input.

This output is fixed at the high level in a standby mode.

This pin is a 3-state output, its impedance is high during the hold acknowledge.

(12) BUF R/W (Buffer Read/Write) ... small

This signal is output to decide the data transfer direction of external bi-directional buffers. It shows the sending direction from the CPU to an external device at a high level, and the receiving direction from an external device to the CPU at the low level.

This output is fixed at the high or low level in a standby mode.

This pin is a 3-state output, its impedance is high during the hold acknowledge.

(13) IO/M (IO/Memory) ... small

The signal is output to differentiate I/O access from memory access. It shows the I/O at the high level, and memory at the low level.

This output is fixed at the high or low level in a standby mode.

This pin is a 3-state output, its impedance is high during the hold acknowledge.

(14) WR (Write Strobe) ... small

The signal is output when data is written to I/O or memory, the distinction between I/O and memory is executed by the IO/\overline{M} signal.

This output is fixed at the high level in a standby mode.

This pin is a 3-state output, its impedance is high during the hold acknowledge.

(15) HLDAK (Hold Acknowledge) ... small

An acknowledge signal is output, which shows that the CPU received a hold request signal (HLDRQ).

While this signal is active (at the high level), address bus, address/data bus, and control bus of 3-state output is high-impedance.

(16) HLDRQ (Hold Request) ... small

A signal is input, which allows an external device to request the CPU to release address bus, address/data bus, and control bus.

Since this signal cannot guarantee correct operation unless it satisfies setup time, it should be synchronized with external device.

★ (17) RD (Read Strobe) ... small/large

This signal is output when reading data from I/O or memory. The distinction between the I/O and the memory is executed by the IO/\overline{M} .

This signal exists originally for a small mode, but it may be output at the same timing in a large mode

This output is fixed at the high level in a standby mode.

This pin is a 3-state output, its impedance is high during the hold acknowledge.

★ (18) S/LG (Small/Large) ... small/large

This is a pin to decide the CPU operation mode. This pin is used fixed at the high or low level. This pin operates at the high level in a small mode, and at the low level in a large mode.

The pin numbers indicated differentiate their functions depending on the mode to be operated, then each pin has its own name.

Pir	Number	-Nate	Fund	ction
DIP	QFP	QFJ	S/LG = High	S/LG = Low
24	38	27	INTAK	Q\$1
25	39	28	ASTB	Q\$0
26	41	29	BUFEN	BS0
27	42	30	BUF R/W	BS1
28	43	31	IO/M	BS2
29	44	32	WR	BUSLOCK
30	45	33	HLDAK	RQ/AK1
31	47	34	HLDRQ	RQ/AK0
34	50	37	LBS0	Always high

Note Pin number is different from package.

(19) LBS0 (Latched Bus Status 0) ... small

This signal is used with the IO/\overline{M} signal and BUFR/W signal and informs external what the current bus cycle is.

IO/M	BUFR/W	LBS0	Bus cycle
	0	0	Program fetch
		`1	Memory read
"		. 0	Memory write
<u></u>	' [1	Receiving state
	0	0	Interruption acknowledge
,		1	I/O read
,		0	I/O write
	<u>'</u>	1	Hold

(20) A19/PS3 to A16/PS0 (Address Bus/Processor Status) ... small/large

This is a dual-function output pin for address bus and processor status signal, the contents of each pin are output by time multiplexing.

As an address bus, the upper 4 bits are output out of the 20-bit memory address. 0 is output to all bits during the I/O access.

Processor status signal is output to both memory and I/O accesses. PS3 is always 0 in native mode, and always 1 in an emulation mode. The contents of interrupt enable flag (IE) is output to PS2. PS1 or PS0 shows which segment is currently used.

A17/PS1	A16/PS0	Segment
0	0	Data segment 1
0	1	Stack segment
1	0	Program segment
1	1	Data segment 0

These outputs are fixed at the high or low level in a standby mode.

The A19/PS3 to A16/PS0 pins are 3-state outputs and impedance is high during the hold acknowledge.

(21) QS1, QS0 (Queue Status) ... large

This signal notifies an external device (floating-point operation coprocessor) of the instruction queue status in the CPU.

QS1	QS0	Status of Instruction Queue
0	0	No operation (no change in the queue)
0	1	First byte of instructions
1	0	Empty
1	1	After 2nd byte of instructions

· 11

This status of instruction queue represents the status when EXU accesses an instruction queue. The contents which are output to the QS1 and QS0 pins are effective only in the 1 clock cycle immediately after this queue access.

This status signal is offered so that the coprocessor for floating-point operation can monitor the CPU program execution state and process when the control is shifted to the coprocessor itself (by FPO: Floating-Point Operation instruction).

These outputs are fixed at the low level in standby mode.

(22) BS2 to BS0 (Bus Status) ... large

This is a status signal to inform an external bus controller what the current bus cycle is.

The external bus controller decodes these signals, and generates control signals to access memory or I/O.

BS2	BS1	BS0	Bus Cycles
		0	Interrupt acknowledge
	0	1	I/O read
0		0	I/O write
	'	1	Halt
		0	Program fetch
	0	1	Memory read
'		0	Memory write
		1	Passive status

These outputs are fixed at the high level in a standby mode.

These pins are 3-state outputs, and impedance is high during the hold acknowledge.

These signals become high when the clock rises immediately after RESET is activated and remain high until the next rise of the clock. After this 1 clock cycle, the signals become high-impedance.

(23) BUSLOCK (Bus Lock) ... large

This is the signal to request the other master CPUs in a multiprocessor system not to use system bus, when 1 instruction following the BUSLOCK front end instruction is being executed.

This output is fixed at the high level in a standby mode (however, it is fixed at the low level if BUSLOCK instruction exists before HALT instruction).

This pin is a 3-state output and impedance is high during the hold acknowledge.

(24) RQ/AK1, RQ/AK0 (Hold Request/Acknowledge) ... large

RQ/AK1 and RQ/AK0 are common pins for both bus hold request input (RQ) and bus hold acknowledge signal output (AK). Their priority is as follows:

RQ/AK1 < RQ/AK0

These pins are 3-state inputs/outputs. They incorporate a pull-up resistor and are set inactive (at the high level) in the open (float) status.

When this signal is used as a bus hold request input (RQ), it cannot guarantee correct operation unless it satisfies setup/hold time. Therefore, it should be synchronized with an external device.

12

■ 6427525 DD63376 T93 ■

- (25) Von (Power Supply) ... small/large
 This is a positive power supply pin.
- (26) GND (Ground) ... small/large
 This is a GND potential.
- (27) IC (Internally Connected)
 Set this to a GND potential.

- 13

2. REGISTER CONFIGURATION

2.1 PFP (Prefetch Pointer)

Prefetch pointer is a 16-bit binary counter holding offset information of the program memory address which BCU is to prefetch to an instruction queue.

The PFP is incremented every time BCU prefetches instruction bytes from a program memory. Also, a new location is loaded when branch, call, return, or break instruction is executed. The contents of PFP at this point are same as that of the PC (Program Counter).

PFP is always used together with PS (Program Segment) register.

2.2 Q0 to Q3 (Prefetch Queue)

The μ PD70108 has a 4-byte instruction queue (FIFO). It can store the maximum instruction code of 4 bytes which BCU prefetches.

The instruction codes stored in the queue are fetched and executed by EXU.

When branch, call, return, or break instruction is executed, or external interrupt is processed, the queue contents are cleared, and an instruction of a new location is prefetched.

Usually, the μ PD70108 executes prefetch if the queue has blank of 1 byte or more.

If the average execution time of several sequential instructions exceeds the number of clocks, to some extent, which is necessary for prefetching the instruction codes of each instruction, and when EXU ends the execution of one instruction, then the instruction codes which EXU can execute consecutively will be ready in a queue, and the fetch time from external memory may be deducted from the instruction execution time. Therefore, it is possible to increase the processing speed compared with the CPU which fetches and executes in each instruction.

The effect of queue will be reduced, in inverse proportion to the number of instructions whose queue is cleared like the above-mentioned execution of branch instruction, or if the instructions with short execution time continue.

2.3 DP (Data Pointer)

Data pointer is a 16-bit register which specifies the address for reading/writing variables.

The contents of register including the offset of the effective and memory addresses which are created in EA generator are transferred to this data pointer.

2.4 TEMP (Temporary Communication Register)

This is a 16-bit temporary communication register between an external data bus and EXU.

For the purpose of byte access, TEMP can read/write upper and lower bytes independently.

Basically, EXU terminates write operations by transferring data to TEMP, then confirms the data transfers from an external bus to TEMP and terminates read operations.

2.5 Segment Register (PS, SS, DS0, DS1)

In the μ PD70108, memory address is divided into logical segments by the 64K bytes, the start address of each segment is specified by a segment register, the offset after the start address is specified either by another register or an effective address.

There are four types of segment registers:

Segment Register	Default Offset
PS (Program Segment)	PFP
SS (Stack Segment)	SP, effective address
DS0 (Data Segment 0)	IX, effective address
DS1 (Data Segment 1)	IY

A pair of PS and PFP (Prefetch Pointer) and that of DS1 and IY are fixed.

SS is paired with SP in normal stack operation, but it offsets effective address when BP register is selected as a base register.

DS0 is used together with IX in a block transfer processing, but it offsets effective address in the other processing.

In the addressing which defines SS as a segment register when using BP register as a base register, it is possible to use the other 3 types of segment registers for a segment selection by using segment overlaid prefix instruction (PS:, DS0:, DS1:).

2.6 ADM (Address Modifier)

ADM (Address Modifier) performs the generation of physical address (addition of segment register to PFP or DP) and the increments of PFP (Prefetch Pointer).

2.7 General Registers (AW, BW, CW, DW)

There are four different types of 16-bit general registers. It is possible to access as an 8-bit register (AH, AL, BH, BL, CH, CL, DH, and DL) by dividing each register into the upper and lower 8 bits.

Therefore, these registers can be used as an 8-bit or 16-bit register for a variety of instructions, such as transfer instructions, arithmetic operation instructions, and logical operation instructions.

Also, the following list shows that the each register can be used as a default register for a specific instruction processing.

AW: Word multiplication/division, word I/O, data conversion

AL : Byte multiplication/division, byte I/O, BCD rotate, data conversion, translation

AH : Byte multiplication/division

BW: Translation

CW: Loop control branch, repeat prefix

CL : Shift instruction, rotate instruction, BCD operation

DW: Word multiplication/division, indirect addressing I/O

- 15

2.8 Pointer (SP, BP) and Index Register (IX, IY)

These are used as a base pointer or an index register during the memory access executed by based addressing, indexed addressing, and based/indexed addressing.

Like a general register, they can be used for instructions, such as transfers, arithmetic operations, and logical operations, but they cannot be used as an 8-bit register for the same instructions.

The following list shows that each register can be used as a default register for the purpose of a specific processing.

SP: Stack manipulation

IX : Block transfer (on the source side), BCD string operation

IY: Block transfer (on the destination side), BCD string operation

2.9 TA/TB (Temporary Register/Shifter A/B)

TA/TB are 16-bit temporary registers/shifters which are used for multiplication/division and shift/rotate (including BCD rotate) instructions.

TA and TB work as a 32-bit temporary register/shifter when executing the multiplication/division instructions, while only TB works as a 16-bit temporary register/shifter when executing the shift/rotate instructions.

Both TA and TB can read/write the upper and lower byte independently between the internal buses. TA/TB are inputs of ALU.

2.10 TC (Temporary Register C)

TC is a 16-bit temporary register which is used for the internal processing, such as multiplication/division, etc.

TC is an input of ALU.

2.11 ALU (Arithmetic & Logic Unit)

ALU (Arithmetic & Logic Unit) consists of a full adder and a logic unit, and it performs the arithmetic operations (addition/subtraction/multiplication/division, increment, decrement, and complement operations) and the logical operations (test, AND, OR, and XOR, and the bit-wise test, set, clear, and inversion).

2.12 PSW (Program Status Word)

Program status word consists of the 6 types of status flags and the 4 types of control flags.

Status flags

- V (Overflow)
- S (Sign)
- Z (Zero)
- AC (Auxiliary Carry)
- P (Parity)
- · CY (Carry)

Control flags

- MD (Mode)
- DIR (Direction)
- IE (interrupt Enable)
- BRK (Break)

16

■ 6427525 0063380 414 **■**

These flags are stack processed by manipulating the following word images.

									6							
MD	1	1	1	٧	D-R	E	BRK	s	Z	0	A C	0	Р	1	CY	PSW

Status flags are automatically set and reset according to the execution result (data value) of each instruction.

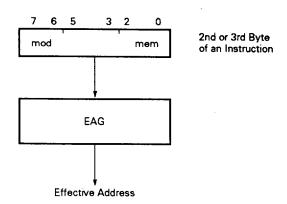
CY flag can be set, reset, or inverted directly by instructions.

Control flags are set or reset by instructions, then control the CPU operations.

MD flag is reloadable only between the execution of BRKEM instruction and that of RETEM instruction, it may not be restored in other places even if RETI, or POP PSW instruction is executed.

2.13 LC (Loop Counter)

LC (Loop Counter) is a 16-bit register which counts the number of loops of the primitive block transfer/ I/O instructions (MOVBK, OUTM, etc.) controlled by repeat prefix instructions (REP, REPC, etc.), and the number of shifts of multi-bit shift/rotate instructions.


2.14 PC (Program Counter)

The program counter is a 16-bit binary counter which holds the offset information of the program memory address which the EXU is currently to execute.

The PC is incremented each time a microprogram fetches an instruction byte out of an instruction queue. Also, a new location is loaded when branch, call, return, or break instruction is executed. The contents of the PC at this point are same as the PFP (Prefetch Pointer).

2.15 EAG (Effective Address Generator)

EAG (Effective Address Generator) is a circuit which performs high-speed effective address calculations needed during the memory access. It terminates the calculation by two clocks in all addressing modes.

If it reads the byte (the 2nd or 3rd byte) specified by the instruction's operand and requires memory access, it will generate a control signal related to the ALU and the associated register operation, and will calculate an effective address to transfer the signal to the DP (Data Pointer).

If necessary, it requests the BCU to activate a bus cycle (memory read).

2.16 Instruction Decoder

Instruction decoder classifies the 1st byte of an instruction code into the groups with a specific function, and holds it during the execution of microinstruction.

2.17 Microaddress Register

Microaddress register specifies the address of microinstruction ROM which should be executed consecutively.

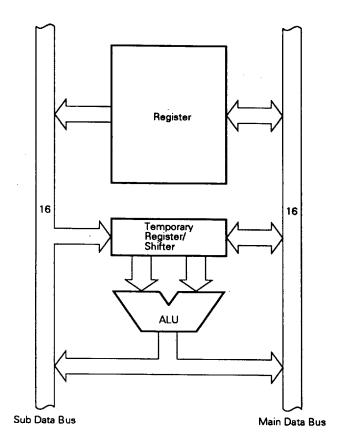
When starting the execution of microinstructions, the 1st byte of instructions stored in a queue as a start address is read into this register, and the register specifies the start address of the specific microinstruction sequence.

2.18 Microinstruction ROM

Microinstruction ROM holds 29-bit width of microinstructions for 1024 words.

2.19 Microinstruction Sequence Circuit

This circuit manages the control of a microaddress register, the output control of a microinstruction ROM, and synchronization of the EXU and BCU.


3. HIGH SPEED EXECUTION OF INSTRUCTIONS

In order to reduce the instruction execution time, the μ PD70108 is equipped with the following hardware features.

- · EXU internal dual data bus
- · Effective address generator
- 16-/32-bit temporary register/shifter (TA, TB)
- 16-bit loop counter (LC)
- PC (Program Counter) and PFP (Prefetch Pointer)

3.1 Dual Data Bus Method

In order to reduce the number of processing steps required for executing instructions, the dual data bus method of main data bus (16-bit) and sub data bus (16-bit) is adopted. This method realizes roughly 30% reduction of processing time (compared with a single bus method) in addition/subtraction, logical operations, and compare instructions.

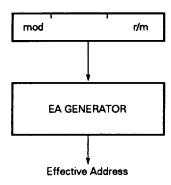
Example ADD AW, BW; AW ← AW + BW

Single bus Dual bus

Step 1 ALU ← AW ALU ← AW, BW

2 ALU ← BW AW ← ALU

3 AW ← ALU


19

■ 6427525 OO63383 123 **■**

3.2 Effective Address Generator

This is a circuit which may perform high-speed processing of effective address calculation required during the memory access.

This dedicated hardware has realized the high-speed processing which is several times faster than the microprogram method. It requires just 2 clocks for effective address calculations in all addressing modes, while the microprogram method requires 5 to 12 clocks for the calculation.

3.3 16-/32-Bit Temporary Register/Shifter (TA, TB)

Temporary register/shifter (TA, TB) is offered for multiplication/division and shift/rotate instructions. The adoption of this circuit has increased the speed of multiplication/division instructions particularly. This speed is 4 times as fast as that of the microprogram method.

TA + TB: 32-bit temporary register/shifter for multiplication/division instructions

TB: 16-bit temporary register/shifter for shift/rotate instructions

3.4 Loop Counter (LC)

This counts the number of loops of primitive block transfer/I/O instruction which is controlled by repeat prefix instruction, and the number of shifts of multi-bit shift/rotate instruction.

For example, the multi-bit rotate of register is executed as follows. It has increased the speed up to two times that of microprogram method.

RORC AW, CL; CL = 5

Microprogram method LC method

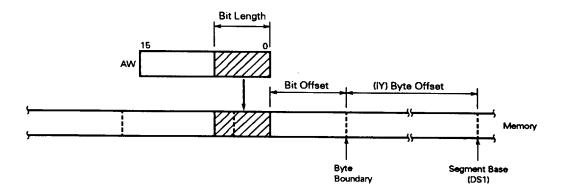
 $8 + 4 \times 5 = 28$ clocks 7 + 5 = 12 clocks

3.5 PC and PFP

The hardware contains both a prefetch pointer (PFP) which addresses program memory prefetching, and a program counter (PC) which addresses program memory which is going to be executed. Because of this, the instruction execution time for branch, call return, and break instructions has been reduced for another few clocks, compared with a microprocessor with one PFP.

4. DESCRIPTION OF CHARACTERISTIC INSTRUCTIONS

4.1 Variable Length Bit Field Operation Instructions

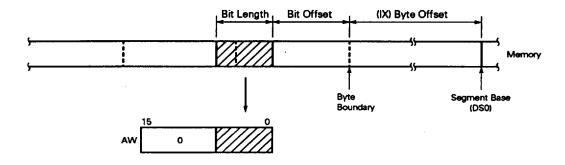

There are two types of instructions, INS (Insert Bit Field) and EXT (Extract Bit Field). These instructions are very effective for a computer plotting and a high-level language. For example, they may be applied to a packed array of Pascal and a record-type data structure.

(1) INS reg8, reg8'/INS reg8, imm4

This instruction transfers the lower bit data (out of the 16-bit data of AW register) which has a length specified by the 2nd operand, to memory area which is decided by a byte offset which is addressed by a segment register DS1 and a indexed register IY, and a bit offset which is specified by the values (0 to 15) of the 1st operand.

After the completion of transfer, the register which is specified by both IY register and the 1st operand is automatically updated to show the next bit field.

The effective values of the 2nd operand are 0 to 15 (1-bit length at 0, 16-bit length at 15) only.


Bit field data can extend over the byte boundaries of memory.

(2) EXT reg8, reg8'/EXT reg8, imm4

This loads a bit field data with a bit length defined by the 2nd operand, from the memory area decided by the bit offset specified by a byte offset which is addressed by a segment register DS0 and an index register IX and a bit offset which is specified by the values (0 to 15) of the 1st operand, to the AW register.

After the completion of transfer, the register which is specified by both IX register and the 1st operand is automatically updated to show the next bit field.

The effective values of the 2nd operand are 0 to 15 (1-bit length at 0, 16-bit length at 15) only.

Bit field data can extend over the byte boundaries of memory.

4.2 Packed BCD Operation Instructions

The instructions consist of ADD4S, SUB4S, and CMP4S which may process packed BCD in a string form, and ROR4 and ROL4 which process it as a byte/word operand.

(1) ADD4S

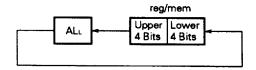
This instruction sums a packed BCD string addressed by an index register IX and that by a index register IY, and stores the result to a string which is addressed by IY. The string length (number of BCD digits) is decided by a CL register. The operation result affects both a zero flag (Z) and a carry flag (CY).

BCD string (IY, CL) ← BCD string (IY, CL) + BCD string (IX, CL)

(2) SUB4S

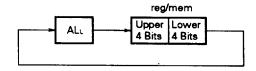
This instruction subtracts a packed BCD string addressed by an index register IX from that by an index register IY, and stores the result to a string addressed by IY. The string length (number of BCD digits) is decided by a CL register. The operation result affects both a zero flag (Z) and a carry flag (CY).

BCD string (IY, CL) ← BCD string (IY, CL) - BCD string (IX, CL)


(3) CMP4S

This instruction performs the same subtraction as SUB4S does, but it does not store the result, and only affects a zero flag (Z) and a carry flag (CY).

BCD string (IY, CL) - BCD string (IX, CL)


(4) ROL4

This instruction handles either a register which is directly addressed by an instruction byte or byte data of memory as BCD data, then rotates its one digit to the left through the lower 4 bits (ALL) of an AL register.

(5) ROR4

This instruction handles either a register which is directly addressed by an instruction byte or byte data of memory as BCD data, then rotates its one digit to the right through the lower 4 bits (ALL) of an AL register.

4.3 Stack Operation Instructions

(1) PREPARE imm16, imm8

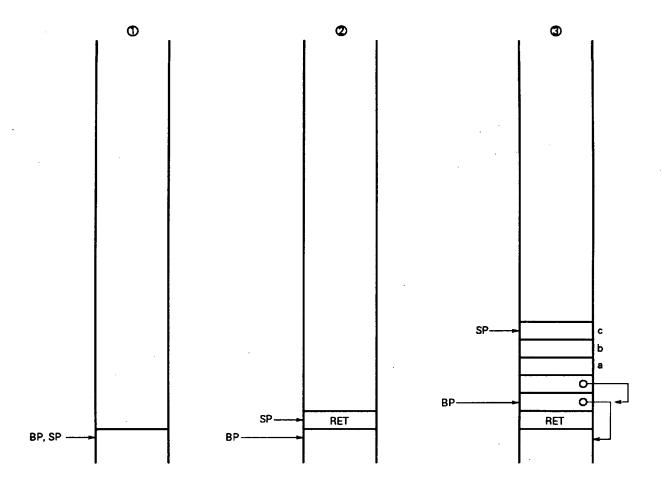
This instruction is used to create a "Stack Frame" which is necessary for a block-structured high-level language (e.g. Pascal, Ada, etc.). A stack frame contains both a pointer group pointing a frame of variables which may be referred from the procedures and the area of local variables. Description is continued below using an example program made by a Pascal type language.

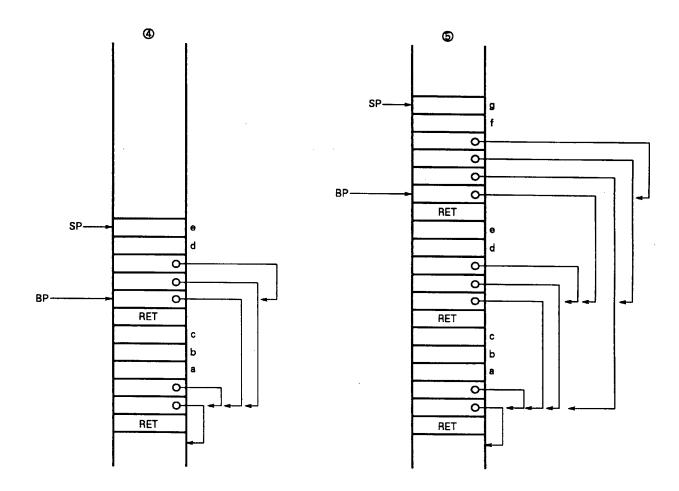
```
program EXAMPLE;
  procedure P;
    var a,b,c,;
    procedure Q;
       var d,e;
       procedure R;
         var f,g;
         begin
            d:=a+f+g;
         end:
       begin
         R;
         b:=d+e:
       end;
    begin
       a:=b+c;
       0:
    end:
(*main program*)
  begin
      Ρ;
  end.
```

Remark A word is used for all variables.

This is a program example in which 3-layered procedure blocks are nesting. Procedure P defines variables a, b, and c, procedure Q defines d and e, and procedure R defines f and g. Therefore, global variables a, b, and c, are referred from procedure Q, and variables a, b, c, d, and e from procedure R.

The PREPARE instruction copies a frame pointer to reserve the area of local variables and to enable the reference to global variables. The 1st operand specifies an area size (byte unit) to be reserved for local variables, and the 2nd operand shows the depth of the procedure block (the depth is called "lexical level").


The frame's base address which is created by the PREPARE instruction is set to a base pointer BP. After having compiled the EXAMPLE program, this program converts itself to a program listed in the next page (The DISPOSE instruction which is used in an assembler program returns the state of both a stack pointer SP and a base pointer BP to the state immediately before the PREPARE instruction is executed. Please refer to (2)).



; ASSEMBLER PROGRAM

```
START:
        MOV
                   SP,
                       SPTOP
        MOV
                                 ; ①
                   BP,
                        SP
                                    ②
        CALL
        BR
                   SYSTEM
P:
                   6, 1
        PREPARE
                                 ; ③
        MOV
                   AW, [BP][B+BLEVEL*2]
        ADD
                   AW, [BP] [C+CLEVEL*2]
        MOV
                   [BP] [A+ALEVEL*2], AW
        CALL
        DISPOSE
        RET
Q:
        PREPARE
                                 ; (4)
                   4, 2
        CALL
        MOV
                   AW,
                       [BP] [D+DLEVEL*2]
        ADD
                   AW, [BP] [E+ELEVEL*2]
        MOV
                        [BP][BLEVEL*2]
        MOV
                   SS: [IY] [B+BLEVEL*2], AW
        DISPOSE
        RET
R:
        PREPARE
                                 ; ③
        MOV
                       [BP][F+FLEVEL*2]
        ADD
                        [BP][G+GLEVEL*2]
        MOV
                   IY,
                        [BP] [ALEVEL*2]
        ADD
                   AW, SS:[IY][A+ALEVEL*2]
        MOV
                        [BP][DLEVEL*2]
        MOV
                   SS: [IY] [D+DLEVEL*2], AW
        DISPOSE
        RET
                   ALEVEL = -1
                   BLEVEL = -1
                   CLEVEL = -1
                   DLEVEL = -2
                   ELEVEL = -2
                   FLEVEL = -3
  : G = -4
                   GLEVEL = -3
```

The process in which a stack frame is created as the program runs is illustrated in the following pages. Numbers correspond to those placed in the program's comment list.

The PREPARE instruction saves BP to a stack first in order to restore the BP of a procedure at the called side when the procedure finishes. Then, it pushes a frame pointer (a saved BP) onto the stack within the range accessible from the called procedure. The accessible range equals to the value which is subtracted by one from the lexical level of the procedure.

If the lexical level is one or more, the instruction pushes its own frame point onto the stack. This is done to copy a frame pointer of the called procedure, when the instruction copies a frame pointer in the other procedure which was called from this procedure.

Then, the instruction sets the value of new frame pointer to BP, and reserve the area of the local variables to be used in the procedure, onto the stack. I.e. it subtracts the value worthy of local variables from SP.

```
display = 2nd operand
  dynamics = 1st operand
SP = SP-2;
(SP) = BP;
temp = SP;
if display > 0 then begin
  repeat display - 1 times
    begin
      SP = SP-2;
      BP = BP-2;
       (SP) = (BP);
    end;
  SP = SP-2;
  (SP) = temp;
  end;
BP = temp;
SP = SP-dynamics
```

Data access

(a) Access of local variables

Local variables are placed in the frame of the procedure itself. Therefore, the effective address EA.L of a local variable is calculated by the following formula.

This "offset" is the sum of the offset values which are located from a frame size stacked onto the frame (the base value of an accessible frame) and the base value of local variable area, to that variable.

(b) Access of global variables

Global variables are located in the address added by the offset value which accesses the target base pointer out of the old base pointers loaded onto the stack frame and attempts to access the value.

Therefore, the effective address EA.G of global variables is calculated by the following expression:

```
EA.G = SS: ((SS: (BP + offset1)) + offset2)
```

This offset1 is the offset value from the base value (BP value) of the current frame to the address in which the base address of a frame (including the global variable to be referred) is stored. Also, the offset2 is the offset value from the base value of a frame which holds the variable to be referred to that variable.

(2) DISPOSE

This instruction releases one of the stack frames which is created by PREPARE instruction. For BP it loads a point value which points the previous frame, while for SP it loads a point value which points the least significant address of a frame.

SP = BP;BP = (SP);

SP = SP + 2

4.4 Array Index Check Instructions

This is an instruction to check whether the index value to specify if an element exists in the defined area or not, in array-type data structure. If the index value exceeds the area, it activates BRK5.

The defined area value should be set to the 2 words (setting the lower bound value at the 1st word, and the upper bound value at the 2nd word) in the memory, before CHKIND instruction is executed. The index value is for the register (any 16-bit register) which an array manipulation program is using.

```
CHKIND reg 16, mem 32

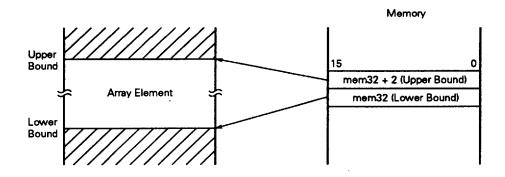
If (mem 32) > reg16 or (mem 32 + 2) < reg16

T A←(015H, 014H)

T C←(017H, 016H)

S P←SP-2, (SP+1, SP)←PS W

E←0, BRK←0


S P←SP-2, (SP+1, SP)←PS

PS←TC

S P←SP-2, (SP+1, SP)←PC

PC←TA</pre>

= BRK5
```


4.5 Mode Operation Instructions

The operating modes of the μ PD70108 consist of native mode (normal operation) and emulation mode (emulation operation of the μ PD8080AF instruction set). As a flag to switch these modes, a mode flag (MD) is provided in the bit 15 of PSW. The mode is changed to native mode when MD is 1, and to emulation mode when MD is 0. MD is set/reset directly or indirectly by the mode operation instruction.

The instructions to change modes from native to emulation are:

BRKEM (Break for Emulation) RETI (Return from Interrupt)

The instructions to change modes from emulation to native are:

RETEM (Return from Emulation)
CALLN (Call Native routine)

Also, either RESET input or external interrupt input (NMI, INT) turns emulation mode back to native mode.

(1) BRKEM imm 8

This is a basic instruction to activate emulation mode. This instruction saves PSW, PS, and PC, resets MD (0), and loads an interrupt vector specified by operand to PS and PC. This instruction neither affects interrupt enable flag (IE) nor breaks flag (BRK).

Fetching the instruction code of interrupt service routine (for emulation) which has jumped, the CPU interprets the code as an instruction of the μ PD8080AF and executes it.

The CPU interprets emulation mode as interrupt servicing.

In emulation mode, the register and flag actions of the μ PD8080AF are alternatively done by the register and flag of the μ PD70108 shown below.

31

■ 6427525 0063395 945 **■**

μPD8080AF	μPD70108
Α	AL
8	СН
С	CL
D	DH
Ε	DL
н	вн
L	BL
SP	BP BP
PC	PC

μPD8080AF	μPD70108
С	CY
z	Z
s	S
Р	P
AC	AC

Regarding stack operations, either SP in native mode or BP in emulation mode works as a stack pointer. Adoption of this independent stack pointer allows both modes to reserve independent stack area, and prevents them from destroying any stack in other mode by erroneous stack operation.

SP, IX, IY, and AH in native mode and the four segment register (PS, SS, DS0, and DS1) are not affected by emulation mode.

In emulation mode, the segment base of instruction is decided by the PS register (automatically decided by interrupt vector), and that of data by the DS0 register (decided by a programmer just before entering emulation mode).

(2) RETEM (without operand)

When RETEM instruction is executed in emulation mode (this instruction is interpreted as an instruction of the μ PD8080AF), the CPU restores PS, PC, and PSW and returns to native mode, as if it returns from interrupt servicing. At this point, the contents (i.e. "1") in native mode which was saved in the stack by BRKEM instruction are restored, which sets the CPU to native mode.

(3) CALLN imm 8

When this instruction is executed in emulation mode (this instruction is interpreted as an instruction of the μ PD8080AF), the CPU save PS, PC, and PSW to the stack (MD = 0 is saved), sets (1) a mode flag (MD), then loads the interrupt vector specified by operand to PS and PC. This instruction neither affects interrupt enable flag (IE) nor break flag (BRK).

Thus, interrupt routine in native mode can be called from emulation mode.

To return from this interrupt routine to emulation mode, RETI instruction should be executed.

(4) RETI (without operand)

This is a general instruction to return from an interrupt routine activated by BRK instruction or an external interrupt in native mode. If this instruction is executed at the end of an interrupt service routine activated by CALLN instruction in emulation mode, PS, PC, and PSW restoration is exactly the same as normal. Because the value (= 0) of mode flag (MD) in emulation mode is restored to MD if PSW is restored, the CPU is set to emulation mode, then further instructions are interpreted as an instruction of the μ PD8080AF and executed. RETI instruction is executed to return from an interrupt routine of native mode which was activated by NMI or INT interrupt request generated in emulation mode in the same way.

32

■ 6427525 OO63396 881 **■**

4.6 Floating-Point Operation Coprocessor Instruction

FPO1 fp-op/FPO1 fp-op, mem FPO2 fp-op/FPO2 fp-op, mem

These are coprocessor's instructions for external floating-point operation. They leave operations to a coprocessor when the CPU fetches these instructions, then they only execute auxiliary processing (calculation of effective address, generation of physical address, and activation of memory read cycle) for a coprocessor if necessary.

When a coprocessor monitors these instructions, it interprets them as an instruction to itself and executes them. At this point, the coprocessor uses only the address information of memory read cycle only activated by the CPU, or both the address and read data, depending on a type of instruction.

FPO1 and FPO2 instructions have the same function, but different type of codes.

Also in the description of an actual assembler language, it is more common to use mnemonic to each instruction in a coprocessor, rather than to use the mnemonic, FPO1 or FPO2.

When the CPU fetches FPO1 or FPO2 and either of them requests memory access, it activates a memory read cycle. However, the data read by this should be used by a floating-point operation coprocessor, so it will never be handled by the CPU.

Also, the CPU activates a memory read cycle even if a floating-point operation coprocessor needs a memory write cycle, the data resulted from this activation is ignored as a dummy data, only memory address information is latched by a floating-point operation coprocessor. Then a floating-point operation coprocessor uses the address information to execute a memory write cycle.

5. INTERRUPT OPERATIONS

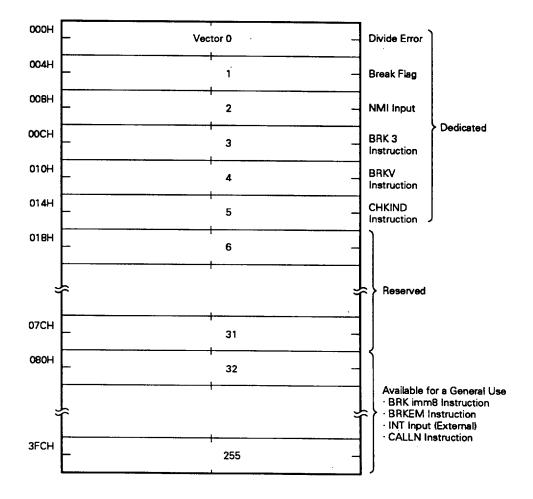
The μ PD70108 has mainly two types of interrupts; one by an external interrupt request, and the other by software processing.

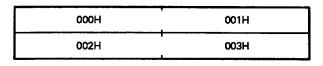
They are classified further as follows:

- (1) External interrupt
 - (a) NMI input (non-maskable)
 - (b) INT input (maskable)
- (2) Software instruction
 - (a) Processing results of instruction
 - · Divide error by DIV or DIVU instruction
 - Memory boundary over detection by CHKIND instruction
 - (b) Conditional break instruction
 - When V = 1 in BRKV instruction
 - (c) Unconditional break instruction
 - 1-byte break instruction, BRK 3
 - · 2-byte break instruction, BRK imm8
 - (d) Flag processing (single step)
 - · Sets BRK flag using stack operation
 - (e) Emulation-related instruction
 - BRKEM imm8
 - CALLN imm8

Any of the above interrupts should be selected by either automatically or sequentially specifying one point in the interrupt vector table which has been arranged beforehand, then decide interrupt routine start address.

Interrupt vector table is shown in the Figure 5-1. This table is assigned to the 1K-byte of the memory 000H to 3FFH, and it may hold 256 vectors (using 4 bytes per vector).




Figure 5-1. Interrupt Vector Table

The vectors 0 to 5 are specified by a use factor, and the vectors 6 to 31 are reserved. They are not available for a general use.

In the vectors 32 to 255, the 2-byte break instruction, BRKEM instruction, INT input, and CALLN instruction (during the emulation) are available for a general use.

One interrupt vector consists of 4 bytes. 2 bytes in the lower address is loaded to PC as an offset, while the other 2 bytes in the upper address is loaded to PS as a base.

Example Vector 0

PS ← (003H, 002H) PC ← (001H, 000H)

Based on this format, a programmer should initialize the contents of each vector to use at the beginning of a program.

The basic steps to jump in an interrupt service routine are listed as follows:

TA ← vector lower (offset)

TC ← vector upper (segment base)

 $SP \leftarrow SP - 2$, $(SP + 1, SP) \leftarrow PSW$

IE \leftarrow 0, BRK \leftarrow 0, MD \leftarrow 0

 $SP \leftarrow SP - 2$, $(SP + 1, SP) \leftarrow PS$

PS ← TC

 $SP \leftarrow SP - 2$, $(SP + 1, SP) \leftarrow PC$

PC ← TA

6. STANDBY FUNCTIONS

 μ PD70108 incorporates standby mode to decrease the power consumption while it is waiting for program's processing.

Standby mode is set by HALT instruction in native mode or HLT instruction in emulation mode.

In standby mode, internal clock is provided only for the circuit related to the function necessary for releasing the standby mode and the circuit related to bus hold control function, then no internal clock is provided for the other circuits. This may reduce the power consumption to a fraction of that for normal operation (native/emulation mode).

Standby mode is released by either RESET input or external interrupt inputs (NMI, INT).

Bus hold function is effective during the standby mode, however, it returns to standby mode when bus hold request is cleared.

7. I/O ADDRESS RESERVE

The upper 256 bytes (FF00H to FFFFH) of I/O address might be used in the future. Do not use it at this time.

8. INSTRUCTION SET

Table 8-1. Legend of Operand Type

Identifier	Description
reg	8-/16-bit general register
	(destination-side register in the instruction which uses two 8-/16-bit general registers)
reg'	Source-side register in the instruction which uses two 8-/16-bit general registers
reg8	8-bit general register
	(destination-side register in the instruction which uses two 8-bit general registers)
reg8'	Source-side register in the instruction which uses two 8-bit general registers
reg16	16-bit general register
	(destination-side register in the instruction which uses two 8-bit general registers)
reg16'	Source-side register in the instruction which uses two 16-bit general registers
dmem	8-/16-bit memory location
mem	8-/16-bit memory location
mem8	8-bit memory location
mem16	16-bit memory location
mem32	32-bit memory location
imm	Constant in the range of 0 to FFFFH
imm3	Constant in the range of 0 to 7
imm4	Constant in the range of 0 to FH
imm8	Constant in the range of 0 to FFH
imm16	Constant in the range of 0 to FFFFH
acc	Register AW or AL
sreg	Segment register
src-table	Name of 256-byte conversion table
src-block	Name of a block which is addressed by register IX
dst-block	Name of a block which is addressed by register IY
near-proc	Procedure in the current program segment
far-proc	Procedure in the other program segment
near-label	Label in the current program segment
short-label	Label in the range, from the end of instruction to the -128 to +127-byte
far-label	Label in other program segment
memptr16	Word which includes the location's offset in the current program segment to which control
	attempts to move
memptr32	Double word which includes the location's offset and segment base address in other program
-	segment to which control attempts to move
regptr16	16-bit general register which includes the location's offset in other program segment to which
	control attempts to move
pop-value	Number of bytes which are dumped from the stack (0 to 64K, usually even number)
fp-op	Immediate value to identify the instruction code of an external floating-point operation coprocessor
R	Register set

Table 8-2. Legend of Operation Code

Identifier	Description
W	Byte/word specification bit (0: byte, 1: word).
	However, when s is 1, sign extended byte data is specified 16-bit operand even if W = 1.
reg	Register field (000 to 111)
reg'	Register field (000 to 111) (source-side register in the instruction which uses two registers)
mem	Memory field (000 to 111)
mod	Mode field (00 to 10)
\$	Sign extension specification bit (0: sign is not extended, 1: sign is extended)
X,XXX,YYY,ZZZ	

Table 8-3. Legend of Operation Description

Identifier	Description
AW	Accumulator (16-bit)
AH	Accumulator (upper byte)
AL	Accumulator (lower byte)
BW	Register BW (16-bit)
cw	Register CW (16-bit)
CL	Register CW (lower byte)
DW	Register DW (16-bit)
BP	Base pointer (16-bit)
SP	Stack pointer (16-bit)
PC	Program counter (16-bit)
PSW	Program status word (16-bit)
IX	Index register (source) (16-bit)
IY	Index register (destination) (16-bit)
PS	Program segment register (16-bit)
SS	Stack segment register (16-bit)
DS0	Data segment 0 register (16-bit)
DS1	Data segment 1 register (16-bit)
AC	Auxiliary carry flag
CY	Carry flag
P	Parity flag
S	Sign flag
z	Zero flag
DIR	Direction flag
IE	Interrupt enable flag
V	Overflow flag
BRK	Break flag
MD	Mode flag
()	Contents of memory shown in the parentheses
disp	Displacement (8-/16-bit)
ext-disp 8	16-bit displacement which is sign-extended from 8-bit displacement
temp	Temporary register (8-/16-/32-bit)
TA	Temporary register A (16-bit)
TB	Temporary register B (16-bit)
TC	Temporary register C (16-bit)
tmpcy	Temporary carry flag (1-bit)
seg	Immediate segment register (16-bit)
offset	Immediate offset register (16-bit)
	Transfer direction
+	Addition
-	Subtraction
×	Multiplication
+	Division
%	Modulo
^	AND
V	OR
¥	Exclusive-OR
жH 	Numeric value of 2-digit hexadecimal number
жж	Numeric value of 4-digit hexadecimal number

■ 6427525 0063404 788 ■

Table 8-4. Legend of Flag Operation

Identifier	Description
(Blank)	No change
0	Cleared to 0
1	Set to 1
×	Set or cleared according to the result
U	Undefined
R	Pre-saved value is restored

Table 8-5. Memory Addressing

mem	0 0	0 1	10
000	BW + IX	BW + IX + disp 8	BW + IX + disp 16
0 0 1	BW + IY	BW + IY + disp 8	BW + IY + disp 16
0 1 0	BP + IX	BP + IX + disp 8	BP + IX + disp 16
011	BP + IY	BP + IY + disp 8	BP + IY + disp 16
100	IX	IX + disp 8	IX + disp 16
101	ΙΥ	lY + disp 8	IY + disp 16
110	DIRECT ADDRESS	BP + disp 8	BP + disp 16
111	BW	BW + disp 8	BW + disp 16

Table 8-6. Selection of 8-/16-Bit General Registers

reg, reg'	W = 0	W = 1
000	AL	AW
001	CL	cw
010	DL	DW
011	BL	BW
100	AH	SP
101	СН	ВР
110	DH	IX
111	ВН	IY

Table 8-7. Selection of Segment Registers

sreg	<u> </u>
00	DS1
01	PS
10	ss
11	DS0

★ The instruction set is described in table form on the following pages.

The clock cycles indicated in the tables represent the time needed for the execution unit to execute instructions, and are based on the following conditions.

- · The prefetch time and waiting time to use the bus are not included.
- Zero wait time is assumed for memory access. In other words, one bus cycle's clock cycle equals 4 clock cycles.
- · Zero wait time is assumed for I/O access.
- · Primitive block transfer instructions and primitive I/O instructions include the repeat prefix.

If the instruction performs both byte and word processing (holding W-bit), the value of the clock cycle is shown as follows:

The left side of / shows the clock cycle for the byte processing (W=0); The right side of / shows the clock cycle for the word processing (W=1).

For the clock cycles of block transfer-related instructions, refer to Table 8-8.

Table 8-8. Clock Cycles of Block Transfer-related Instructions

Instruction	Cloc	k Cycles
instruction	Byte processing (W=0)	Word processing (W=1)
MOVBK	11+8/rep (11)	11+16/rep (19)
СМРВК	7+14/rep (13)	7+22/rep (21)
СМРМ	7+10/rep (7)	7+14/rep (11)
LDM	7+9/rep (7)	7+13/rep (11)
STM	7+4/rep (7)	7+8/rep (11)
INM	9+8/rep (10)	9+16/rep (18)
оитм	9+8/rep (10)	9+16/rep (18)

Remark Numeric values in parentheses are for single processing.

															×					
JO C					-			-			-	_	-		×			<u> </u>	<u> </u>	H
						Ê	AL	sreg: SS,DS0,DS1	sreg: 88,DS0,DS1											
ed _O	reg←reg'	(mem)←reg	reg←(mem)	(mem)←imm	reg←imm	If W = 0, AL←(dmem) If W = 1, AH←(dmem+1), AL←(dme	If W = 0, (dmem)←AL If W = 1, (dmem+1)←AH, (dmem)←	sreg←reg16	sreg←(mem16)	reg16←sreg	(mem16)←sreg	reg16←(mem32) DS0←(mem32+2)	reg16←(mem32) DS1←(mem32+2)	AH←SZ,x,AC,x,P,x,CY	S,Z,x,AC,x,P,x,CY←AH	reg16←mem16	AL←(BW+AL)	reg↔reg'	(mem)++reg	***************************************
Clocks	7.	8/13	11/15	11/15	4.	10/14	9/13	2	15	2	14	26	26	2	3	7	6	၉	16/24	١,
Bytes	2	1-2	2-4	3-6	2-3	m	3	2	2-4	2	2-4	2-4	2-4	1	1	2-4	-	2	2-4	,
6543210	1 reg reg'	mem ger bon	mem gen bon	mem 0 0 0 pou				1 0 sreg reg	nod 0 sregmem	1 0 sreg reg	nod 0 sregmem	nem gen por	nem reg mem			od reg mem		1 reg regʻ	nem gen bot	
	10001W	1000100W	W 1 0 1 0 0 0 1	1 1 0 0 0 1 1 W n	1011W reg	101000W	1010001W	10001110	10001110 m	10011001	10001100m	1 1 0 0 0 1 0 1 m	11000100 m	10011111	10011110	10001101 m	11010111	1 0 0 0 0 1 1 W 1	1000011W	
Operand	reg,reg'	mem,reg	reg,mem	тет,ітт	reg,imm	acc,dmem	dmem,acc	sreg,reg16	sreg,mem16	reg16,areg	тет16,згед	DS0,reg16, mem32	DS1,reg16, mem32	AH,PSW	PSWAH	reg16,mem16	src-table	reg,reg'	mem,reg reg,mem	AW,reg16
Mnemonic	MOV															Vaga	TRANS	хсн		
	6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 AC CY V P	emonic Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Bytes Clocks Operation AC CY V P reg.reg' 1 0 0 0 1 0 1 W 11 reg 2 2 2 reg-reg' 1 reg-reg' 1 reg-reg'	emonic Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 P 5 4 3 2 0 P 5 4 3 2 0 P 5 4 3 2 0	emonic Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Price (CV V P P P P P P P P	emonic Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Bytes Clocks Clocks Operation AC CY V P reg,reg' 1 0 0 0 1 0 1 W mod reg mem 2 4 8/13 (mem)+reg (mem)+reg 1/15 (mem)+imm 1/15 (mem)+imm 1/15 (mem)+imm	Femonic Operand Teg.reg F 5 4 3 2 1 0 Bytes Clocks Clocks Operation AC CY V P reg.reg 1 0 0 0 1 0 1 W mod reg mem 2 - 4 9/13 (mem)+reg 0 0 0 1 0 1 W mod reg mem 2 - 4 11/15 reg-(mem) 0 0 0 1 0 1 W mod reg mem 2 - 4 11/15 (mem)+imm 1 1 0 0 0 1 1 W mod reg mem 3 - 6 11/15 (mem)+imm 0 0 1 1 W reg 0 0 0 1 W reg 0 0 0 0 W reg	Permonic Operand T 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Pytes Clocks Clocks Operation AC CY V P reg.reg' 1 0 0 0 1 0 1 W 11 reg reg' 2 2 2 reg-reg' 1 0 0 0 1 0 1 W mod reg mem 2-4 8/13 (mem)+reg 2 - 4 11/15 reg-(mem) 1 1/15 re	Perform Operand T 6 5 4 3 2 1 0 T 6 5 4 3 2 1 0 Bytes Clocks Clocks Operation AC CY V P reg.reg' 1 0 0 0 1 0 1 W mod reg mem 2 - 4 9/13 (mem)+reg AC CY N P N P reg.mem 1 0 0 0 1 0 1 W mod reg mem 2 - 4 11/15 (mem)+reg N P N P reg.mem 1 1 0 0 0 1 1 W mod reg mem 2 - 4 11/15 (mem)+rimm N P N P reg.imm 1 1 0 1 1 W reg 2 - 3 4 reg-imm N P N P acc,dmem 1 0 1 1 W reg 3 10/14 I W = 0, (dmem)+1, AL+(dmem+1), AL+(dmem)+AL N P N P dmem,acc 1 0 1 0 0 0 1 W 3 9/13 I W = 1, (dmem+1)+AH, (dmem)+AL N P N P	emonic Operand To 6 1 3 2 1 0 7 6 5 4 3 2 1 0 Bytes Clocks Clocks Clocks Acq Cv V P P reg,reg' 1 0 0 0 1 0 1 W Mod reg mem 2 - 4 9/13 (mem)+reg 1 0 0 0 1 0 1 W Mod reg mem 2 - 4 1/15 reg-(mem) 1 0 0 0 1 0 1 W Mod reg mem 2 - 4 1/15 reg-(mem) 1 0 0 0 1 1 W reg 1 1/15 reg-(mem) 1 1/15 reg	Poperation Operation Ope	Page 2 1	Partial Coperation Partial Clocks Partial Clocks	Page 1904 1 1 1 1 1 1 1 1 1	Tog. reg. reg. reg. reg. reg. reg. reg. re	Parison Operation Operation Acc Acc	Page 1901 Operation Oper	Parish Operation Coperation Coperati	Parishe Operand Oper	Page	V reg,reg' 10 to 0 10 to W reg reg' 2 2 reg-reg' reg,reg' r

			Operation	ation Code				L	"	F. 0		Γ
ructio roup	Mnemonic	Operand	78542210	78843310	Bytes	Clocks	Operation	~ J.√		\ <u></u>	\vdash	-
			178 + 69	178469				2		_	<u>~</u>	7
	REPC		011.00101		-	2	Executes the primitive block transfer instruction of the consecutive byte during the CW ≠ 0, then decrements (−1) CW. Processes hold interrupt, if any. Exits from a loop if CY ≠ 1.					
Repe	REPNC		01100100		1	2	Same as above Exits from a loop if CY ≠ 0.				ļ	
at prefix	REPE REPE REPZ		11110011		-	2	Executes the primitive block transfer instruction of the consecutive byte during the CW \star 0, then decrements (-1) CW. Processes hold interrupt, if any. Exits from a loop if the primitive block transfer instruction is CMPBK or CMPM, and at the same time Z \star 1.					
	REPNE REPNZ		11110010		1	2	Same as above Exists from a loop if Z ≠ 0.				ļ	
	MOVBK	dst-block, src-block	1010010W		- ·	808	If W = 0, (IY)←(IX) DIR = 0 : IX←IX+1, IY←IY+1 DIR = 1 : IX←IX-1, IY←IY-1					
							If W = 1, (IY+1, IY)←(IX+1,IX) DIR = 0 : IX←IX+2, IY←IY+2 DIR = 1 : IX←IX-2, IY←IY-2					
Prim	СМРВК	arc-block, dat-block	W1100101		-	See	If W = 0, (IXI+(IY) DIR = 0 : IX←IX+1, IY←IY+1 DIR = 1 : IX←IX-1, IY←IY-1	×	×	×	×	×
itive bloci							If W = 1, (IX+1, IX)—IX+1, IY) DIR = 0 : IX←IX+2, IY←IY+2 DIR = 1 : IX←IX-2, IY←IY-2					
c transfe	CMPM	dst-block	101011W		-	888	If W = 0, AL-(IY) DIR = 0 : IY←IY+1; DIR=1; IY←IY−1	×	×	×	×	×
r instru					-	5	If W = 1, AW-(IV+1, IY) DIR = 0 : IY←IY+2; DIR=1; IY←IY-2			<u> </u>		
ctions	ТОМ	src-block	1010110W			8	If W = 0, AL←(IX) DIR = 0 : IX←IX+1; DIR=1; IX←IX-1					
					-		If W = 1, AW←(iX+1, IX) DIR = 0 : IX+2; DIR=1; IX←IX-2					
	втм	det-block	101010W		-	888	If W = 0, (IY)←AL DIR = 0 : IY←IY+1; DIR=1; IY←IY−1					
					-		If W = 1, (IY+1,IY)←AW DIR = 0 : IY←IY+2; DIR=1; IY←IY-2		-			

■ 6427525 0063408 323 **■**

											١
Inetru Gro	Mnemonic	Operand	Operati	ation Code	Bytea	Clocks	Operation		E		
		<u>.</u>	76543210	76543210		CIOCUS		AC CY V		8	Z
	SNI	reg8,reg8*	00001111	00110001	8	35 - 133	16-bit field←AW				
Bit 1			1 1 reg' reg								
field		reg8,imm4	11110000	00111001	-	35 - 133	35 – 133				
opera			11000 reg								
tion i	ЕХТ	reg8,reg8*	00001111	00110011	3	34 - 59	AW←18-bit field				
nstru			1 1 reg' reg								
ctions		reg8,imm4	00001111	11011100	•	34 - 59	AW←16-bit field	_			
•	·		11000 reg								
I/C	2	acc,imm8	1110010W		2	9/13	If W = 0, AL←(imm8) If W = 1, AH←(imm8+1),AL←(imm8)				
O inst		acc,DW	1110110W			8/12	If W = 0, AL←(DW) If W = 1, AH←(DW+1),AL←(DW)				
tructio	DO.	imm8,acc	1110011W		2	8/12	If W = 0, (inm8)+-AL If W = 1, (inm8+1)+-AH, (imm8)+-AL				
ns		DW, acc	W1110111W		-	8/12	If W = 0, (DW)←AL If W = 1, (DW+1)←AH, (DW)←AL				
	¥N.	dst-block,DW	W0110110W		-	- 88	If W = 0, (IY)+(DW) DIR = 0 : IY+-IY+1; DIR=1; IY+-IY-1				
Primit instru		-				Table 8-8	If W = 1, (IY+1, IY)←(DW+1,DW) DIR = 0 : IY←IY+2; DIR=1; IY←IY-2		_		
	OUT.M	DW, src-block	W110110		-	88	if W = 0, (DW)←(IX) DIR = 0 : IX←IX+1; DIR=1; IX←IX−1				
						Table 8-8	Table 8-8 If W = 1 (DW+1, DW)←(IX+1,IX) DIR = 0 : IX←IX+2; DIR=1; IX←IX-2				

	7	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	8	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
Flag	4	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	_×	×	×
<u>.</u>	>	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	داد	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	AC	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
Oneration	Tone lock	reg←reg+reg'	(mem)4-(mem)+reg	reg←reg+(mem)	reg←reg+imm	(mem)←(mem)+imm	If W = 0, AL←AL+Imm If W = 1, AW←AW+imm	reg←reg+reg'+CY	(mem)←(mem)+reg+CY	reg←reg+(mem)+CY	reg-reg-lmm+CY	(mem)←(mem)+imm+CY	If W = 0, AL←AL+Imm+CY If W = 1, AW←AW+imm+CY	'в9-гед-тед'	(mem)+-teg	reg←reg–(mem)	reg←reg∸imm	(mem)←(mem)-imm	If W = 0, AL←AL−imm If W = 1, AW←AW−imm	reg←reg-reg'-CY	(mem)←(mem)-reg-CY	reg←reg–(mem)–CY	reg←reg–imm–CY	(mem)←(mem)–imm–CY	If W = 0, AL←AL-imm-CY If W = 1 aW. aw_imm-CY
\$ 0 0		2	16/24	11/15	4	18/26	•	2	16/24	11/15	*	18/26	+	7	16/24	11/15	. *	18/26	•	2	16/24	11/15	*	18/26	4
Bytes		2	2-4	2-4	3-4	3-6	2-3	2	2-4	2 - 4	3-4	3-6	2-3	2	2-4	2-4	3-4	9 - 8	2-3	2	2-4	2-4	3-4	3-6	2-3
n Code	7 8 5 4 3 2 1 0	11 reg reg'	med reg mem	mem ger bom	11000reg	шеш 0 0 рош		1 1 reg reg'	mod reg mem	mod reg mem	11010reg	mod 0 1 0 mem		11 regreg'	mem ger bom	mod reg mem	11101 reg	mod 1 0 1 mem		11 reg reg	mod reg mem	mod reg mem	11011 reg	mod 0 1 1 mem	
Operation Code	7 6 5 4 3 2 1 0	W 1 0 0 0 0 0	W0000000	W 1 0 0 0 0 0 0	1000001	W . 0 0 0 0 0 1	0000010W	W 1 0 0 1 0 0 0	W 0 0 0 1 0 0 0 W	W 1 0 0 1 0 0 0	1 0 0 0 0 0 8 W	1 0 0 0 0 0 s W	0001010W	W 1 0 1 0 1 W	W 0 0 1 0 1 0 0 W	W 1 0 1 0 1 W	1 0 0 0 0 0 s W	100000 BW	0010110W	W 1 0 1 1 0 0 0	0001100W	W 1 0 1 1 0 1 W	100000 m	1.00000 BW	0001110W
puesedo		reg,reg*	mem,reg	mem,gen	reg,imm	աալ'աթա	acc,imm	reg,reg*	mem,reg	reg,mem	reg,imm	mem,imm	acc,imm	reg,reg'	төт, гед	mem,gen	reg,imm	mem,imm	acc,imm	reg,reg*	тет,гед	reg,mem	reg,imm	mem,imm	acc,imm
Mnemonic		ADO						ADDC						sus						SUBC					
Instru Gro									Addit	ion/s	ubtrac	tion	instru	ction	•										

■ 6427525 0063410 T&1 ■

	z	×	×	×				1										
	8	u,	u,	'n									×	×	×	×	×	X
	_	ח	l n	n	_			-					×	×	×	×	×	×
Flag	_	<u>ר</u>	n	n									×	×	×	×	×	×
	ठ	×	×	×									~		Ť			
	¥C	n	n	Э									×	×	×	×	×	×
Oracation		det BCD string←det BCD string+erc BCD string • U	det BCD string←det BCD string-erc BCD string • U	det BCD string-erc BCD string * U	At December 1	_	AL door Lower	_	AL Poper Lower		nem AL Does Lower	_	reg8+reg8+1	x 1+(mem)+(mem)+1	reg16+reg16+1	reg8⊷reg8–1	x 1–(mem)→(mem)	reg16←1
1000 1000	CIOCKS	19×n+7	19×n+7	19×n+7	13		28		17		32		7	16/24	2	2	16/24	2
S. C.	2	2	~	~	m		3-5		m		3 - 5		2	2 - 4	-	2	2-4	1
ation Code	76543210	00100000	00100010	00100110	0010100		00101000		00101010		00101010		1 1 0 0 0 reg	mod 0 0 0 mem		1 1 0 0 1 reg	mod 0 0 1 mem	
Operati	76543210	00001111	00001111	00001111	00001111	11000 reg	00001111	mod 0 0 0 mem	00001111	1 1 0 0 0 reg	00001111	шод 0 0 0 реш	1111110	W111111W	0 1 0 0 0 reg	1111110	WIIIIII	01001 reg
Operand					reg8		8mem		reg8		тет		reg8	Hem	reg16	reg8	mem	reg18
Magnetic		ADD48	SUB4S	CMP4S	ROL4				ROR4			-	INC			DEC		
	oup				BCD	oper	ation i	instru	ctions	•				incr		t-dec uction	reme: ns	nt

n: 1/2 of the number of BCD digits
 The number of BCD digits is given at CL register. It is possible to set the values 1 to 254.

	2 8	D	5	3	D		D	2	ם ס	2	5	5	2
	<u>a</u>	3	5	2	-3	3	3	2	3	3	D	D	<u> </u>
Flag	>	×	×	×	×	×	× ×	×	×	×	×	×	×
	ઢ	×	×	×	×	×	×	×	×	×	×	×	×
Ì	V C	. ⊃	D		>	5			5	5	_	5	5
Operation		AW←ALxreg8 AH = 0: CY←0, V←0 AH ≠ 0: CY←1, V←1	AW←ALx(mem8) AH = 0: CY←0, V←0 AH ≠ 0: CY←1, V←1	DW,AW←AWxreg16 DW = 0: CY←0, V←0 DW = 1: CY←1, V←1	DW,AW←AWx(mem16) DW = 0: CY←0, V←0 DW = 1: CY←1, V←1	AW←ALxreg8 AH = sign extension of AL: CY←0, V←0 AH ≠ sign extension of AL: CY←1, V←1	AW←At.x(mem8) AH = sign extension of AL: CY←0, V←0 AH ≠ sign extension of AL: CY←1, V←1	DW,AW←AWxreg16 DW = sign extension of AW: CY←0, V←0 DW ≠ sign extension of AW: CY←1, V←1	DW,AW←AW×(mem16) DW = sign extension of AW: CY←0, V←0 DW ≠ sign extension of AW: CY←1, V←1	reg16←reg16′ximm8 Product ≤ 16-bit: CY←0, V←0 Product > 16-bit: CY←1, V←1	reg16←(mem16)×lmm8 Product ≤ 16-bit: CY←0, V←0 Product > 16-bit: CY←1, V←1	reg16←reg16'ximm16 Product ≤ 16-bit: CY←0, V←0 Product > 16-bit: CY←1, V←1	reg16←(mem16)ximm16 Product ≤ 16-bit: CY←0, V←0
Clocks		21 – 22	27 – 28	29 – 30	39 - 40	33 – 39	39 – 45	41 – 47	51 - 57	28 – 34	38 – 44	36 – 42	48 - 52
Bytes		2	2-4	2	7.	2	2-4	2	2-4	င	3 - 5	-	9-4
	3210	0 reg	0 mem	0 reg	0 mem	reg	1 mem	reg	mem	reg'	mem	'ga'	mem
, }	-	0	0	0	0 0	0 1	0 1	0 1	0	5	<u>5</u>	. De	reg
8	80 80	1 1		1 1	-	1.1	- 1	-	- B				
ration Code	7 8	1.1	pom	1.1	Poe	-	Boe	1 1	Poe.	-	Bom	1 1	Pom
	0	0	0	-	+-	0	0	-	-	-	-	-	-
80	2 1	1 1	1 1	1 1	1 1	1 1	1.1	1.1	-	-	0 1	. 0	0
	m	0	0	0	0	0	0			-	-	-	-
. 1	7	1 1		<u>-</u>	_	-	-	_	-	0	0	0	•
- 1	50	1 1	1 1	1 1	-	1 1	1 1	-	-	-		-	-
	7	-	-	-	-	-	-	-	-	0	0	•	•
Operand		reg8	mem8	reg16	mem16	reg8	mem8	reg16	mem16	reg16, (reg16',)* imm8	reg16, mem16, imm8	reg16, (reg16',)* imm16	reg16, mem16, imm16
Mnemonic		Mחרה				MUL							
Instruc Gro						Multip	lication in	structions					

*: The 2nd operand can be omitted, in which case the same register as for the 1st operand is taken as specified.

■ 6427525 0063412 854 **■**

1	N				
}		כ ס	<u> </u>	ם	2
	8		>	n	3
Se .	4	>	<u> </u>	n n	n
-	- 	<u> </u>	5	ם	Э.
	Ac ¢y v	ວ ວ)))	n	ח
l	<u> </u>	<u> </u>	>	n	מ
Orseration		tempt—AW If temp + reg8 < FFH, AH-temp%reg8, AL-temp + reg8 If temp + reg8 > FFH, TA-(001H, 000H), TC-(003H, 002H) SP-SP-2, (SP+1, SP)-PSW, IE-0, BRK-0 SP-SP-2, (SP+1, SP)-PS, PS-TC SP-SP-2, (SP+1, SP)-PS, PS-TC	temp←AW If temp + (mem8) ≤ FFH, AH←temp%(inem8), AL←temp + (mem8) If temp + (mem8) > FFH, TA←(001H, 000H), TC←(903H, 002H) SP←SP-2, (SP+1, SP)←PSW, IE←0, BRK←0 SP←SP-2, (SP+1, SP)←PS, PS←TC SP←SP-2, (SP+1, SP)←PC, PC←TA	temp←DW, AW If temp + reg16 ≤ FFFH, DW4-temp%reg16, AW-temp + reg16 If temp + reg16 > FFFH, TA←(001H, 000H), TC←(003H, 002H) SP←SP-2, (SP+1, SP)←PSW, IE←0, BRK←0 SP←SP-2, (SP+1, SP)←PS, PS←TC SP←SP-2, (SP+1, SP)←PC, PC←TA	tempc-DW, AW If temp + (mem16) ≤ FFFH, DW-tempX(mem16) AW(-temp + (mem16) If temp + (mem18) > FFFH, TA-(001H, 000H), TC-(003H, 002H) SPC-SP-2, (SP+1, SP)-PSW, IE-0, BRK←0 SPC-SP-2, (SP+1, SP)-PSW, IE-0, PSK←TC SPC-SP-2, (SP+1, SP)-PS, PSC-TC
Clocks	CIOCHE	6 1	25	25	**
By S		2	2-4	2	2-4
ration Code	78543210	11110 reg	mod 1 1 0 mem	1 1 1 0 reg	тоб 1 1 0 тет
Operation	5 4 3 2 1 0	1 0 1 1 0 1 1 0	0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0		- - -
	9	-	-	-	-
		-	-	-	-
Operand		8000	& E	16 16	тет 16
Mnemonic O		חאם			
	uction oup		Unsigned divis	ion instructions	

			I	I	
	2 8	3	<u> </u>	5	<u> </u>
		3	5	>	<u>ה</u>
E E	۸	5	<u> </u>	э э	2
"		3	5	5	n n
	AC CY	ɔ) 5	5	5
┝╌	<	<u> </u>			
Observation		temp←AW If temp + reg8 > 0 and temp + reg8 ≤ 7FH, or temp + reg8 < 0 and temp + reg8 > 0 - 7FH - 1, AH←temp%reg8 > 0 - 7FH - 1, AH←temp%reg8 > 0 and temp + reg8 If temp + reg8 > 0 and temp + reg8 > 7FH, or temp + reg8 < 0 and temp + reg8 > 0 - 7FH - 1, TA←(001H, 000H), TC←(003H, 002H) SP←SP-2, (SP+1, SP)←PS, PS←TC SP←SP-2, (SP+1, SP)←PS, PS←TC	temp←AW If temp + (mem8) > 0 and temp + (mem8) ≤ 7FH, or temp + (mem8) < 0 and temp + (mem8) > 0 - 7FH - 1, AH←temp5k(mem8) > 0 - 7FH - 1, AH←temp5k(mem8) > 0 and temp + (mem8) > 7FH, or temp + (mem8) < 0 and temp + (mem8) > 0 - 7FH - 1, TA←(001H, 000H), TC←(003H, 002H) SP←SP-2, (SP+1, SP)←PSW, IE←0, BRK←0 SP←SP-2, (SP+1, SP)←PSW, IE←0, BRK←0 SP←SP-2, (SP+1, SP)←PC, PC←TA	temp←DW, AW If temp + reg16 > 0 and temp + reg16 ≤ 7FFH, or temp + reg16 < 0 and temp + reg16 > 0 - 7FFH - 1, DW←temp%reg16 > 0 - 7FFH - 1, DW←temp%reg16, AW←temp + reg16 If temp + reg16 > 0 and temp + reg16 > 7FFH, or temp + reg16 < 0 and temp + reg16 > 0	temp←DW, AW If temp + (mem16) > 0 and temp + (mem16) ≤ 7FFFH, or temp + (mem16) < 0 and temp + (mem16) > 0 − 7FFFH − 1, DW←temp%(mem16), AW←temp + (mem16) If temp + (mem16) > 0 and temp + (mem16) > 7FFFH, or temp + (mem16) > 0 and temp + (mem16) > 0 − 7FFFH − 1, temp + (mem16) < 0 and temp + (mem16) < 0 − 7FFFH − 1, temp + (mem16) × 0 and temp + (mem16) ≤ 0 − 7FFFH − 1, sP←SP−2, (SP+1, SP)+PSW, IE←0 SP←SP−2, (SP+1, SP)+PSW, IE←0 SP←SP−2, (SP+1, SP)←PS, PS←TC SP←SP−2, (SP+1, SP)←PS, PS←TC
Clocks		29 - 34	34 - 39	38 - 43	47 - 52
Bytes		8	2-4	N	2-4
Operand Operation Code	_	reg8 111101101111 reg	mem8 1 1 1 0 1 1 0 mod 1 1 1 mem	regi6 11110111 1111 reg	mem16 1110111 mod 111 mem
Mnemonic		<u>></u>			
Inetru Gro			Signed divis	ion instructions	
	- 1				

6427525 0063414 627 *******

	—		Operati	Operation Code	-					E.	ĺ	
uction oup	Minemonic	Operand	76543210	76543210	Rayes Rayes	Clocks	Operation	AC CY		<u>م</u>	8	2
	ADJBA		00110111		-	7 HAL/	If AL A 0FH > 9 or AC = 1, AL←AL+6 AH←AH+1, AC←1, CY←AC, AL←ALA 0FH	×	×	u u	n	n
BCD auxili	ADJ4A		11100100		-	3 HAL / HAL > HAL >	If AL A OFH > 9 or AC = 1, AL←AL+6, AC←1 If AL > 9FH or CY = 1, AL←AL+60H, CY←1	×	×	×	×	×
ary instruc	ADJBS		00111111		-	7 If AL A AL←A CY←A	If AL A OFH > 9 or AC = 1, AL←AL-8, AH←AH-1, AC←1 CY←AC, AL←AL A 0FH	×	×	ם ח	<u> </u>	כ
tions	ADJ48		11110100			3	If AL A 0FH > 9 or AC =1, AL←AL-6, AC←1 If AL > 9FH or CY = 1, AL←AL-60H, CY←1	×	×	<u>×</u>	×	×
ı	сутво		11010100	0 1 0 1 0 0 0	2 1	15 AH←A	AH←AL + 0AH, AL←AL%0AH	n	O O	<u>×</u>	×	×
	CVTDB		11010101	00001010	2	7 AL←A	AL←AHx0AH+AL, AH←0	0	n n	×	×	×
conve	CVTBW		10011000		1	2 HAL <	if AL < 80H, AH←0. Otherwise, AH←FFH.			-		
	CVTWL		10011001		1	-5 If AW	If AW < 8000H, DW←0. Otherwise, DW←FFFH.					
	СМР	reg,reg'	W1011100	1 1 reg reg'	2 2	reg-reg*	, a	×	×	×	×	×
Com		mem,reg	0011100W	mem reg mem	2-4 11/	11/15 (mem)-reg	. Bel-	×	×	×	×	×
pare	•	reg,mem	W1011100	mod reg mem	2-4 11/	11/15 reg-(mem)	iem)	×	×	×	×	×
instru		reg,imm	100000 *W	11111 reg	3-4 4	reg-imm	m	×	×	×	×	×
ction		тет,ітт	100000 W	mod 1 1 mem	3-6 13/17		-knm	×	×	×	×	×
8		асс,ітт	0011110W	,	2-3 4		if W = 0, AL - imm If W = 1, AW - imm	×	×	×	×	×
İ	NOT	reg	W110111	11010 reg	2 2	reg←reg	152					
oper		mem	W110111W	mod 0 1 0 mem	2 - 4 16/24		(mem)←(mem)					П
emer ation ction:	NEG	reg	W110111	1 1 0 1 1 reg	2 2	reg← <u>reg</u> +1	70 +1	×	×	×	×	×
- 1		mem	1111011W	mod 0 1 1 mem	2-4 18/24		(mem)+-(mem)+1	×	×	×	×	×

SST reg.reg* 1 0 mem.reg 1 0 reg.mem 1 1	8543210	6 5 4 3	Вуков	Clocks	Cperation		F			_
						AC CY	>	-	8	Z
	000010W	T reg reg	7	~	regA.reg'	5	0	×	×	×
-	000010W	шеш бел рош	2-4	10/14	(mem) Areg	2	0	×	×	×
•	111011W	1 1 0 0 0 reg	3-4	-	тт Адел	<u> </u>	0	×	×	×
mem,imm	W11011W	mem 0 0 0 pom	3-6	11/15	(mem)/\imm	о Э	0	×	×	×
acc,imm 1 0	010100W		2-3	-	If W = 0, AL Aimm8 If W = 1, AWA imm16	2	0	×	×	×
reg,reg' 0 0	W 1 0 0 0 1 W	11 reg reg'	2	2	гед⊷гед∧ гед'	2	0	×	×	×
mem,reg 0 0	W 0 0 0 0 L C	mem ger bom	2-4	18/24	Beı V(mem)→(mem)	<u> </u>	0	×	×	×
reg,mem 0 0	10001W	mod reg mem	2-4	11/15	reg⊷reg∧ (mem)	<u> </u>	0	×	×	×
reg,imm 1 0	W000000	11100 reg	3-4	•	reg←reg ∧ imm	<u> </u>	0	×	×	×
mem,imm 1 0	W000000	mod 1 0 0 mem	3-6	18/26	(mem)←(mem)√imm	<u> </u>	0	×	×	×
acc,imm 0 0	010010W		2-3	4	If W = 0, AL←AL∧imm8 If W = 1, AW←AW ∧imm16	о Э	0	×	×	×
reg,reg' 0 0	000100W	11 reg reg'	2	2	гед⊷гед∨ гед'	0 0	0	×	×	×
mem,reg 0 0	0 0 0 1 0 0 W	mod reg mem	2-4	16/24	(mem)→(mem) v reg	0 0	0	×	×	×
reg,mem 0 0	000101W	mod reg mem	2-4	11/15	reg←reg V (mem)	о Э	0	×	×	×
reg,imm 1 0	W000000	11001reg	3-4	+	rege–reg∨imm	o o	0	×	×	×
mem,imm 1 0	W 0 0 0 0 0	mod 0 0 1 mem	3-6	18/26	(mem)→(mem) v imm	0 0	0	×	×	×
acc,imm 0 0	W 0 1 1 0 W		2 - 3	4	If W = 0, AL←AL ∨ Imm8 If W = 1, AW←AW ∨ Imm16	2	0	×	×	×
reg,reg' 0 0	011001W	11 reg reg'	2	2	169←169 4 169,	0 0	0	×	×	×
mem,reg 0 0	0 1 1 0 0 0 W	mod reg mem	2-4	18/24	(mem)←(mem) ¥ reg	0 0	0	×	×	×
reg,mem 0 0	011001W	mod reg mem	2-4	11/15	reg←reg ¥ (mem)	° n	0	×	×	×
reg,imm 1 0	W000000	1 1 1 1 0 reg	3-4	•	mmi ¥ ger⊸ger	0	0	×	×	×
mem,imm 1 0	W 0 0 0 0 0	mod 1 1 0 mem	3~6	18/28	(mem)←(mem) ¥ imm	<u> </u>	0	×	×	×
acc,imm 0 0	W010110W		2-3	4	If W = 0, AL←AL ¥ imm8 If W = 1, AW←AW ¥ imm16	0	0	×	×	×

6427525 0063416 4TT

		-	Operati	ation Code				١.	=	Flag		
ruction roup	Mnemonic	Operand	7 6 5 4 3 2 1 0	76543210	Bytes	Clocks	Operation	AC CY	> \(\chi_{\chi}\)	4	ဖ	Z
	TEST1	reg8,CL	0001000	1 1 0 0 0 reg	е	8	Bit NO.CL of reg8 = 0 : Z←1 Bit NO.CL of reg8 = 1 : Z←0	n	0	Ú	n	×
		тетв,с1	0 0 0 0	mod 0 0 0 mem	3-5	80	⊢1 ⊢0	5	0	_	2	×
		reg16,CL	0 0 0	11000 reg	ю	3	Bit NO.CL of reg16 = 0 : Z←1 Bit NO.CL of reg16 = 1 : Z←0	5	0	2	_	×
		mem16,CL	0 0 0	mod 0 0 0 mem	3-5	12	F-1 0	n	0	2	כ	×
		reg8,imm3	1000	11000 reg	-	-		5	0	2	2	×
Bit n		тетв,ітт3	1000	тен 0 0 0 реш	9-7	8	F-1 F-0	<u> </u>	0	2	2	×
nanip		reg16,imm4	1001	11000 reg	-	4	Bit NO.imm4 of reg16 = 0 : Z←1 Bit NO.imm4 of reg16 = 1 : Z←0	0	٥		_	×
ulatio		mem18,imm4	1001	mod 0 0 0 mem	4 - 6	13	⊢-1 0	2	0	2	Э	×
n ins	NOT1	reg8,CL	0 1 1 0	11000 reg	က	•	Bit NO.CL of reg8←Bit NO.CL of reg8					
tructi		mem8,CL	0 1 1 0	mod 0 0 0 mem	3-5	13	Bit NO.CL of (mem8)←Bit NO.CL of (mem8)					
ons		reg16,CL	0 1 1 1	11000 reg	е	•	Bit NO.CL of reg16←Bit NO.CL of reg16					
		mem16,CL	0 1 1 1	mod 0 0 0 mem	3 - 5	21	Bit NO.CL of (mem16)←Bit NO.CL of (mem16)					
		reg8,imm3	1110	11000 reg	•	ro.	Bit NO.imm3 of reg8←Bit NO.imm3 of reg8					
		mem8,imm3	1110	mod 0 0 0 mem	9-4	14	Bit NO.imm3 of (mem8)—Bit NO.Imm3 of (mem8)	\dashv				
		reg16,imm4	1111	11000 reg	-	2	Bit NO.imm4 of reg16←Bit NO.imm4 of reg16					
		mem16,imm4	1111	mod 0 0 0 mem	9-1	22	Bit NO.imm4 of (mem16)←Bit NO.imm4 of (mem16)	\dashv	_			\neg
			2nd Byte*	3rd Byte*	*: 1st B)	*: 1st Byte = 0FH						
	NOT1	Շ	11110101		-	2	cγ <u>-cγ</u>	×				

	Z									ļ												L
_	80	├		<u> </u>	-					<u> </u>	 		<u> </u>						\vdash			H
5	\\ \frac{1}{2}	╁	┝	 			┢		_	 		-			_				\vdash			ŀ
			-	 	T	 				\vdash									-		-	t
	AC CY								·													İ
nyjewacy	DOM: STORY	Bit NO.CL of reg8←0	Bit NO.CL of {mem8}←0	Bit NO.CL of reg16←0	Bit NO.CL of {mem16}←0	Bit NO.imm3 of reg8←0	Bit NO.imm3 of (mem8)←0	Bit NO.imm4 of reg16←0	Bit NO.imm4 of (mem16)←0	Bit NO.CL of reg8←1	Bit NO.CL of (mem8)←1	Bit NO.CL of reg16←1	Bit NO.CL of {mem16}←1	Bit NO.imm3 of reg8←1	Bit NO.imm3 of {mem8}←1	Bit NO.imm4 of reg16←1	Bit NO.imm4 of (mem16)←1		CY←0	DIR←0	CY←1	
4000	200	5	14 B	25	22 B	en eo	£ 8	9	73 B	4 B	13 8	4	21 B	1C	14 B	2	22 B	*: 1st Byte = 0FH	2 6	2 D	2 C	
Butes	}	8	3-5	က	3-5	•	4 - 8	•	. 9-1	3	3-5	3	3-5	1	9-1	1	9-1	*: 1st By	-	1	1	
Operation Code	3210 78543210	0010 11000 reg	0 0 1 0 mod 0 0 0 mem	001111000 reg	0 0 1 1 mod 0 0 0 mem	1010 11000 reg	1 0 1 0 mod 0 0 0 mem	1011 11000 reg	1 0 1 1 mod 0 0 0 mem	0100 11000 reg	0 1 0 0 mod 0 0 0 mem	010111000 reg	0 1 0 1 mod 0 0 0 mem	1100 11000 reg	1 1 0 0 mod 0 0 0 mem	110111000 reg	1 1 0 1 mod 0 0 0 mem	lyte* 3rd Byte*	1000	1100	1001	
	7654	0001		,	,	-		-		,	,	,	,	•		,-	-	2nd Byte*	1,111	1111	1111	
Operand	}	reg8,CL	mem8,CL	reg16,CL	mem16,CL	reg8,imm3	mem8,imm3	reg16,imm4	mem18,imm4	reg8,CL	mem8,CL	reg16,CL	mem16,CL	reg8,imm3	mem8,imm3	reg16,imm4	mem16,imm4		ک	DIR	CΛ	
ojuo men M i		 								SET1									CLB1		SET1	
Instru Gro	ection rup						Bit m	an ipu	lation	n inst	ructio	ns										

	Magnoric	Operand	Operation	ation Code		4	nisesen		"	Fig			 ,
uction oup			76543210	76543210		2000		γc	AC CY V	P	S	2	
	SHL	reg,1	W 0 0 0 1 0 1 1	1 1 1 0 0 reg	2	9	CY←MSB of reg, reg←reg×2 If MSB of reg ≠ CY, V←1 If MSB of reg = CY, V←0	<u>`</u>	×	×	×	×	
		mem,1	1 1 0 1 0 0 0 W	mod 1 0 0 mem	2-4	16/24	CY←MSB of (mem), (mem)<-(mem)x2 If MSB of (mem) ≠ CY, V←1 If MSB of (mem) = CY, V←0	<u> </u>	×	×	×	×	
Shift in		reg, CL	W 1 0 0 1 0 1 1 W	W 1 1 1 0 0 reg	8	7 + n	While temp←CL temp ≠ 0, repeats the consecutive operation CY←MSB of reg, reg←regx2 temp←1	5	x n x	×	×	×	
structions		mem,CL	110101W	W mod 1 0 0 mem	2-4	19/27 + n	19/27 + n While temp←CL, temp ≠ 0, repeats the consecutive operation CY←MSB of (mem) ← (mem)×2 temp←1	<u>י</u>	x n x	×	×	×	
		reg,imm8	1 1 0 0 0 0 0 W	11100 reg	ဧ	7 + n	While temp←imm8, temp ≠ 0, repeats the consecutive operation CY←MSB of reg, reg←regx2 temp←temp−1	<u>`</u>	n ×	×	×	×	
		mem,imm8	1 1 0 0 0 0 0 W	mod 1 0 0 mem	3 - 5	19/27 + n	19/27 + n While temp←imm8, temp ≠ 0, repeats the consecutive operation CY←MSB of (mem), (mem)←(mem)×2 temp←temp−1	×	n ,	×	×	×	

n: Number of shifts

	8 2	×	×	×	×	×	×	×	×	×	×	×	×
_	4	×	×	×	×	×	×	×	×	×	×	×	×
E E	^	×	×	5	5	5	5	•	0	'n	,	'n	o o
	ડ	×	×	×	×	×	×	×	×	×	×	×	×
	¥c	o o	5	5	5	5	ס	5	5	¬	5	5	D
Operation		CY←LSB of reg, reg←reg+2 MSB of reg ≠ the consecutive bit of MSB of reg: V←1 MSB of reg = the consecutive bit of MSB of reg: V←0	CY←LSB of (mem), (mem)+-(mem)+2 MSB of (mem) ≠ the consecutive bit of MSB of (mem): V←1 MSB of (mem) = the consecutive bit of MSB of (mem): V←0	While temp←CL and temp ≠ 0, repeats the consecutive operation CY←LSB of reg, reg←reg+2 temp←temp−1	19/27 + n While temp←CL and temp ≠ 0, repeats the consecutive operation CY←LSB of (mem), (mem)←(mem)≻2 temp←temp−1	While temp←imm8, temp ≠ 0, repeats the consecutive operation CY←LSB of reg, reg←reg+2 temp←temp−1	While temp←imm8, temp ≠ 0, repeats the consecutive operation CY←LSB of (mem), (mem)←(mem)+2 temp←temp−1	CY←LSB of reg, reg←reg+2, V←0 MSB of operand does not change.	CY←LSB of (mem), (mem)+2, V←0 MSB of operand does not change.	While temp←CL and temp ≠ 0, repeats the consecutive operation CY←LSB of reg, reg←reg+2 temp←temp−1, MSB of operand does not change.	19/27 + n While temp←CL and temp ≠ 0, repeats the consecutive operation CY←LSB of (mem), (mem)+2 temp←temp−1, MSB of operand does not change.	While temp←imm8, temp ≠ 0, repeats the consecutive operation: CY←LSB of reg, reg←reg+2 temp←temp−1, MSB of operand does not change.	19/27 + n While temp←imm8, temp ≠ 0, repeats the consecutive operation CY←LSB of (mem), (mem)+-2 temp←temp−1, MSB of operand does not change.
Clocke		9	16/24	7 + n		7 + n	19/27 + n	9	16/24	7 + n		7 + n	
Bytes		2	2-4	2	2-4	ო	3 - 5	2	1-4	2	2-4	ဗ	3 – 5
Code	7 6 5 4 3 2 1 0	11101 reg	mod 1 0 1 mem	11101 reg	mod 1 0 1 mem	11101 reg	mod 1 0 1 mem	11111 reg	mod.1 1 1 mem	1111 reg	mod 1 1 mem	11111 reg	mod 1 1 mem
Operation Code	785432107	1 1 0. 1 0 0 0 W	1 1 0 1 0 0 0 W	1 1 0 1 0 1 W	W1001011	1 1 0 0 0 0 0 W	1 1 0 0 0 0 0 W	1 1 0 1 0 0 0 W	1 1 0 1 0 0 0 W r	110101W	110101W	1 1 0 0 0 0 0 W	1 1 0 0 0 0 0 W
Operand		reg,1	mem,1	reg,CL	төт,СL	reg,imm8	mem,imm8	reg,1	mem,1	reg,CL	mem,CL	reg,imm8	mem,imm8
Inetru-	ction	SHR					Shift ins	SHRA AHRA	ı				

n: Number of shifts

■ 6427525 0063420 920 **■**

										*	*	*	*
	7												
_	8												
Se l	7	×	×	n	ח	n	ם	×		_		 	
	خ	×	×	×	×	×	×	×	×	×	×))
	¥C											×	×
Constant		CY←MSB of reg, reg←reg×2+CY MSB of reg ≠ CY: V←1 MSB of reg = CY: V←0	CY←MSB of (mem), (mem)←(mem)×2+CY MSB of (mem) ≠ CY: V←1 MSB of (mem) = CY: V←0	While temp←CL and temp ← 0, repeats the consecutive operation CY←MSB of reg, reg←reg×2+CY temp←temp−1	While temp←CL and temp ≠ 0, repeats the consecutive operation CY←MSB of (mem), (mem)←(mem)×2+CY temp←1	While temp←imm8, temp ≠ 0, repeats the consecutive operation CY←MSB of reg, reg←reg×2+CY temp←temp−1	While temp←imm8, temp ≠ 0, repeats the consecutive operation CY←MSB of (mem), (mem)←(mem)x2+CY temp←1	CY←LSB of reg, reg←reg+2 MSB of reg←CY MSB of reg ≠ the consecutive bit of MSB of reg: V←1 MSB of reg = the consecutive bit of MSB of reg: V←0	CY←LSB of (mem), (mem)←(mem)+2 MSB of (mem)←CY MSB of (mem) ≠ the consecutive bit of MSB of (mem): V←1 MSB of (mem) = the consecutive bit of MSB of (mem): V←0	While temp←CL and temp ≠ 0, repeats the consecutive operation CY←LSB of reg, reg←reg+2 MSB of reg←CY temp←1	While temp←CL and temp ≠ 0, repeats the consecutive operation CY←LSB of (mem), (mem)←(mem)+2 MSB of (mem)←CY temp←temp−1	While temp←imm8, temp ≠ 0, repeats the consecutive operation CY←L88 of reg, reg←reg+2 MS8 of reg←CY temp←temp−1	While temp←imm8, temp ≠ 0, repeats the consecutive operation CY←LBB of (mem), (mem)←(mem)+2 M8B of (mem)←CY temp←temp−1
400	Clocks	9	16/24	7 + n	19/27 + n	7 + n	19/27 + n	9	16/24	7 + n	19/27 + n	7 + n	19/27 + n
	80.6	7	2-4	~	2-4	e	3 - 5	2	2-4	7	2-4	е	
ion Code	76543210	11000 reg	mod 0 0 mem	11000 reg	mod 0 0 0 mem	11000 reg	mod 0 0 mem	11001 reg	mod 0 0 1 mem	1001 reg	mod 0 0 1 mem	1 0 0 1 reg	mod 0 0 1 mem
Operation	7 6 5 4 3 2 1 0 7	1 1 0 1 0 0 0 W	1 1 0 1 0 0 0 W	W 1 0 0 1 0 1 W	W 1 0 0 1 0 1 1	1 1 0 0 0 0 0 W 1	1100000W	1 1 0 1 0 0 0 W	W 0 0 0 1 0 1 1	1 1 0 1 0 0 1 W	W 1 0 0 1 0 1 L	1 1 0 0 0 0 0 W	1 1 0 0 0 0 0 W
Onesend		reg,1	пет,1	reg,CL	mem,CL	reg,imm8	mem,imm8	reg,1	тет,1	noë)	mem,CL	reg,imm8	mem,imm8
	uction	ROL					Ro	E O E tate instruc	tions				

n: Number of shifts

				*	· *	*	*
	Z						
	8	ļ		<u> </u>			
Flag	<u>-</u>						
"	_	×	×))	>	>
	Ac cy v	×	× .	×	×	×	×
<u> </u>	₹.		ļ		<u> </u>		
Oneration	iona iodo	tmpcy←cv, cv←MSB of reg reg←regx2+tmpcy MSB of reg ≠ cv: v←1 MSB of reg = cv: v←0	tmpcy←CY, CY←MSB of {mem} (mem)←(mem)x2+tmpcy MSB of (mem) ≠ CY: V←1 MSB of (mem) = CY: V←0	While temp←CL and temp ≠ 0, repeats the consecutive operation tmpcy←CY, CY←MSB of reg reg←regx2+tmpcy temp←temp−1	19/27 + n While temp←CL and temp ≠ 0, repeats the consecutive operation tmpcy←CY, CY←MSB of {mem} {mem} - {mem}x2+tmpcy temp-1	While temp←imm8, temp ≠ 0, repeats the consecutive operation tmpcy←CY, CY←MSB of reg reg←regx2+tmpcy temp←temp−1	19/27 + n While temp4-imm8, temp ≠ 0, repeats the consecutive operation tmpcy4CY, CY4-MSB of (mem) (mem)4-fmem)x2-tmpcy temp4-temp-1
1000	CIOCAL	9	16/24	7 + n	19/27 + n	7 + n	19/27 + n
Bytes	_,	2	2-4	2	2-4	m	ю ! ю
Operation Code	78543210	11010 reg	mod 0 1 0 mem	11010 reg	mod 0 1 0 mem	11010 reg	mod 0 1 0 mem
Operati	76543210	1101000W	1101000W	W 1 0 0 1 0 1 1	110101W	1 1 0 0 0 0 0 W	1 1 0 0 0 0 W
Operand		reg,1	mem,1	reg,CL	mem,CL	reg,imm8	mem,imm8
Mnemonic		ROLC				-	
Instru Gro				Rotate ins	tructions		

n: Number of shifts

				*	*	*	*
	Z						
	ဖ						
Flag	۵.						
	<u>></u>	×	×	n	ח	n	>
	Ac cy	×	×	×	×	×	×
	-∢-						
Onevelin	Links and	tmpcy←CY, CY←LSB of reg reg←reg+2 MSB of reg←tmpcy MSB of reg ≠ the consecutive bit of MSB of reg: V←1 MSB of reg = the consecutive bit of MSB of reg: V←0	tmpcy←CY, CY←LSB of (mem) (mem)←(mem)+2 MSB of (mem)←tmpcy MSB of (mem) ≠ the consecutive bit of MSB of (mem): V←1 MSB of (mem) = the consecutive bit of MSB of (mem): V←0	While temp←CL and temp ≠ 0, repeats the consecutive operation tmpcy←CY, CY←LSB of reg reg←reg+2 MSB of reg←tmpcy temp←temp←1	19/27 + n While temp←CL and temp ≠ 0, repeats the consecutive operation tmpcy←CY, CY←LSB of (mem) (mem)←(mem)+2 MSB of (mem)←tmpcy temp←temp−1	While temp←imm8 and temp ≠ 0, repeats the consecutive operation tmpcy←cY, CY←LSB of reg reg←reg+2 MSB of reg←tmpcy tempcy temp−1	19/27 + n While temp←imm8, temp ≠ 0, repeats the consecutive operation tmpcy←CY, CY←LSB of (mem) (mem)+Cmem)+2 MSB of (mem)+Impcy temp←temp−1
e de el c	CIOCAS	85	16/24	7 + n	19/27 + n	7 + n	19/27 + n
2	20162	8	2-4	2	2-4	m	8. I
1 Code	76543210	11011 190	mod 0 1 1 mem	11011	mod 0 1 1 mem	1011 109	mod 0 1 1 mem
Operation Code	76543210	1 1 0 1 0 0 0 W	1 1 0 1 0 0 0 W	1 1 0 1 0 1 W	1 1 0 1 0 0 1 W	1 1 0 0 0 0 0 W	1 1 0 0 0 0 0 W
0		1.69,1	mem,1	reg,CL	mem,CL	гед,ітт8	mem,imm8
Maemonic		RORC					
	oup			Rotate in	structions		

. Number of shifts

Mnemonic	Operand	Operati	ation Code	B Ye	Clocks	Oraczetion		Filag		
		76543210	76543210		Coccus		۷ ما		60	Z
	near-proc	1110100		ဗ	20	SP←SP-2, (SP+1, SP)←PC PC←PC+disp	<u> </u>			
	regptr16	11111111	gen 0 1 0 1 1	7	85	SP←SP-2, (SP+1, SP)←PC PC←regptr16				
!	memptr16	1111111	1 mod 0 1 0 mem	2-4	31	TA←(memptr16) 8P←8P-2, (8P+1, SP)←PC, PC←TA	 			
	far-proc	10011010	•	IO.	58	SP-SP-2, (SP+1, SP)+PS, PS+seg SP-SP-2, (SP+1, SP)+PC, PC-offset				
-	memptr32	1111111	1 mod 0 1 1 mem	2-4	<i>t</i> *	TA←(memptr32), TB←(memptr32+2) 8P←SP-2, (8P+1, SP)←P8, PS←TB 8P←SP-2, (8P+1, SP)←Pc, PC←TA			ļ	
		11000011		1	18	PC←(SP+1, SP) SP←SP+2				
	pop-value	11000010		က	24	PC←(SP+1, SP) SP←SP+2, SP←SP+pop-value			<u> </u>	ļ
1		11001011		1	29	PC←(SP+1, SP) PS←(SP+3, SP+2) SP←SP+4				
	pop-value	11001010		ဇ	32	PC←(SP+1, SP) PS←(SP+3, SP+2) SP←SP+4, SP←SP+pop-value				

							*	*	*	*	*	*									
	Z											«									
	S	<u> </u>	<u> </u>	-							_	Œ									
Flag	$\overline{}$	<u> </u>									-	R.				_					
	AC CY V											Œ						-			
<u> </u>	¥C	_										R									
Constitution		SP-CSP-2 (8P+1, SP)-(mem16)	SP-SP-2 (SP+1, SPk-rea16	P-2 SPI←sreg	SP←SP–2 (SP+1, SP)←PSW	Push registers on the stack	(SP-1, SP-2)←Sign extension of imm8 SP←SP-2	(SP-1, SP-2)←imm16 SP←SP-2	SPt-SP+2 (mem16/+(SP-1, SP-2)	SP+SP+2 reg16+(SP-1, SP-2)	SP←SP+2 areq: SS, DS0, DS1 sreq (SP−1, SP−2)		Pop registers from the stack	Prepare New Stack Frame	Dispose of Stack Frame	PC←PC+disp	PC←PC+ext-disp8	PC←regptr16	PCt-(memptr18)	g geet	P8←(memptr32+2) PC←(memptr32)
1		26 SP←SP-2 (SP+1, SP	12 SP←SP-2	12 SP-SP-2 (SP+1, SP	12 SP←S (SP+1	67 Push	11 (SP-1,	12 (SP-1, SP- 12 SP←SP-2	25 SP←SP+2 (mem16)+	12 SP←SP+2 reg16←(SI	12 SP←SP+2 sreg←(SP-	12 SP←SP+2 PSW←(SP	75 Pop re	Prepar	10 Dispos	13 PC←PI	12 PC←P4	11 PC←re	24 PC←(n	15 PS←seg PC←offset	.35 PS←(n
e e e	2016	2-4	-	-	-		2	e	2-4	-	-	-		→	-	ю	2	~	2-4	ıc	2-4
on Code	76543210	mod 1 1 0 mem							mod 0 0 0 mem									11100 reg	mod 1 0 0 mem		mod 1 0 1 mem
Operation Code	78543210	1111111	0 1 0 1 0 reg	000 sneg 110	10011100	01100000	01101010	01101000	11110001	01011 reg	0 0 0 sreg1 1 1	10011101	01100001	11001000	110010011	1110101	11101011	1111111	1111111	11101010	1111111
Present		mem16	reg16	sreg	PSW	Œ	8mmi	lmm16	mem16	reg16	sreg	PSW	Œ	imm16, imm8		near-label	short-label	regptr16	memptr16	far-label	memptr32
Magnoris		PUSH							PO.			-		PREPARE	DISPOSE	8R					
	ection oup					Stac	k ma	nipul	ation	instr	uction	18					Bra	nch in	struc	tions	

*: If imm8 = 0, 16 If imm8 ≥ 1, 23+16(imm8-1)

7	Opera	ntion Code	Bytes	Clocksten	Operation		<u>آ</u> ۽	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1
1 1 0 0		* 0	7	14/4	IV-1	PC←PC+ext-disp8	<u>;</u>	_	o l	
0 0 0	-		2	14.	#V=0	PC+-PC+ext-disp8		-		
0 0 1 0	-		7	14/4	if CY = 1	PC←PC+ext-disp8		-		Ī
0011	-		2	14/4	If CY = 0	PC←PC+ext-disp8				T
0100	<u> </u>		2	14/4	11.2 = 1	PC←PC+ext-disp8		-		
0101			2	14/4	if Z = 0	PC←PC+ext-disp8				
0110			7	14/1	if CY V Z = 1	PC←PC+ext-disp8				
0 1 1 1			2	14/4	If CY V Z = 0	PC←PC+ext-disp8		-		
1000			2	14/4	T. 8. 1	PC←PC+ext-disp8		-		Π
1001			2	14/4	ff 8 = 0	PC←PC+ext-disp8				Π
1010			2	14/4	If P = 1	PC+-PC+ext-disp8				
1011	1		2	14/4	if P = 0	PC←PC+ext-disp8		\vdash		
1100			2	14/4	if8¥V=1	PC←-PC+ext-disp8				
1101			2	14/4	1fS∀V=0	PC+-PC+ext-disp8				
1110			2	14/4	if (S ↓ V) ∨ Z = 1	PC←PC+ext-disp8				
1111			2	14/4	# (8 ¥ V) ∨ Z = 0	PC←PC+ext-diap8				
100000		-	2	14/5	CW # 0	PC←PC+ext-disp8				
0001			2	14/5		PC←PC+ext-diap8				
0010			2	13/5		PC+-PC+ext-diap8				
0011			2	13/5	If CW = 0	PC-PC+ext-diap8				

Note Condition judgement: True/False

62

■ 6427525 0063426 349 **■**

	Z			****	Œ	 -	
	8				E		
Flag	P				Œ		
"	<u> </u>				æ		
	AC CY V				Œ		
		10					<u> </u>
Oracation		TA←(00DH, 00CH), TC←(00FH, 00EH) SP←SP-2, (8P+1, SP)←P8W, IE←0, BRK←0 SP←SP-2, (8P+1, SP)←P8, P8←TC SP←SP-2, (8P+1, SP)←PC, PC←TA	TA←(4n+1, 4n), TC←(4n+3, 4n+2) n = imm8 SP←SP-2, (SP+1, SP)←PSW, IE←0, BRK←0 SP←SP-2, (SP+1, SP)←PS, PS←TC SP←SP-2, (SP+1, SP)←PC, PC←TA	If V = 1, TA←(011H, 010H), TC←(013H, 012H) SP←SP−2, (SP+1, SP)←PSW, IE←0, BRK←0 SP←SP−2, (SP+1, SP)←PS, PS←TC SP←SP−2, (SP+1, SP)←PC, PC←TA	PC←(8P+1, 9P), PS←(8P+3, 8P+2), PSW←(8P+5, 9P+4), SP←SP+6	TA←(4n+1, 4n), TC←(4n+3, 4n+2) n = imm8 SP←SP-2, (8P+1, SP\←PSW, MD←0 Enables MD to be written SP←SP-2, (8P+1, SP)←P9, P8←TC SP←SP-2, (8P+1, SP)←PC, PC←TA	If (mem32) > reg16 or (mem32 + 2) < reg16, TA←(015H, 014H), TC←(017H, 016H) SP←SP-2, (SP+1, SP)←PSW, IE←0, BRK←0 SP←SP-2, (SP+1, SP)←P9, P8←TC SP←SP-2, (SP+1, SP)←PC, PC←TA
1000	CIOCKS	8	8	Note 1	8	95	Note 2
Bytes		-	8	-	-	က	2-4
	76543210					1111111	mem
	7					-	2
ပ္မွ	6 5					-	mod rag
ation Code	0 7			_		-	Ě
Operal	-	0 0	0	- 0	-	-	-
o	3 2	-	-	-	-	-	0
	4	0	0	0	0	•	•
	6 5	1 0	10	0	0	0	-
\vdash	7		-	-	-	•	0
Operand		e	imm8 (+ 3)			imm8	reg16,mem32
Mnemonic		BRK		ВЯКУ	RETI	BRKEM	CHKIND
Inetru Gro	ction oup			Interrupt ins	truction		

Notes 1. If V=1, 52
If V=0, 3
2. If Interrupt conditions are satisfied, 73-76
If interrupt conditions are not satisfied, 28

Inetra Gro	oiromes M	Onerand	Operatio	ntion Code	Z.	10010	Oneseeline		🖷	P. C.		
ction up			76543210	0 7 6 5 4 3 2 1 0		CIOCUS	HOUSE LOOK	AC CY V	>	٩	60	N
	HALT		11110100		-	2	CPU Halt					Γ
	POLL		11011001		ı	2 + 5n	Poli and wait n: Number of POLL pin samplings					1
С	ō		11111010		-	2	0→31					<u> </u>
PU co	EI		111111011		1	2	IE←1					
ntrol	BUSLOCK		11110000		1	2	Bus Lock Prefix					
instr	FØ1	fp-op	11011XXX	x 11 Y Y Y Z Z Z	2	2	No Operation					<u> </u>
uction		fp-op,mem	11011XXX	mem YYYbom	2-4	15	data bus←(mem)					<u> </u>
18	FP02	do-dj	0110011X	11 4 4 4 2 2 2	2	2	No Operation					·
		fp-op,mem	0110011X	X mod Y Y mem	2-4	15	dats bus←(mem)					_
	NOP		1001000		1	3	No Operation					Ι
	*		0 0 1 areg 1 1 0		•	2	Segment overlaid prefix					

*; DS0;, DS1;, PS;, SS;

9. ELECTRICAL SPECIFICATIONS

Absolute Maximum Rating (T. = 25 °C)

Parameter	Symbol	Conditions	Rating	Unit
Power supply voltage	Voo		-0.5 to +7.0	V
Input voltage	Vı		-0.5 to Vpp +0.3	V
CLK input voltage	Vĸ	VDD = 5 V ±10 %	-0.5 to Vpp +1.0	٧
Output voltage	Vo		-0.5 to Vpp +0.3	V
Operating ambient temperature	Topt		-40 to +85	°C
Storage temperature	Tetg		-65 to +150	°C

- Cautions 1. Do not connect output (and bidirectional) pins each other. Do not connect output (or bidirectional) pins directly to the VDD, VCC, or GND line. However, open drain pin and open collector pins can be directly connected to VDD, VCC, or GND line. If timing design is made so that so signal conflict occurs, three-state pins can also be connected directly to three-state pins of external circuit.
 - Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The parameters apply independently. The device should be operated within the limits specified under DC and AC Characteristics.

DC Characteristics (μ PD70108-5 T_a = -40 to +85 °C, V_{DD} = 5 V ±10 %) (μ PD70108-8 T_a = -10 to +70 °C, V_{DD} = 5 V ±5 %) (μ PD70108-10 T_a = -10 to +70 °C, V_{DD} = 5 V ±5 %)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	ViH			2.2		Vpp+0.3	V
Input voltage, low	VIL			-0.5		0.8	٧
CLK input voltage, high	VkH			3.9		VDD+1.0	٧
CLK input voltage, low	VKL			-0.5		0.6	٧
Output voltage, high	Vон	Іон = −400 μA		0.7Vpp			V
Output voltage, low	Vol	loL = 2.5 mA				0.4	٧
Input leakage current, high	Пин	Vi = Voo				10	μА
input leakage current, low	tur	Vi = 0 V				-10	μΑ
Output leakage current, high Output leakage current, low	Įгон	Vo = Voo				10	μΑ
Output leakage current, low	lror	Vo = 0 V				-10	μΑ
HLDRQ input current, high	Інан	Vi = VDD				10	μΑ
HLDRQ input current, low	Інал					-0.5	mA
			70108-5		30	60	mA
		Operating	70108-8		45	80	mA
Power supply current			70108-10		60	100	mA
	IDD		70108-5		5	10 .	mA
		Standby	70108-8		6	12	mA
			70108-10		7	14	mA

★ Remark TYP. value is reference at T_e = 25 °C and V_{DD} = 5.0 V.

66

■ 6427525 0063430 87T ■

Capacitance (T. = 25 °C, VDD = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı	fc = 1 MHz			15	ρF
I/O capacitance	Сю	Unmeasured pins returned to 0 V			15	ρF

AC Characteristics (μ PD70108-5 T_o = -40 to +85 °C, V_{DD} = 5 V ±10 %) (μ PD70108-8 T_o = -10 to +70 °C, V_{DD} = 5 V ±5 %) (μ PD70108-10 T_o = -10 to +70 °C, V_{DD} = 5 V ±5 %)

Common to large/small scale

Common to large/small scales			701	08-5	701	8-80	7010	8-10	
Parameter	Symbol	Conditions	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit
Clock cycle	tcyk		200	500	125	500	100	500	ns
Clock pulse high-level width	тккн	Vкн =3.0 V	69		44		41		
orook palso might lavar width	LKKH	VKH =3.0 V	09	:	**		39Nete		ns
Clock pulse low-level width	tkkl.	VKL = 1.5 V	90		60		49		ns
Clock rise time	tka	1.5 to 3.0 V		10		10		5	ns
Clock fall time	tkf	3.0 to 1.5 V		10		10		5	ns
RESET release delay time	tovast	VDD = 4.5 V	1		1		1		μs
RESET setup time (to CLK 1)	tsrstk		15		15	·	15		ns
RESET hold time (from CLK 1)	THKRST	:	15		15		15		ns
RESET high-level width	twasth		4 tcyx		4 tcvk		4 tcvk		ns
READY inactive setup time (to CLK ↓)	tsrylk		-8		-8		-10		ns
READY inactive hold time (from CLK 1)	тнкачн		30		20		20		ns
READY active setup time (to CLK 1)	TSRYHK		tkkl-8		tkkL-8		tkkL-10		กร
READY active hold time (from CLK 1)	THKRYL		30		20		20		ns
Data setup time (to CLK ↓)	tsox		30		20		10		ns
Data hold time (from CLK 1)	thko		10		10		10		ns
NMI, INT, POLL setup time (to CLK 1)	tsıĸ		30		15		15		ns
Input rise time (except CLK)	tin	0.8 to 2.2 V		20		20		20	ns
Input fall time (except CLK)	tıғ	2.2 to 0.8 V		12		12		12	ns
Output rise time	ton	0.8 to 2.2 V		20		20		20	ns
Output fall time	tor	2.2 to 0.8 V		12		12		12	ns

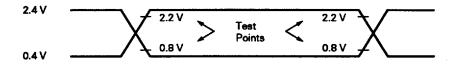
Note Applied only when using the μ PD70108GC-10-3B6 and the μ PD70108L-10.

AC Characteristics (cont'd)

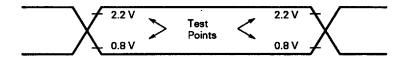
Small scale			70108-5		70108-8		70108-10		
Parameter	Symbol	Conditions	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit
Address delay time from CLK↓	toka		10	90	10	60	10	48	ns
Address hold time from CLK↓	thka		10		10		10		ns
PS delay time from CLK↓	toke	:	10	90	10	60	10	50	ns
PS float delay time from CLKT	teke		10	80	10	60	10	50	ns
Address setup time (to ASTB↓)	tsast		tkkL-60		tkkL-30		tkkl-30		ns
Address float delay time from CLK↓	tfka		thka	80	thka	60	thka	50	ns
ASTB↑ delay time from CLK↓	TDKSTH			80		50		40	กร
ASTB↓ delay time from CLK↑	tdkstl.			85		55		45	ns
ASTB high-level width	tstst		tkkl-20		txxL-10		tkkL-10		ns
Address hold time from ASTB↓	thsta		txx+-10	,	tккн—10		tккн-10		ns
Control delay time from CLK	toker	CL = 100 pF	10	110	10	65	10	55	ns
RD↓ from address float	TAFRL	σε – 100 p.	0		0		0		ns
RD↓ delay time from CLK↓	tokrl.		10	165	10	80	10	70	ns
RD↑ delay time from CLK↓	TDKRH		10	150	10	80	10	60	ns
Address delay time from RD↑	TORHA		tcvx-45		tcvx-40		tcvk-35		ns
RD low-level width	tar		2tcvk-75		2tcvk-50		2tcvx-40		ns
Data output delay time from CLK↓	toko		10	90	10	6 0	10	50	ns
Data float delay time from CLK↓	trko		10	80	10	60	10	50	ns
WR low-level width	tww		2tcyk-60		2tcvk-40		2tcyk-35		ns
HLDRQ setup time (to CLKT)	tshok		35		20		20		ns
HLDAK delay time from CLK↓	T DKHA		10	160	10	100	10	60	ns
BUFENT from WRT	twcr		tkkL-20		tkkl-20		tkkl-20		ns

68

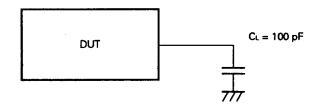
■ 6427525 0063432 642 **■**



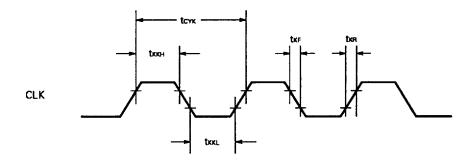
AC Characteristics (cont'd)


-	Large scale	70108-5	70108-8	70108-10

Parameter	Symbol	Conditions	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit
Address delay time from CLK↓	toka		10	90	10	60	10	48	ns
Address hold time from CLK↓	THKA		10		10		10		ns
PS delay time from CLK↓	toke		10	90	10	60	10	50	ns
PS float delay time from CLKT	trkp	r 	10	.80	10	60	10	50	ns
Address float delay time from CLK↓	trka	: !	thka	80	thka	60	thka	50	ns
Address delay time from RDT	TORHA		tcvx-45		tcvx-40		tcvx-35		ns
ASTB↑ delay time from BS↓	toest			15		15		15	ns
BS↓ delay time from CLK↑	TDKBL		10	110	10	60	10	50	ns
BS↑ delay time from CLK↓	tokan		10	130	10	65	10	50	ns
RD↓ delay time from address float	tDAFRL.	CL = 100 pF	0		0		0		ns
RD↓ delay time from CLK↓	tokal		10	165	10	80	10	70	ns
RD↑ delay time from CLK↓	TDKRH		10	150	10	80	10	60	ns
RD low-level width	trr		2tcvx-75		2tcvk-50		2tcvx-40		ns
Data output delay time from CLK↓	toxo		10	90	10	60	10	50	ns
Data float delay time from CLK↓	t _{FKD}		10	80	10	60	10	50	ns
ĀK delay time from CLK↓	TDKAK			70		50		40	ns
RQ setup time (to CLK1)	tsrok		20		10		9	_	ns
RQ hold time (from CLK1)	THKRQ1		0		0		0		ns
RQ hold time (from CLK1)	tнĸno₂		40		30		20		กร

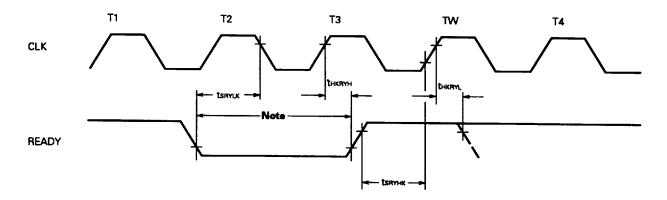

AC Test Input Waveform (Except CLK)

AC Test Output Test Points

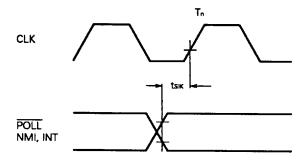


Load Condition

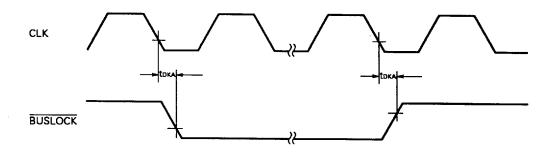
Caution If load capacitance exceeds 100 pF due to the configuration of circuits, lower the load capacitance to 100 pF or less by inserting a buffer, etc.


Clock Timing

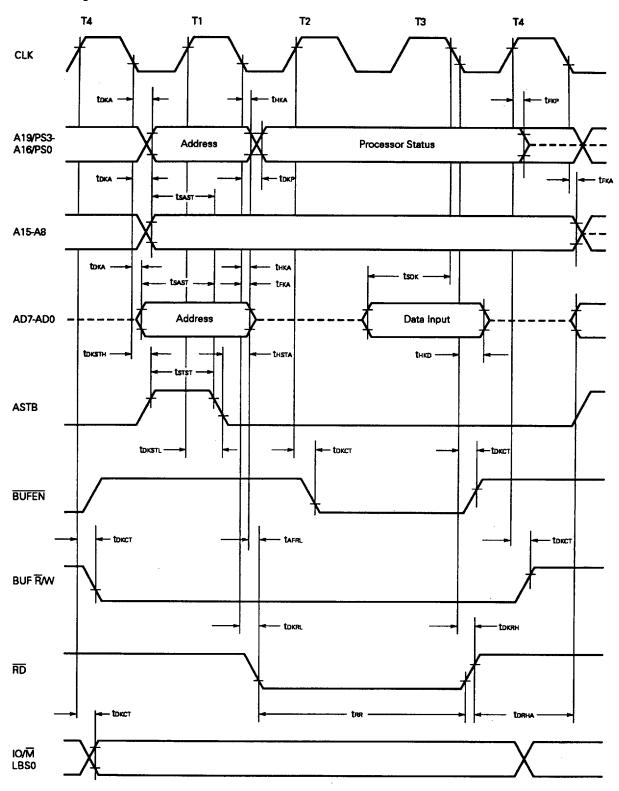
70


■ 6427525 0063434 415 ■

Wait (Ready) Timing

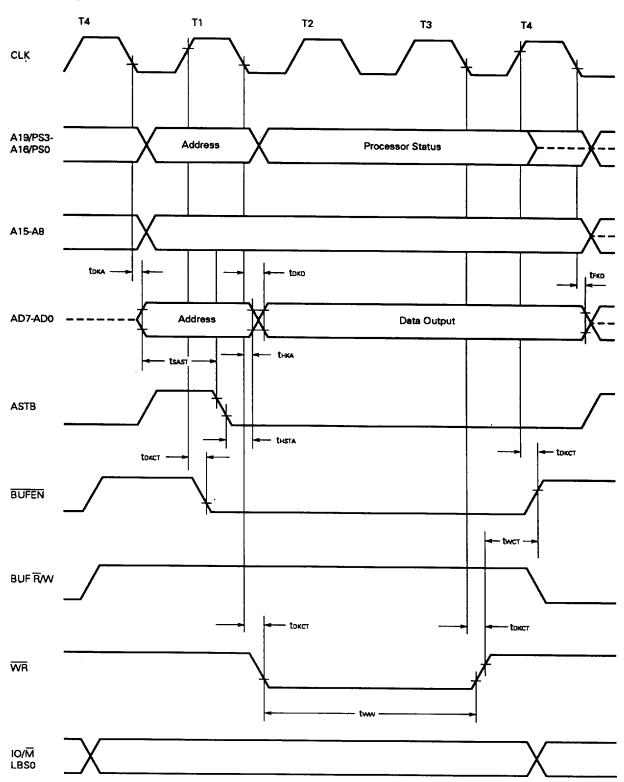


Note It is necessary to fix the READY signal to low (or to high) during this period.


POLL, NMI, INT Input Timing

BUSLOCK Output Timing

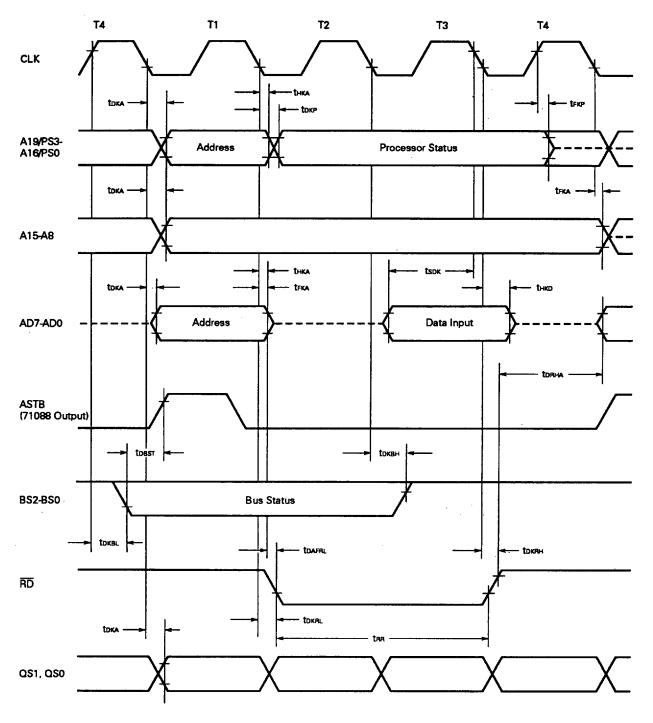
Read Timing (Small Scale)



Remark A broken line shows high impedance.

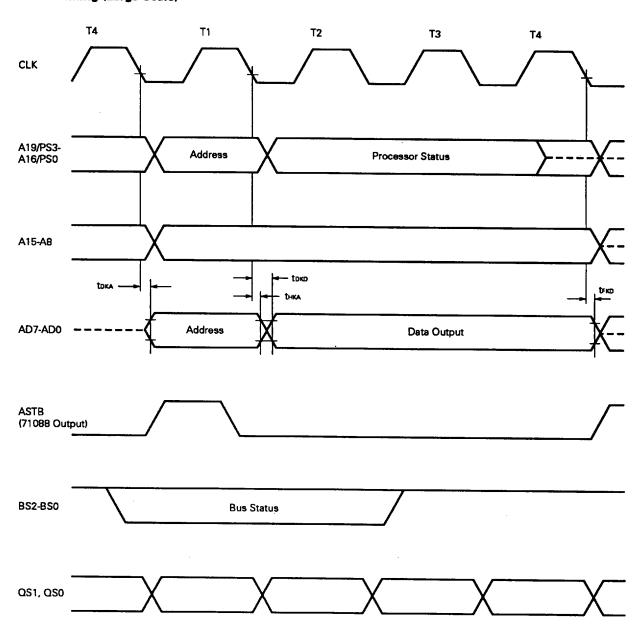
72

6427525 0063436 298


Write Timing (Small Scale)

Remark A broken line shows high impedance.

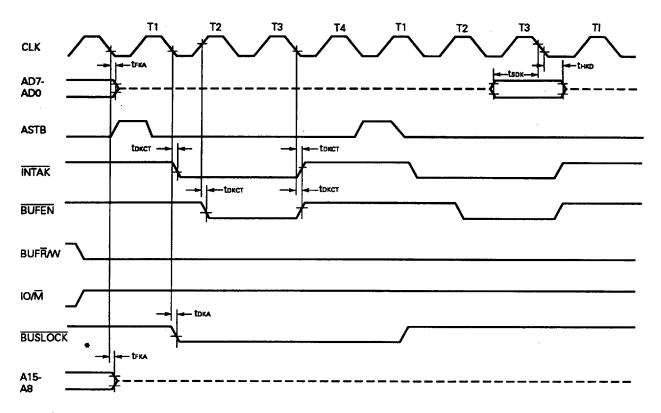
Read Timing (Large Scale)



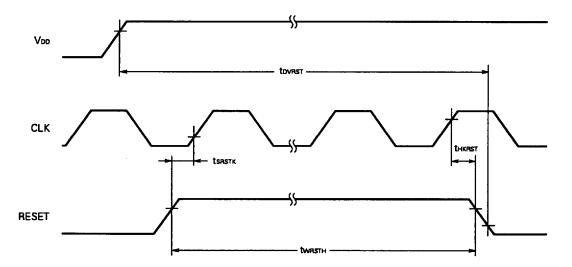
Remark A broken line shows high impedance.

74

■ 6427525 0063438 060 **■**

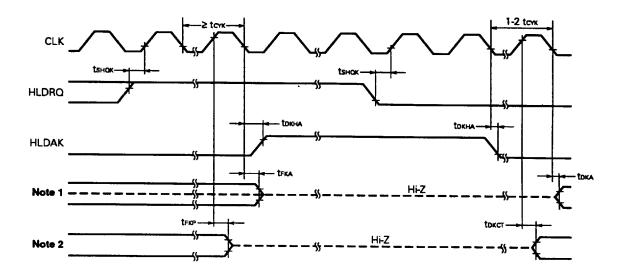

Write Timing (Large Scale)

Remark A broken line shows high impedance.


Interrupt Acknowledge Timing

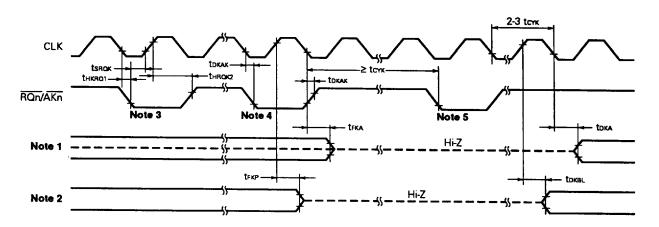
*: Only for large-scale mode

Remark A broken line shows high impedance.


Reset Timing

76

■ 6427525 0063440 719 **■**


Hold Request/Acknowledge Timing (Small Scale)

Notes 1. AD0-AD7, A8-A15

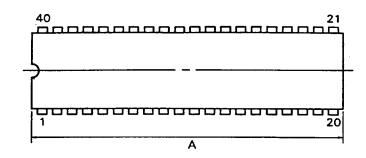
2. A16/PS0-A19/PS3, RD, WR, IO/M, BUFR/W, BUFEN, LBS0

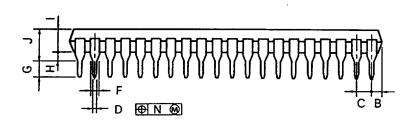
Bus Request/Acknowledge Timing (Large Scale)

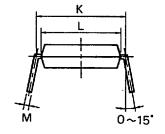
Notes 1. AD0-AD7, A8-A15

2. A16/PS0-A19/PS3, RD, BS0-BS2, BUSLOCK

RQn (Input) : Request pulse
 AKn (Output): Acknowledge pulse


5. Ran (Input) : Release pulse

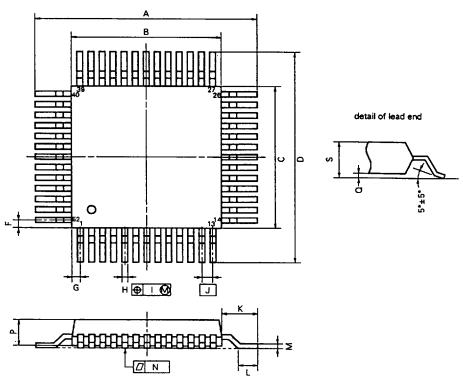

77


 \star

10. PACKAGE DRAWINGS

40PIN PLASTIC DIP (600 mil)

P40C-100-600A

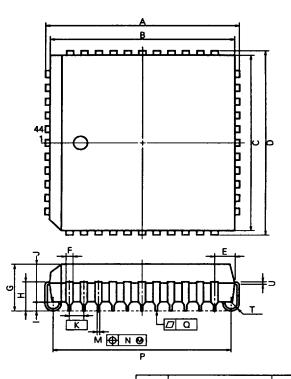

NOTES

- Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
Α	53.34 MAX.	2.100 MAX.
В	2.54 MAX.	0.100 MAX.
С	2.54 (T.P.)	0.100 (T.P.)
D	0.50 ^{± 0.10}	0.020 -0.004
F	1.2 MIN.	0.047 MIN.
G	3.6 ±0.3	0.142 ±0.012
н	0.51 MIN.	0.020 MIN.
ı	4.31 MAX.	0.170 MAX.
J	5.72 MAX.	0.226 MAX.
К	15.24 (T.P.)	0.600 (T.P.)
L	13.2	0.520
М	0.25 -0.05	0.010 -0.004
N	0.25	0.01

 \star

52 PIN PLASTIC QFP (□14)


NOTE

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

P52GC-100-3B6,3BH-2

		1 32 00-100-300,3011-2
ITEM	MILLIMETERS	INCHES
Α	17.6±0.4	0.693±0.016
В	14.0±0.2	0.551-0.009
С	14.0±0.2	0.551+0.009
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
н	0.40±0.10	0.016+0.004
1	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P.)
K	1.8±0.2	0.071-0.008
L	0.8±0.2	0.031±8.888
М	0.15 ^{±0.10}	0.006±8.883
N	0.10	0.004
Р	2.7	0.106
a	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

44 PIN PLASTIC QFJ (□650 mil)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	17.5±0.2	0.689±0.008
В	16.58	0.653
С	16.58	0.653
D	17.5±0.2	0.689±0.008
Ε	1.94±0.15	0.076 ^{+0.007}
F	0.6	0.024
G	4.4±0.2	0.173 ^{+0.009}
Н	2.8±0.2	0.110 ^{+0.009}
1	0.9 MIN.	0.035 MIN.
J	3.4	0.134
K	1.27 (T.P.)	0.050 (T.P.)
М	0.40±0.10	0.016 ^{+0.004}
N	0.12	0.005
Р	15.50±0.20	0.610-0.009
a	0.15	0.006
T	R 0.8	R 0.031
υ	0.20+0.10	0.008+0.004

P44L-50A1-2

11. RECOMMENDED SOLDERING CONDITIONS

*

Solder this product under the soldering conditions indicated below.

For further information on the recommended soldering conditions, refer to information document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (IEI-1207)".

For soldering methods and conditions other than those of recommended, consult NEC.

Table 11-1. Soldering Conditions for Types of Surface Mounting Device

(1) µPD70108GC-∞-3B6: 52-pin plastic QFP (□ 14 mm)

Soldering method	Soldering condition	Symbol
Infrared ray reflow	Peak temperature of package surface: 230 °C, Time: 30 seconds max. (210 °C min.), Number of reflow process: 1 Exposure limit ^{Nets} : 7 days (10 hours pre-baking is required at 125 °C afterwards)	IR30-107-1
VPS	Peak temperature of package surface: 215 °C, Time: 40 seconds max. (200 °C min.), Number of reflow process: 1 Exposure limit ^{Note} : 7 days (10 hours pre-baking is required at 125 °C afterwards)	VP15-107-1
Wave soldering	Solder temperature: 260 °C max., Time: 10 seconds max., Number of reflow process: 1 Exposure limit***: 7 days (10 hours pre-baking is required at 125 °C afterwards) Preheating temperature: 120 °C max. (package surface temperature)	WS60-107-1
Partial heating	Pin temperature: 300 °C max., Time: 3 seconds max. (per one side of device)	_

Note Exposure limit before soldering after dry-pack package is opened.

Storage conditions: 25 °C and relative humidity at 65 % or less.

Caution Do not apply two or more soldering methods (except partial heating) in combination.

Information-

Recommended soldering conditions for some parts of this product have been upgraded. (Improvements mode: Infrared ray reflow peak temperature expansion (235 °C), twice, restrictions on days, etc.)

For details, consult NEC.

(2) µPD70108L-xx: 44-pin plastic QFJ (□ 650 mil)

Soldering method	Soldering condition	Symbol
Infrared ray reflow	Peak temperature of package surface: 230 °C, Time: 30 seconds max. (210 °C min.), Number of reflow process: 1 Exposure limit ^{Note} : 7 days (10 hours pre-baking is required at 125 °C afterwards)	IR30-107-1
VPS	Peak temperature of package surface: 215 °C, Time: 40 seconds max. (200 °C min.), Number of reflow process: 1 Exposure limit ^{Note} : 7 days (10 hours pre-baking is required at 125 °C afterwards)	VP15-107-1
Partial heating	Pin temperature: 300 °C max., Time: 3 seconds max. (per one side of device)	_

Note Exposure limit before soldering after dry-pack package is opened.

Storage conditions: 25 °C and relative humidity at 65 % or less.

Caution Do not apply two or more soldering methods (except partial heating) in combination.

· 81

■ 6427525 DD63445 2TO ■

Table 11-2. Soldering Conditions for Types of Insert Mounting Device

 μ PD70108C- ∞ : 40-pin plastic DIP (600 mil)

Soldering method	Soldering condition		
Wave soldering (Only leads)	Solder temperature: 260 °C max., Time: 10 seconds max.		
Partial heating	Pin temperature: 260 °C max., Time: 10 seconds max.		

Caution Solder only the leads by means of wave soldering, and exercise care that the jetted solder does not come in contact with the package.

× 82

■ 6427525 0063446 137 **■**