

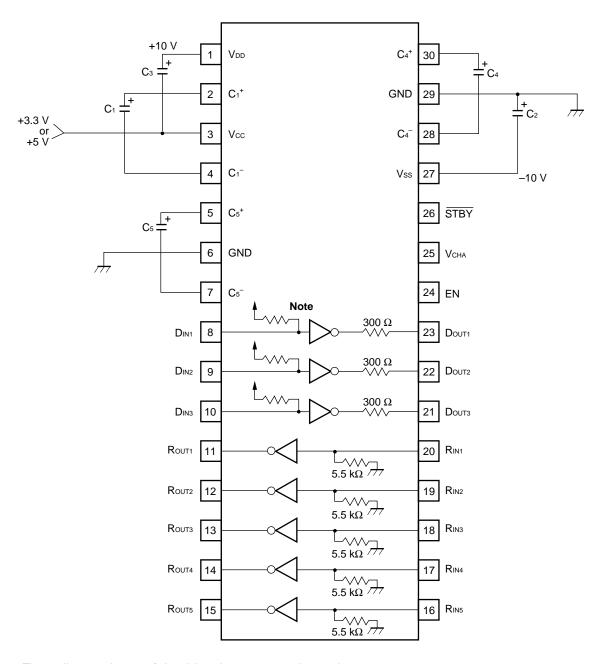
MOS INTEGRATED CIRCUIT $\mu PD4724$

RS-232 LINE DRIVER/RECEIVER AT 3.3 V/5 V

The μ PD4724 is a high breakdown voltage silicon gate CMOS line driver/receiver based on the EIA/TIA-232-E standard. This IC features various functions, such as standby, and incorporates a DC/DC converter that switches boost multiples, enabling operation at both +3.3 V and +5 V single supply voltage.

The μ PD4724 incorporates three drivers and five receivers, so an RS-232 interface circuit can be easily constructed by connecting five external capacitors.

FEATURES


- Based on EIA/TIA-232-E (RS-232-C) standard.
- Single power supply: +3.3 V or +5 V (selectable with the VCHA pin)
- Standby mode: Setting the standby pin to low level switches this IC into the standby mode and makes the driver outputs high-impedance.
- Enable mode: When the enable pin is high level during the standby mode, two receivers can operate as inverters without hysteresis width (The other three receivers are fixed to high level).

ORDERING INFORMATION

Part number	Package
μPD4724GS-GJG	30-pin plastic shrink SOP (300 mil)

BLOCK DIAGRAM/PIN CONFIGURATION (TOP VIEW)

Note The pull-up resistors of the driver inputs are active resistors.

Remark 1. V_{DD} and V_{SS} are pins that output the voltage boosted internally. Don't connect these pins to the load.

- 2. Capacitors with a breakdown voltage of 20 V or higher are recommended for C_1 to C_5 . And it is recommended to insert the capacitor that is 0.1 μ F to 1 μ F between Vcc and GND.
- 3. The capacitor C₅ does not have to be connected when the IC is used in 5 V mode (VCHA = L).

TRUTH TABLE

Driver

STBY	Din	D оит	Remark
L	×	Z	Standby mode (D/D converter OFF)
Н	L	Н	Space level output
Н	Н	L	Mark level output

Receiver

CTDV	EN	R	IN	Ro	DUT	Damani
STBY	EN	R4 to R5	R ₁ to R ₃	R4 to R5	R ₁ to R ₃	Remark
L	L	×	×	Н	Н	Standby mode1 (D/D converter OFF)
L	Н	L	×	Н	Н	Standby mode2 (D/D converter OFF, R ₄ and R ₅ operate)
L	Н	Н	×	L	Н	Standby mode2 (D/D converter OFF, R ₄ and R ₅ operate)
Н	×	L	_	Н		Mark level input
Н	×	Н		L		Space level input

3 V and 5 V Switching $^{\mbox{\scriptsize Note}}$

Vсна	Operation mode
L	5 V mode (Double boost)
Н	3 V mode (Triple boost)

H: High level, L: Low level, Z: High-impedance, x: Don't care

Note Be sure to switch the V_{CHA} pin in standby mode ($\overline{STBY} = L$).

ABSOLUTE MAXIMUM RATINGS ($T_A = +25$ °C)

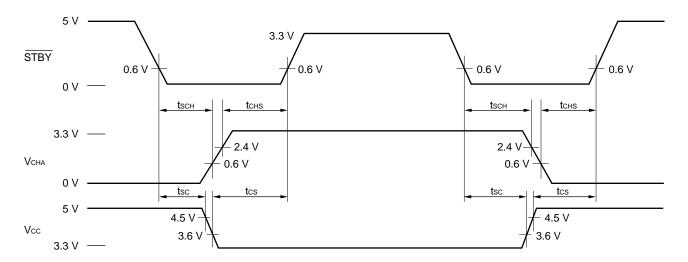
Parameter	Symbol	Ratings	Unit
Supply Voltage (VcHA = L)	Vcc	-0.5 to +7.0	V
Supply Voltage (VcHA = H)	Vcc	-0.5 to +4.5	V
Driver Input Voltage	Din	-0.5 to Vcc + 0.5	V
Receiver Input Voltage	Rin	-30.0 to +30.0	V
Control Input Voltage (STBY, Vcha, EN)	Vin	-0.5 to Vcc + 0.5	V
Driver Output Voltage	D оит	−25.0 to +25.0 ^{Note}	V
Receiver Output Voltage	Rоит	-0.5 to Vcc + 0.5	V
Input Current (DIN, STBY, VCHA, EN)	lin	±20.0	mA
Operating Temperature	TA	-40 to +85	°C
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	Рт	0.5	W

Note Pulse width = 1 ms, duty cycle = 10 % MAX.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage (VcHA = L, 5 V mode)	Vcc	4.5	5.0	5.5	V
Supply Voltage (VcHA = H, 3 V mode)	Vcc	3.0	3.3	3.6	V
High Level Input Voltage (D _{IN})	ViH	2.0		Vcc	V
Low Level Input Voltage (DIN)	VıL	0		0.8	٧
High Level Input Voltage (STBY, VcHA, EN)	ViH	2.4		Vcc	٧
Low Level Input Voltage (STBY, VCHA, EN)	VIL	0		0.6	V
Receiver Input Voltage	Rin	-30		+30	V
Operating Temperature	TA	-40		+85	°C
Capacitance of External Capacitor	Note	0.33		4.7	μ F

Note If the use of an electrolytic capacitor at low temperature is likely, set the capacitance with sufficient margin, because the capacitance of an electrolytic capacitor is smaller at lower temperatures (0 °C or lower). Care must be taken to minimize the wiring length between the capacitor and this IC. Using capacitors of excellent high frequency characteristics (such as tantalum, multi-layer ceramic capacitors, and aluminum electrolytic capacitors for switching power supplies) is highly recommended.


ELECTRICAL SPECIFICATIONS FOR THE IC AS A WHOLE

(T_A = -40 to +85 $^{\circ}$ C and C₁ to C₅ = 1 μ F Unless Otherwise Specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current		$\frac{V_{CC} = +3.3 \text{ V, unloaded, R}_{IN} \text{ pin is open,}}{\overline{STBY}} = H$		7.5	15	mA
Circuit Current	Icc1	$\frac{\text{Vcc} = +5.0 \text{ V, unloaded, R}_{\text{IN}} \text{ pin is open,}}{\text{STBY}} = \text{H}$		5.5	11	mA
Circuit Current		$\label{eq:Vcc} \begin{array}{l} \text{Vcc} = +3.3 \text{ V}, \text{RL} = 3 \text{ k}\Omega(\text{Dout}), \underline{\text{Din}} = \text{GND}, \\ \text{Rin and Rout pins are open, } \overline{\text{STBY}} = H \end{array}$		25	35	mA
Circuit Current	Icc2	Vcc = +5.0 V, RL = $3 \text{ k}\Omega(\text{Dout})$, $\overline{\text{DiN}}$ = GND, RiN and Rout pins are open, $\overline{\text{STBY}}$ = H		19	28	mA
		Vcc = +3.3 V, No load, D _{IN} and R _{IN} pins are OPEN, $\overline{\text{STBY}}$ = L, EN = L, TA = 25 °C		1	3	μΑ
Circuit Current at Standby	Icc3	Vcc = +3.3 V, No load, D _{IN} and R _{IN} pins are OPEN, STBY = L, EN = L		5		μΑ
(Standby Mode 1)	ICC3	V_{CC} = +5.0 V, No load, D _{IN} and R _{IN} pins are OPEN, \overline{STBY} = L, EN = L, TA = 25 °C		2	5	μΑ
		Vcc = +5.0 V, No load, D _{IN} and R _{IN} pins are OPEN, STBY = L, EN = L		10		μΑ
		V_{CC} = +3.3 V, No load, D _{IN} and R _{IN} pins are OPEN, \overline{STBY} = L, EN = H, TA = 25 °C		1	3	μΑ
Circuit Current at Standby	Icc4	Vcc = +3.3 V, No load, D _{IN} and R _{IN} pins are OPEN, STBY = L, EN = H		5		μΑ
(Standby Mode 2)	ICC4	Vcc = +5.0 V, No load, D _{IN} and R _{IN} pins are OPEN, STBY = L, EN = H, T _A = 25 °C		2	5	μΑ
		Vcc = +5.0 V, No load, D _{IN} and R _{IN} pins are OPEN, STBY = L, EN = H		10		μΑ
High Level Input Voltage	ViH	$Vcc = +3.0 \text{ to } +5.5 \text{ V}, \overline{\text{STBY}}, VchA, \text{ and } EN \text{ pins}$	2.4			٧
Low Level Input Voltage	VIL	Vcc = +3.0 to +5.5 V, STBY, VchA, and EN pins			0.6	٧
High Level Input Current	Ін	$Vcc = +5.5 \text{ V}, V_1 = +5.5 \text{ V}, \overline{\text{STBY}}, V_{\text{CHA}}, \text{ and}$ EN pins			1	μΑ
Low Level Input Current	lıL	$Vcc = +5.5 \text{ V}, Vl = 0 \text{ V}, \overline{\text{STBY}}, VchA, and EN pins$			-1	μΑ
Input Capacitance		Driver and receiver inputs, Vcc = +3.3 V, to GND, f = 1 MHz			10	pF
Input Capacitance	Сім	Driver and receiver inputs, Vcc = +5.0 V, to GND, f = 1 MHz			10	pF
STBY - VCHA Time	tscн	$Vcc = +3.0 \text{ to } +5.5 \text{ V}, \overline{\text{STBY}} \downarrow \rightarrow V_{\text{CHA}} \text{ Note}$	1			μs
V _{CHA} - STBY Time	tснs	$Vcc = +3.0 \text{ to } +5.5 \text{ V}, VchA \rightarrow \overline{STBY} \uparrow \text{Note}$	1			μs
STBY - Vcc Time	tsc	$Vcc = +3.0 \text{ to } +5.5 \text{ V}, \overline{\text{STBY}} \downarrow \rightarrow Vcc^{\text{Note}}$	1			μs
Vcc - STBY Time	tcs	$Vcc = +3.0 \text{ to } +5.5 \text{ V}, Vcc \rightarrow \overline{\text{STBY}} \uparrow \text{Note}$	1			μs

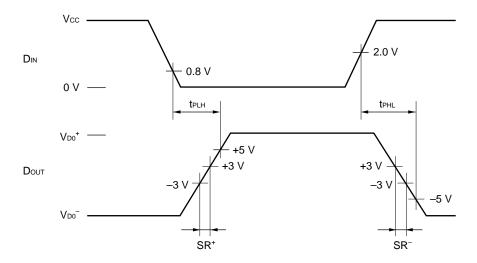
Remark TYP. values are valid only at $T_A = 25$ °C and should be used for reference only.

Note Test points for these parameters

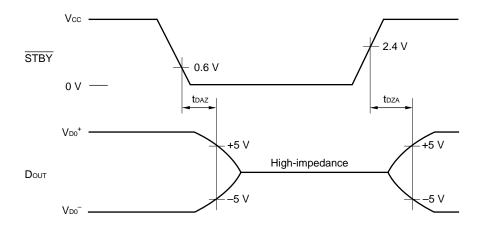
ELECTRICAL SPECIFICATIONS FOR THE DRIVERS (TA = -40 to +85 °C and C1 to C5 = 1 μ F)

3 V Mode (VcHA = H, Vcc = 3.0 to 3.6 V Unless Otherwise Specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Low Level Input Voltage	VIL				0.8	V
High Level Input Voltage	ViH		2.0			٧
Low Level Input Current	lıL	Vcc = +3.6 V, Vı = 0 V			-25	μΑ
High Level Input Current	Іін	Vcc = +3.6 V, Vı = 3.6 V			1.0	μΑ
		Vcc = +3.3 V, R _L = ∞, T _A = 25 °C		±9.5		V
Output Voltage	Vdo	Vcc = +3.3 V, R _L = 3 k Ω , T _A = T _{opt.}	±5.0	±6.0		V
		Vcc = +3.0 V, R _L = 3 kΩ, T _A = 25 °C	±5.0			V
Output Short-Circuit Current	Isc	Vcc = +3.3 V, to GND			±40	mA
Slew RateNote 1	SR	C_L = 10 pF, R_L = 3 to 7 k Ω	3.0		30	V/μs
Glew Rate		$C_L = 2500 \text{ pF}, R_L = 3 \text{ to } 7 \text{ k}\Omega$	3.0		30	V/μs
Propagation Delay Time ^{Note 1}	t _{PHL}	$R_L = 3 \text{ k}\Omega, C_L = 2500 \text{ pF}$		2.5		μs
Output Resistance	Ro	Vcc = V _{DD} = Vss = 0 V Vout = ± 2 V	300			Ω
Output Transfer Time in Standby State	tDAZ	$R_L = 3 \text{ k}\Omega$, $C_L = 2500 \text{ pF}$, Note 2		4	10	μs
Output Transfer Time in Standby State	toza	$R_L = 3 \text{ k}\Omega$, $C_L = 2500 \text{ pF}$, Note 2		1	3	ms
Power On Output Transfer Time	t PRA	$R_L = 3 \text{ k}\Omega$, $C_L = 2500 \text{ pF}$, Note 3		1	3	ms

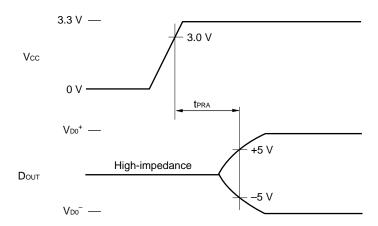

Remark TYP. values are valid only at $T_A = 25$ °C and should be used for reference only.

5 V Mode (VcHA = L, Vcc = 5.0 V \pm 10 % Unless Otherwise Specified)

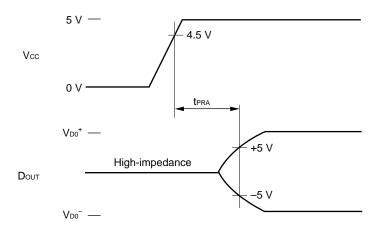

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Low Level Input Voltage	VIL				0.8	V
High Level Input Voltage	ViH		2.0			V
Low Level Input Current	lıL	Vcc = +5.5 V, Vı = 0 V			-40	μΑ
High Level Input Current	Іін	Vcc = +5.5 V, Vı = 5.5 V			1.0	μΑ
		Vcc = +5.0 V, R _L = ∞, T _A = 25 °C		±9.7		V
Output Voltage	Vdo	Vcc = +5.0 V, RL = 3 k Ω , TA = T _{opt} .	±6.0			V
		Vcc = +4.5 V, R _L = 3 k Ω , T _A = T _{opt} .	±5.0			V
Output Short-Circuit Current	Isc	Vcc = +5.0 V, to GND			±40	mA
Slew RateNote 1	SR	$C_L = 10 \text{ pF}, R_L = 3 \text{ to } 7 \text{ k}\Omega$	4.0		30	V/μs
Siew Rateriors	SK	$C_L = 2500 \text{ pF}, R_L = 3 \text{ to } 7 \text{ k}\Omega$	4.0		30	V/μs
Propagation Delay Time ^{Note 1}	t _{PHL}	$R_L = 3 \text{ k}\Omega, C_L = 2500 \text{ pF}$		2		μs
Output Resistance	Ro	Vcc = V _{DD} = Vss = 0 V Vout = ± 2 V	300			Ω
Output Transfer Time in Standby State	t DAZ	$R_L = 3 \text{ k}\Omega$, $C_L = 2500 \text{ pF}$, Note 2		4	10	μs
Output Transfer Time in Standby State	toza	$R_L = 3 \text{ k}\Omega$, $C_L = 2500 \text{ pF}$, Note 2		0.5	1	ms
Power-On Output Transfer Time	t PRA	$R_L = 3 \text{ k}\Omega$, $C_L = 2500 \text{ pF}$, Note 2		0.5	1	ms

Remark TYP. values are valid only at $T_A = 25$ °C and should be used for reference only.

Note 1 Test points for slew rate, tPHL, and tPLH



Note 2 Test points for tDAZ, and tDZA

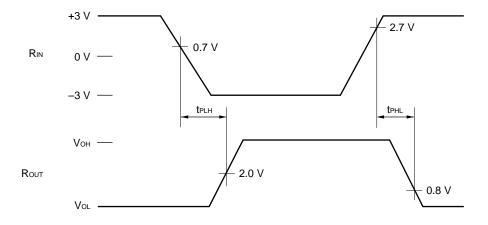

Driver outputs are indefinite during transition time (tdzA).

Note 3 Test points for tPRA in 3 V mode

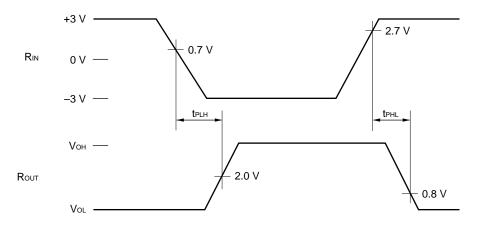
Driver outputs are indefinite during transition time (tpra).

Note 4 Test points for tPRA in 5 V mode

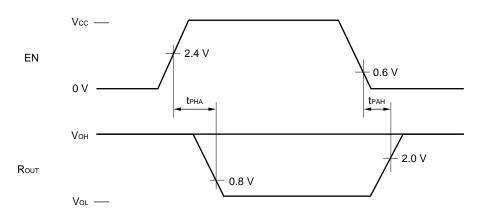
Driver outputs are indefinite during transition time (tpra).

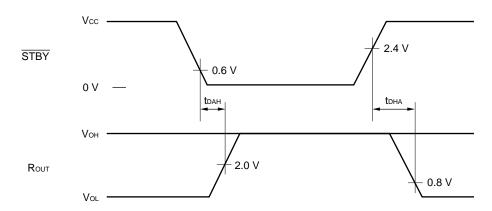

ELECTRICAL SPECIFICATIONS FOR THE RECEIVERS

(Vcc = 3.0 to 5.5 V, TA = -40 to +85 °C and C1 to C5 = 1 μ F Unless Otherwise Specified)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Low Level Output Voltage	V _{OL1}	IOUT = 4 mA			0.4	٧
High Level Output Voltage	V _{OH1}	Iо∪т = −4 mA	Vcc-0.4			V
Low-Level Output Voltage	V _{OL2}	IOUT = 4 mA, STBY = L			0.5	٧
High Level Output Voltage	V _{OH2}	Ioυτ = −4 mA, STBY = L	Vcc-0.5			V
Propagation Delay Time (STBY = H)	tphl tplh	$R_{IN} \rightarrow R_{OUT}, C_L = 150 pF$ $V_{CC} = +3.0 V, \frac{Note 1}{}$		0.2		μs
Propagation Delay Time (STBY = L)	t _{PHL}	$R_{IN} ightarrow R_{OUT}, C_L = 150 pF$ $V_{CC} = +3.0 V, Note 2$		0.1		μs
Propagation Delay Time (STBY = L)	tpha tpah	$EN \rightarrow Rou\tau$, $C_L = 150 pF$ Vcc = +3.0 V, $Note 3$		100	300	ns
Input Resistance	Rı		3	5.5	7	kΩ
Input Terminal Release Voltage	Vio				0.5	V
	ViH	Vcc = +3.0 to + 5.5 V	1.7	2.3	2.7	V
Input Threshold Voltage	VIL	Vcc = +3.0 to + 5.5 V	0.7	1.1	1.7	V
(STBY = H)	Vн	Vcc = +3.0 to + 5.5 V (Hysteresis width)	0.5	1.2	1.8	V
Input Threshold Voltage	ViH	Vcc = +3.0 to + 5.5 V	2.7	1.5		V
(STBY = L, EN = H)	VIL	Vcc = +3.0 to + 5.5 V		1.5	0.7	V
Output Transition Time in Standby State	t DAH	Note 4		0.2	3	μs
Output Transition Time in Standby State	t DHA	Vcha = H (3 V mode), Note 4		0.6	3	ms
Carpat Transition Time in Standby State	LUHA	Vcha = L (5 V mode), Note 4		0.3	1	ms
Power-On Reset Release Time	t pra	VCHA = H (3 V mode), Note 5		1	3	ms
1 OWGI OII Neset Nelease Time	LPKA	VCHA = L (5 V mode), Note 6		0.5	1	ms

Remark TYP. values are valid only at $T_A = 25$ °C and should be used for reference only.

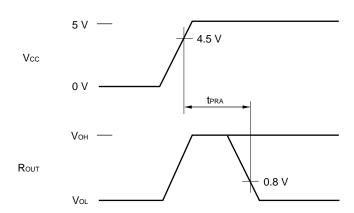

Note 1 Test points for tPHL, tPLH


Note 2 Test points for tPHL, tPLH

Note 3 Test points for tPHA, tPAH


Note 4 Test points for tDAH, tDHA

Receiver outputs are indefinite during transition time (tdha).



Note 5 Test points for tPRA in 3 V mode

Receiver outputs are indefinite during reset release time (tpra).

Note 6 Test points for tPRA in 5 V mode

Receiver outputs are indefinite during reset release time (tpra).

REFERENCE MATERIAL

- IC PACKAGE MANUAL (C10943X)
- NEC SEMICONDUCTOR DEVICE RELIABILITY/QUALITY (IEI-1212)

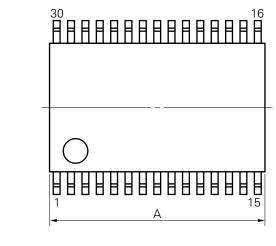
RECOMMENDED SOLDERING CONDITIONS

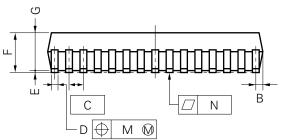
The following conditions (see table below) must be met when soldering this product. Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

TYPES OF SURFACE MOUNT DEVICE

For more details, refer to our document "SMT MANUAL" (C10535E).

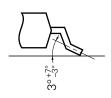
μ PD4724GS-GJG

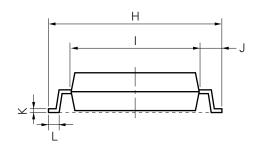

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: 230 °C or below, Reflow time: 30 seconds or below (210 °C or higher), Number of reflow process: 2, Exposure limit*: None	IR30-00-2
VPS	Peak package's surface temperature: 215 °C or below, Reflow time: 40 seconds or below (200 °C or higher), Number of reflow process: 2, Exposure limit*: None	VP15-00-2
Wave soldering	Solder temperature: 260 °C or below, Flow time: 10 seconds or below, Number of flow process: 1, Exposure limit*: None	WS60-00-1
Partial heating method	Terminal temperature: 300 °C or below, Flow time: 10 seconds or below, Exposure limit*: None	0


^{*} Exposure limit before soldering after dry-pack package is opened. Sotrage conditions: 25 °C and relative humidity at 65 % or less.

Note Do not apply more than a single process at once, except for "Partial heating method".

30 PIN PLASTIC SHRINK SOP (300 mil)





NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

P30GS-65-300B-1

ITEM	MILLIMETERS	INCHES
А	10.11 MAX.	0.398 MAX.
В	0.51 MAX.	0.020 MAX.
С	0.65 (T.P.)	0.026 (T.P.)
D	$0.30^{+0.10}_{-0.05}$	0.012+0.004
Е	0.125±0.075	0.005±0.003
F	2.0 MAX.	0.079 MAX.
G	1.7±0.1	0.067±0.004
Н	8.1±0.2	0.319±0.008
Ι	6.1±0.2	0.240±0.008
J	1.0±0.2	0.039+0.009
K	$0.15^{+0.10}_{-0.05}$	0.006+0.004
L	0.5±0.2	0.020+0.008
М	0.10	0.004
N	0.10	0.004

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5