

MOS INTEGRATED CIRCUIT

 μ PD17230,17231,17232,17233,17234,17235,17236

4-BIT SINGLE-CHIP MICROCONTROLLER FOR SMALL GENERAL-PURPOSE INFRARED REMOTE CONTROL TRANSMITTER

DESCRIPTION

 μ PD17230, 17231, 17232, 17233, 17234, 17235, 17236 (hereafter called μ PD17236 subseries) are 4-bit single-chip microcontrollers for small general-purpose infrared remote control transmitters.

It employs a 17K architecture of general-purpose register type devices for the CPU, and can directly execute operations between memories instead of the conventional method of executing operations through the accumulator. Moreover, all the instructions are 16-bit 1-word instructions which can be programmed efficiently.

In addition, a one-time PROM model, μ PD17P236^{Note}, to which data can be written only once, is also available. It is convenient either for evaluating the μ PD17236 subseries programs or small-scale production of application systems.

Note Under development

Detailed functions are described in the following manual. Be sure to read this manual when designing your system.

μPD172×× Subseries User's Manual: U12795E

FEATURES

- Infrared remote controller carrier generator circuit (REM output)
- 17K architecture: General-purpose register system
- Program memory (ROM), Data memory (RAM)

	μPD17230	μPD17231	μPD17232	μPD17233	μPD17234	μPD17235	μPD17236
Program memory (ROM)	4 K bytes (2048 × 16)	8 K bytes (4096 × 16)	12 K bytes (6144 × 16)	16 K bytes (8192 × 16)	20 K bytes (10240 × 16)	24 K bytes (12288 × 16)	32 K bytes (16384 × 16)
Data memory (RAM)	223 × 4 bits						

8-bit timer : 1 channel
 Basic internal timer/Watchdog timer : 1 channel

· Instruction execution time (can be changed in two steps)

at fx = 4 MHz : 4 μ s (high-speed mode)/8 μ s (ordinary mode) at fx = 8 MHz : 2 μ s (high-speed mode)/4 μ s (ordinary mode)

External interrupt pin (INT) : 1I/O pins : 21

• Supply voltage : $V_{DD} = 2.2 \text{ to } 3.6 \text{ V (at fx} = 8 \text{ MHz (high-speed mode))}$

 $V_{DD} = 2.0$ to 3.6 V (at fx = 4 MHz (high-speed mode))

Low-voltage detector circuit (mask option)

Unless otherwise specified, the μ PD17236 is treated as the representative model throughout this document.

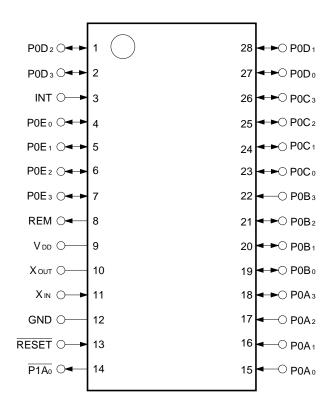
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

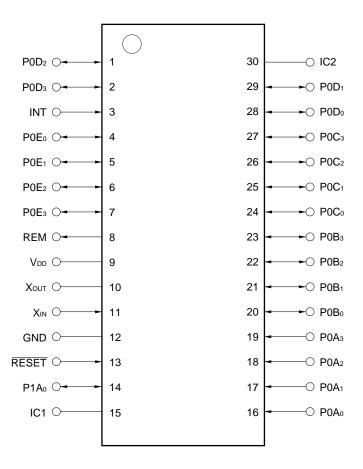
APPLICATION

Preset remote controllers, toys, portable systems, etc.

ORDERING INFORMATION


Part Number	Package
μPD17230MC-×××-5A4	30-pin plastic shrink SOP (300 mil)
μ PD17231MC- \times \times -5A4	30-pin plastic shrink SOP (300 mil)
μ PD17232MC- \times \times -5A4	30-pin plastic shrink SOP (300 mil)
μ PD17233MC- \times \times -5A4	30-pin plastic shrink SOP (300 mil)
μ PD17234MC- \times \times -5A4	30-pin plastic shrink SOP (300 mil)
μ PD17235GT- $\times\!\times\!$	28-pin plastic SOP (375 mil)
μ PD17235MC- \times \times -5A4	30-pin plastic shrink SOP (300 mil)
μ PD17236GT- \times \times	28-pin plastic SOP (375 mil)
μ PD17236MC- \times \times -5A4	30-pin plastic shrink SOP (300 mil)

DIFFERENCE BETWEEN μ PD17236 SUBSERIES AND μ PD17225 SUBSERIES


Item	μPD17236 Subseries	μPD17225 Subseries
ROM capacity	μ PD17230: 2048 × 16 bits μ PD17231: 4096 × 16 bits μ PD17232: 6144 × 16 bits μ PD17233: 8192 × 16 bits μ PD17234: 10240 × 16 bits μ PD17235: 12288 × 16 bits μ PD17236: 16384 × 16 bits	μ PD17225: 2048 × 16 bits μ PD17226: 4096 × 16 bits μ PD17227: 6144 × 16 bits μ PD17228: 8192 × 16 bits
Port	P0B ₀ -P0B ₃ : I/O (bit I/O) P0C ₀ -P0C ₃ : I/O (group I/O) P0D ₀ -P0D ₃ : I/O (group I/O) P1A ₀ : Input or output selectable by mask option	P0B ₀ -P0B ₃ : Input P0C ₀ -P0C ₃ : Output P0D ₀ -P0D ₃ : Output
Reset • Reset by watchdog timer • Reset by stack pointer • Low-voltage detection circuit (mask option)	RESET pin is internally pulled down by occurrence of the internal reset signals on the left, and reset takes place (usually, RESET pin is pulled up).	Low level is output from WDOUT pin by occurrence of the internal reset signals on the left, and reset takes place if the WDOUT pin is externally connected to the RESET pin.
STOP mode release condition	<1> When any of pins P0A₀-P0A₃ goes low <2> When P0B₀-P0B₃, P0C₀-P0C₃, and P0D₀-P0D₃ are used as input pins and any of them goes low <3> When the interrupt request (IRQ) of an interrupt for which IP flag is set is generated at rising or falling edge of INT pin	When any of P0A ₀ -P0A ₃ or P0B ₀ -P0B ₃ goes low
Carrier frequency (fx = 4 MHz)	Selected by mask option <1> If carrier generation clock (Rfx) is fx/2: 7.8 kHz to 1 MHz <2> If carrier generation clock (Rfx) is fx: 15.6 kHz to 2 MHz	7.8 kHz to 1 MHz
Pin 14	P1A₀ pin	WDOUT pin

PIN CONFIGURATION (TOP VIEW)

• 28-pin plastic SOP (375 mil) μPD17235GT-xxx, 17236GT-xxx

30-pin plastic shrink SOP (300 mil)
 μPD17230MC-xxx-5A4, μPD17231MC-xxx-5A4, μPD17232MC-xxx-5A4, μPD17233MC-xxx-5A4, μPD17234MC-xxx-5A4, μPD17235MC-xxx-5A4

GND : Ground

IC1, IC2 : Internally connected

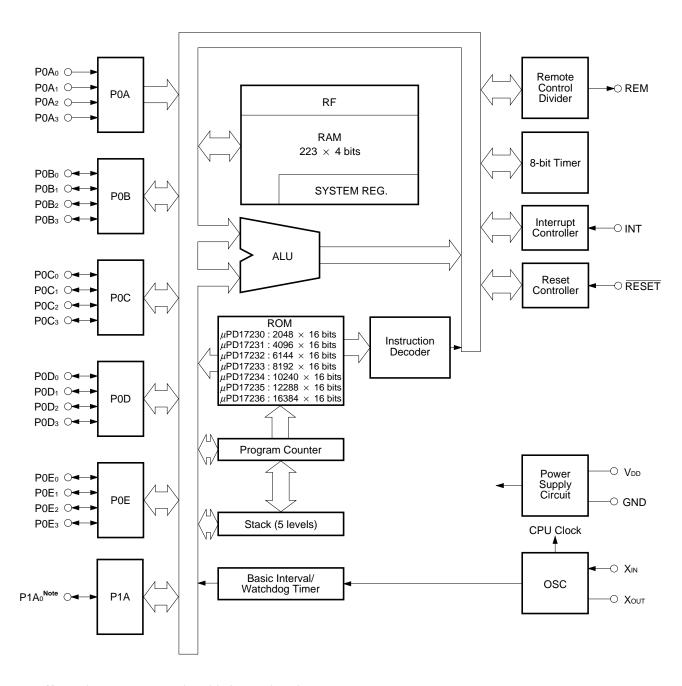
INT : External interrupt request signal input

P0A₀-P0A₃: Input port (CMOS input)

P0B₀-P0B₃ : Input/output port (CMOS input/N-ch open-drain output)
P0C₀-P0C₃ : Input/output port (CMOS input/N-ch open-drain output)
P0D₀-P0D₃ : Input/output port (CMOS input/N-ch open-drain output)

P0E₀-P0E₃: Input/output port (CMOS push-pull output)

P1A₀ : Input port (CMOS input/N-ch open-drain output)^{Note}
REM : Remote controller output (CMOS push-pull output)


RESET : Reset input

VDD : Power supply

XIN, XOUT : Resonator connection

Note Input or output is selected by mask option.

BLOCK DIAGRAM

Note Input or output selectable by mask option.

CONTENTS

1.	PIN I	FUNCTIONS	8
	1.1	Pin Function List	8
	1.2	Input/Output Circuits	10
	1.3	Processing of Unused Pins	11
2.	MEN	ORY SPACE	12
	2.1	Program Counter (PC)	12
	2.2	Program Memory (ROM)	15
	2.3	Stack	17
	2.4	Data Memory (RAM)	19
	2.5	Register File (RF)	26
3.	POR	TS	29
	3.1	Port 0A (P0A ₀ through P0A ₃)	29
	3.2	Port 0B (P0B ₀ through P0B ₃)	29
	3.3	Port 0C (P0C ₀ through P0C ₃)	29
	3.4	Port 0D (P0D ₀ through P0D ₃)	29
	3.5	Port 0E (P0E ₀ through P0E ₃)	30
	3.6	Port 1A (P1A ₀)	30
	3.7	INT Pin	31
	3.8	Switching Bit I/O	32
	3.9	Selecting I/O Mode of Group I/O	34
	3.10	Specifying Pull-up Resistor Connection	35
4.	CLO	CK GENERATOR CIRCUIT	36
	4.1	Instruction Execution Time (CPU Clock) Selection	36
5.	8-BI	TIMER AND REMOTE CONTROLLER CARRIER GENERATOR CIRCUIT	37
	5.1	Configuration of 8-bit Timer (with modulo function)	37
	5.2	Function of 8-bit Timer (with modulo function)	39
	5.3	Carrier Generator Circuit for Remote Controller	41
6.	BAS	IC INTERVAL TIMER/WATCHDOG TIMER	46
	6.1	Source Clock for Basic Interval Timer	46
	6.2	Controlling Basic Interval Timer	46
	6.3	Operation Timing for Watchdog Timer	48
7.	INTE	RRUPT FUNCTIONS	49
	7.1	Interrupt Sources	49
	7.2	Hardware of Interrupt Control Circuit	50
	7.3	Interrupt Sequence	53
8.	STAI	NDBY FUNCTIONS	55
	8.1	HALT Mode	55
	8.2	HALT Instruction Execution Conditions	56

	8.3	STOP Mode	57
	8.4	STOP Instruction Execution Conditions	58
	8.5	Releasing Standby Mode	58
9.	RESE	T	59
	9.1	Reset by Reset Signal Input	59
	9.2	Reset by Watchdog Timer (With RESET pin internally pulled down)	59
	9.3	Reset by Stack Pointer (With RESET pin internally pulled down)	60
10.	LOW-	VOLTAGE DETECTOR CIRCUIT	
	(WITH	RESET PIN INTERNALLY PULLED DOWN)	61
11.	ASSE	MBLER RESERVED WORDS	62
	11.1	Mask Option Directives	62
	11.2	Reserved Symbols	63
12.	INSTI	RUCTION SET	70
	12.1	Instruction Set Outline	70
		Legend	71
		List of Instruction Sets	72
	12.4	Assembler (RA17K) Built-In Macro Instruction	74
13.	ELEC	TRICAL SPECIFICATIONS	75
14.	APPL	ICATION CIRCUIT EXAMPLE	81
15.	PACK	(AGE DRAWINGS	82
16.	RECO	DMMENDED SOLDERING CONDITIONS	84
API	PENDI	X A. DIFFERENCES BETWEEN μ PD17236 AND μ PD17P236	85
API	PENDI	X B. FUNCTIONAL COMPARISON OF μPD17236	
		SUBSERIES RELATED PRODUCTS	86
API	PENDI	X C. DEVELOPMENT TOOLS	88

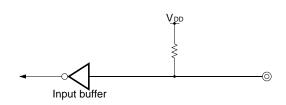
1. PIN FUNCTIONS

1.1 Pin Function List (1/2)

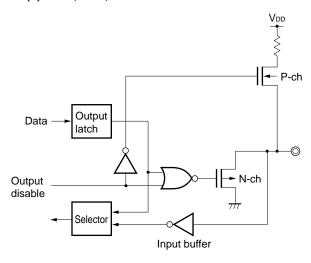
Pin No.	Symbol	Function	Output Form	On Reset
27 (28) 28 (29) 1 (1) 2 (2)	P0D ₀ P0D ₁ P0D ₂ P0D ₃	These pins constitute a 4-bit I/O port which can be set in the input or output mode in 4-bit units (group I/O). In the input mode, these pins serve as CMOS input pins with a pull-up resistor, and can be used as key return input lines of a key matrix. The standby status must be released when at least one of the input lines goes low. In the output mode, these pins are used as N-ch open-drain output pins and can be used as the output lines of a key matrix.	N-ch open-drain	Low-level output
3 (3)	INT	External interrupt request signal. This signal releases the standby status if an external interrupt request signal is input to it when the INT pin interrupt enable flag (IP) is set.	-	Input
4 (4) 5 (5) 6 (6) 7 (7)	P0E ₀ P0E ₁ P0E ₂ P0E ₃	These pins constitute a 4-bit I/O port that can be set in the input or output mode in 1-bit units. In the output mode, this port functions as a high current CMOS output port. In the input mode, function as CMOS input and can be specified to connect pull-up resistor by program.	CMOS push-pull	Input
8 (8)	REM	Outputs transfer signal for infrared remote controller. Active-high output.	CMOS push-pull	Low-level output
9 (9)	V_{DD}	Power supply	-	-
10 (10) 11 (11)	Xout Xin	Connects ceramic resonator for system clock oscillation	-	(Oscillation stops)
12 (12)	GND	Ground	_	_
13 (13)	RESET	Turns ON pull down resistor if POC or watchdog timer overflows and if the stack pointer overflows or underflows, and resets the system. Usually, the pull-down resistor is ON.	-	Input
14 (14)	P1A ₀	This can be set in the input or output mode by mask option. In the input mode, it serves as a CMOS input pin. However, it cannot release the STOP mode. In the output mode, this pin functions as an N-ch open-drain output pin and can be used as an output line for a key matrix.	- (Input)	Input High-
		pin and can be used as an output line for a key matrix.	open-drain (Output)	impedance output
15 (16) 16 (17) 17 (18) 18 (19)	P0A ₀ P0A ₁ P0A ₂ P0A ₃	These pins are CMOS input pins with a 4-bit pull-up resistor. They can be used as the key return input lines of a key matrix. If any one of these pins goes low, the standby status is released.	-	Input
19 (20) 20 (21) 21 (22) 22 (23)	P0B ₀ P0B ₁ P0B ₂ P0B ₃	These pins constitute a 4-bit I/O port that can be set in the input or output mode in 1-bit units. In the input mode, these pins are CMOS input pins with a pull-up resistor, and can be used as the key return input lines of a key matrix. The standby status is released when at least one of these pins goes low. In the output mode, they serve as N-ch open-drain output pins and can be used as the output lines of a key matrix.	N-ch open-drain	Input

Remark The number in parenthesis in the Pin No. column indicates the pin numbers of the 30-pin plastic SSOP.

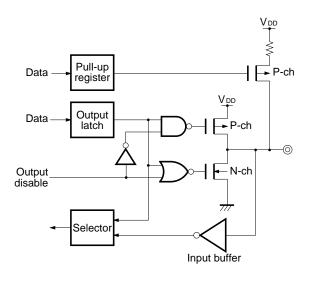
1.1 Pin Function List (2/2)

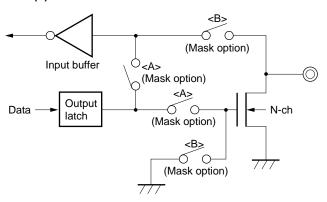

Pin No.	Symbol	Function	Output Form	On Reset
23 (24)	P0Co	These pins constitute a 4-bit I/O port that can be set in the input or	N-ch	Low-level
24 (25)	P0C ₁	output mode in 4-bit units (group I/O).	open-drain	output
25 (26)	P0C ₂	In the input mode, these pins are CMOS input pins with a pull-up		
26 (27)	Р0С3	resistor, and can be used as the key return input lines of a key		
		matrix. The standby status is released when at least one of these		
		pins goes low.		
		In the output mode, they serve as N-ch open-drain output pins and		
		can be used as the output lines of a key matrix.		
(15)	IC1	These pins cannot be used.	_	-
(30)	IC2	Leave open.		

Remark The number in parenthesis in the Pin No. column indicates the pin numbers of the 30-pin plastic SSOP.

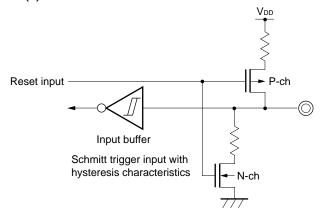

1.2 Input/Output Circuits

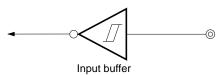
The equivalent input/output circuit for each μ PD17236 pin is shown below.


(1) P0A


(2) P0B, P0C, P0D

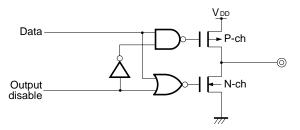
(3) P0E


(4) P1A


Remark • When set to input by mask option <A> SW: OFF, SW: ON

When set to output by mask option
 <A> SW: ON, SW: OFF

(5) RESET



(6) INT

Schmitt trigger input with hysteresis characteristics

(7) REM

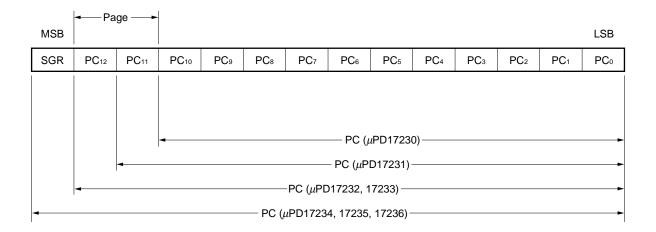
1.3 Processing of Unused Pins

Process the unused pins as follows:

Table 1-1. Processing of Unused Pins

Pin	Recommended Connection
P0A ₀ -P0A ₃	Leave unconnected.
P0B ₀ -P0B ₃	
P0C ₀ -P0C ₃	
P0D ₀ -P0D ₃	
P0E ₀ -P0E ₃	Input: Individually connect to V _{DD} or GND via resistor. Output: Leave unconnected.
P1A ₀	Connect to GND.
REM	Leave unconnected.
INT	Connect to GND.
IC1, IC2	These pins cannot be used. Leave unconnected.

2. MEMORY SPACE


2.1 Program Counter (PC)

The program counter (PC) specifies an address of the program memory (ROM).

The program counter is an 11/12/13-bit binary counter and a 1-bit segment counter (SGR) as shown in Figure 2-1.

Its contents are initialized to address 0000H at reset.

Figure 2-1. Configuration of Program Counter

2.1.1 Segment register (SGR)

The segment register specifies a segment of the program memory.

Table 2-1 shows the relation between the segment register and program memory.

Table 2-1. Relation between Segment Register and Program Memory

Value of Segment Register	Segment of Program Memory
0	Segment 0
1	Segment 1

The segment register is set when the following instructions are executed:

- BR @AR
- CALL @AR
- SYSCAL entry

The first address of the subroutine that can be called by the system call instruction ("SYSCAL entry") is the first 16 steps of each block (block 0 to 7) in page 0 of segment 1 (system segment).

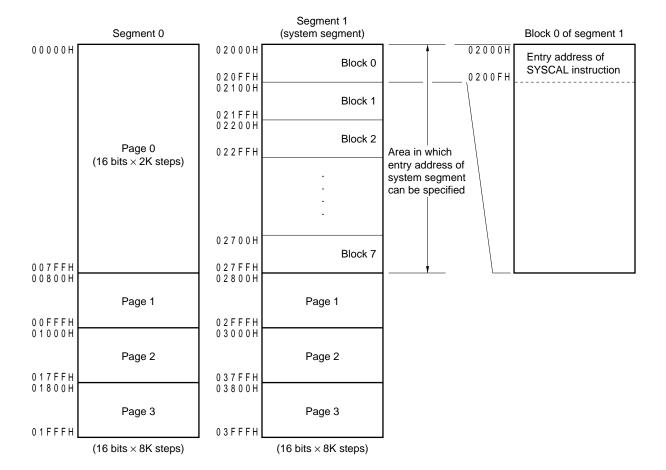


Figure 2-2. Outline of System Call Instruction

Contents of Program Counter (PC)^{Note} **Program Counter** SGR **b**10 b₉ Instruction **b**12 b₁₁ b₇ b_6 b_5 b_4 Ьз b_2 b_1 b_0 BR addr Page 0 0 0 Page 1 0 1 Retained Page 2 0 1 Operand of instruction (addr) Page 3 1 1 CALL addr 0 0 Operand of instruction (addr) tained SYSCAL entry 1 0 0 0 0 0 0 entryн entry∟ BR @AR CALL @AR Contents of address register MOVT DBF, @AR RET RETSK Contents (return address) of address stack register (ASR) specified by stack pointer (SP) RETI Other instructions Re-Increment tained (including skip instruction) On acknowledging interrupt 0 Vector address of each interrupt Watchdog timer reset, RESET pin, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 reset by stack pointer

Figure 2-3. Value of Program Counter on Execution of Each Instruction

Note μ PD17230 : bo through b10 μ PD17231 : bo through b11 μ PD17232, 17233 : bo through b12 μ PD17234, 17235, 17236 : bo through b12, SGR

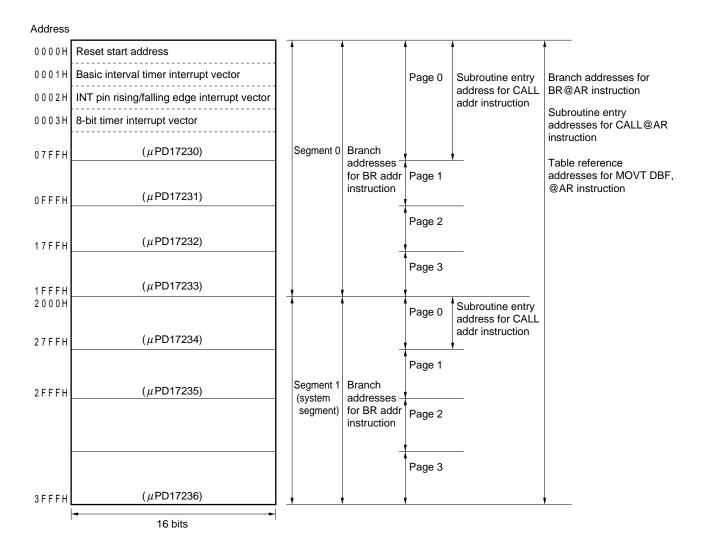
Remark entryн: High-order 3 bits of entry entry∟: Low-order 4 bits of entry

Table 2-2. Interrupt Vector Address

Priority	Internal/External	Interrupt Source	Vector Address
1	Internal	8-bit timer	0003H
2	External	Rising and falling edges of INT pin	0002H
3	Internal	Basic interval timer	0001H

2.2 Program Memory (ROM)

The configuration of the program memory is as follows:


Part Number	Program Memory Capacity	Program Memory Address
μPD17230	2048 × 16 bits	0000H-07FFH
μPD17231	4096 × 16 bits	0000H-0FFFH
μPD17232	6144 × 16 bits	0000H-17FFH
μPD17233	8192 × 16 bits	0000H-1FFFH
μPD17234	10240 × 16 bits	0000H-27FFH
μPD17235	12288 × 16 bits	0000H-2FFFH
μPD17236	16384 × 16 bits	0000H-3FFFH

The program memory stores a program, interrupt vector table, and fixed data table.

The program memory is addressed by the program counter.

Figure 2-4 shows the program memory map. The entire range of the program memory can be addressed by the BD addr, BR @AR, CALL @AR, MOVT DBF, and @AR instructions. Note, however, that the subroutine entry addresses that can be specified by the CALL addr instruction are from 0000H to 07FFH.

Figure 2-4. Program Memory Map

2.3 Stack

A stack is a register to save a program return address and the contents of system registers (to be described later) when a subroutine is called or when an interrupt is accepted.

2.3.1 Stack configuration

Figure 2-5 shows the stack configuration.

A stack consists of a stack pointer (a 4-bit binary counter, the high-order 1 bit fixed to 0), five 11-bit (μ PD17230)/12-bit (μ PD17231)/13-bit (μ PD17232, 17233)/14-bit (μ PD17234, 17235, 17236) address stack registers, and three 6-bit interrupt stack registers.

Stack pointer Address stack registers (SP) (ASR) bз h₂ b₁ bo b13 b12 b11 **b**10 b9 b8 b7 b5 b4 bз b2 b1 b₀ SPb₂ 0 SPb₀ SPb₁ → 0H Address stack register 0 **►** 1H Address stack register **►** 2H Address stack register 2 **►** 3H Address stack register 3 **►** 4H Address stack register 4 **►** 5H Undefined The RESET pin is ► 6H Undefined internally pulled down and reset is effected. 7H Undefined μPD17230 μPD17231 μPD17232, 17233 μ PD17234, 17235, 17236 Interrupt stack registers (INTSK) b5 b4 bз b2 b1 b₀ BANKSK0 0H BCDSK0 CMPSK0 CYSK0 ZSK0 IXESK0 1H BANKSK1 BCDSK1 CMPSK1 CYSK1 ZSK1 IXESK1 2H BANKSK2 BCDSK2 CMPSK2 CYSK2 ZSK2 IXESK2

Figure 2-5. Stack Configuration

2.3.2 Function of stack

The address stack register stores a return address when the subroutine call instruction or table reference instruction (first instruction cycle) is executed or when an interrupt is accepted. It also stores the contents of the address registers (ARs) when a stack manipulation instruction (PUSH AR) is executed.

If subroutines or interrupts are nested to more than 5 levels, the RESET pin is internally pulled down and a reset is effected.

The interrupt stack register (INTSK) saves the contents of the bank register (BANK) and program status word (PSWORD) when an interrupt is accepted. The saved contents are restored when an interrupt return (RETI) instruction is executed.

INTSK saves data each time an interrupt is accepted, but the data stored first is lost if more than 3 levels of interrupts occur.

2.3.3 Stack Pointer (SP) and Interrupt Stack Pointer

Table 2-3 shows the operations of the stack pointer (SP).

The stack pointer can take eight values, 0H-07. Because there are only five stack registers available, however, the RESET pin is internally pulled down and reset is effected if the value of SP is 6 or greater.

Table 2-3. Operations of Stack Pointer

Instruction	Value of Stack Pointer (SP)	Counter of Interrupt Stack Register
CALL addr		
CALL @AR		
MOVT DBF, @AR	_1	0
(1st Instruction Cycle)		U
PUSH AR		
SYSCAL entry		
When interrupt is accepted	-1	-1
RET		
RETSK		
MOVT DBF, @AR	+1	0
(2nd Instruction Cycle)		
POP AR		
RETI	+1	+1

2.4 Data Memory (RAM)

Data memory (random access memory) stores data for operations and control. It can be read-/write-accessed by instructions.

2.4.1 Memory configuration

Figure 2-6 shows the configuration of the data memory (RAM).

The data memory consists of two "banks": BANK0 and BANK1.

In each bank, every 4 bits of data is assigned an address. The high-order 3 bits of the address indicate a "row address" and the low-order 4 bits of the address indicate a "column address". For example, a data memory location indicated by row address 1H and column address 0AH is termed a data memory location at address 1AH. Each address stores data of 4 bits (= a "nibble").

In addition, the data memory is divided into following six functional blocks:

(1) System register (SYSREG)

A system register (SYSREG) is resident on addresses 74H to 7FH (12 nibbles long) of each bank. In other nibbles, each bank has a system register at its addresses 74H to 7FH.

(2) Data buffer (DBF)

A data buffer is resident on addresses 0CH to 0FH (4 nibbles long) of bank 0 of data memory. The reset value is 0320H.

(3) General register (GR)

A general register is resident on any row (16 nibbles long) of any bank of data memory.

The row address of the general register is pointed by the general pointer (RP) in the system register (SYSREG).

(4) Port register

A port data register is resident on addresses 6FH, and 70H to 73H (5 nibbles) of BANK0 of data memory. No data can be written to or read from the addresses 71H to 73H of BANK1.

(5) General-purpose data memory

The general-purpose data memory area is an area of the data memory excluding the system register area, and the port register areay This memory area has a total of 223 nibbles (111 nibbles in BANK0 and 112 nibbles in BANK1).

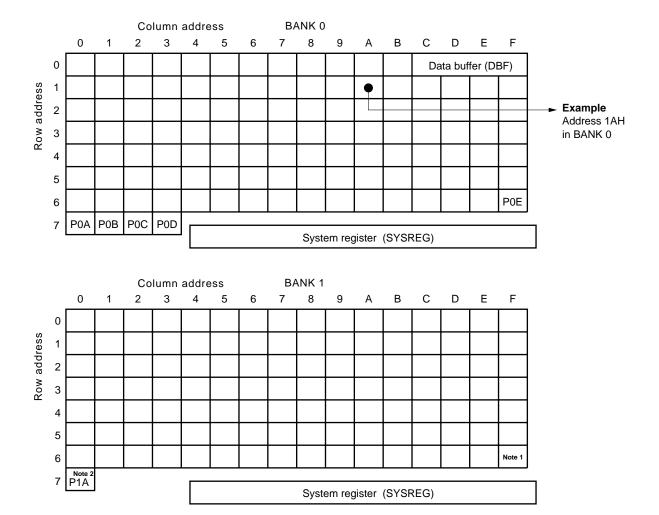


Figure 2-6. Configuration of Data Memory

- Notes 1. Address 6FH of bank 1 can be used as a general-purpose data memory area.
 - 2. Only bit 0 of address 70H of bank 1 is used. Bits 1 through 3 are fixed to 0.

Caution No data can be written to or read from the addresses 71H to 73H of BANK1.

2.4.2 System registers (SYSREG)

The system registers are registers that are directly related to control of the CPU. These registers are mapped to addresses 74H-7FH on the data memory and can be referenced regardless of bank specification.

The system registers include the following registers:

- Address registers (AR0-AR3)
- Window register (WR)
- Bank register (BANK)
- Memory pointer enable flag (MPE)
- Memory pointers (MPH, MPL)
- Index registers (IXH, IXM, IXL)
- General register pointers (RPH, RPL)
- Program status word (PSWORD)

Figure 2-7. Configuration of System Register

Address		74H 75H			75H 76H				77H			78H			79H			7/	Н		7BH			7CH			7DH			7EH		ΞН	I 7F		7F	Ή												
Name	Address register										Window register (WR)				Bank register			Index register (IX)							General register					Program status																		
Name	(AR)													(BANK)		Data memory row address pointer (MP)									pointe (RP)							word (PSWOR			D)													
Symbol	AR 3 AR 2		AR 2		AR 1			AR 0		WR		BANK			IXH IXM MPH MPL				IXL			RPH				RPL			PSV		W																	
Bit	bз	b2	b1	b o	bз	b2	b1	bo	bз	b2	b1	bo	bз	b2	b1	bo	ba	b2	b	1 b c	ba	b2	b1	bo	рз	b2	b1	bo	рз	b2	b1	bo	ЬзΙ	52 k)1 k	ook	oзk)2	b1	bo	bз	b2	b1	b o	bзŀ	52	b1) 0
Data	0	0 0 0	0	0	-(<i>I</i> -	١R) (, (A	ι μΡ \ \R 	D1 (#	ι 72 μΡ	 232 D1 	2,1 72	i 72 ! !31	: :33 -	^ 3)	*		(V	VR	2)	0	BA 0	 0	K)	M P E		0	0	4	(M		(I) -	()				0	0	0	•	(R	P)	•		- 1	C		I X E
Initial Value At Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Uı	nde	efir	ned	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

2.4.3 General register (GR)

A general register is a 16-word register on the data memory and used for arithmetic operations and transfer of data to and from the data memory.

(1) Configuration of general register

Figure 2-8 shows the configuration of the general register.

A general register occupies 16 nibbles (16×4 bits) on a selected row address of the data memory as shown in Figure 2-6.

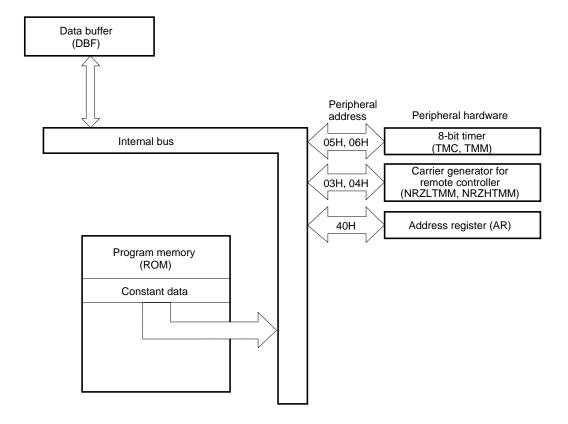
The row address is selected by the general register pointer (RP) of the system register. The RP having four significant bits can point to any row address in the range of 0H to 7H of each bank (BANK0 and BANK1).

(2) Functions of the general register

The general register enables an arithmetic operation and data transfer between the data memory and a selected general register by a single instruction. As a general register is a part of the data memory, you can say that the general register enables arithmetic operation and data transfer between two locations of the data memory. Similarly, the general register can be accessed by a data memory manipulation instruction as it is a part of the data memory.

General register pointer (RP) BANK0 **RPH RPL** Column address b₂ b₁ b₀ b_2 b_1 bо 4 5 6 7 8 9 A B C D E bз 0 0 0 0 0 0 1 x e d e d e d 0 0 1 0 → 2 General registers (16 nibbles) Example General registers 1 1 0 S → 3 when RP = 0000010B 0 0 0 0 0 0 g 0 0 0 0 0 1 → 5 0 1 1 0 → 6 d 0 1 1 1 Port register General register System registers RP BANK1 settable range o 0 0 0 1 0 В 0 1 С → 1 D 1 1 0 0 → 2 Same system 1 0 1 1 → 3 registers exist 0 0 1 1 0 1 g 1 1 1 0 → 6 1 1 System registers

Figure 2-8. Configuration of General Registers


2.4.4 Data buffer (DBF)

The data buffer on the addresses 0CH to 0FH of data memory is used for data transfer to and from peripheral hardware and for storage of data during table reference.

(1) Functions of the data buffer

The data buffer has two major functions: a function to transfer to and from hardware and a function to read constant data from the program memory (for table reference). Figure 2-9 shows the relationship between the data buffer and peripheral hardware.

Figure 2-9. Data Buffer and Peripheral Hardware

GETNote 2

Hardware	Peripheral Register Transferring Data with Data Buffer										
Peripherals	Name	Symbol	Peripheral address	Data buffer used	PUT/GET						
8-bit timer	8-bit counter	TMC	05H	DBF0, DBF1	GET only						
	8-bit modulo register	ТММ	06H	DBF0, DBF1	PUT only						
Remote controller carrier generator	NRZ low-level timer modulo register	NRZLTMM	03H	DBF0, DBF1	PUT GET						
	NRZ high-level timer modulo register	NRZHTMM	04H	DBF0, DBF1	PUT (clear bit 3 of DBF1 to 0) GET (bits 3 of DBF1 is always 0)						
Address register	Address register	AR	40H	DBF0-DBF3	PUT ^{Note 1}						

Table 2-4. Relations between Hardware Peripherals and Data Buffer

Notes 1. In the μ PD17230: bits 0 to 3 of AR3 and bit 3 of AR2 are any,

in the μ PD17231: bits 0 to 3 of AR3 are any,

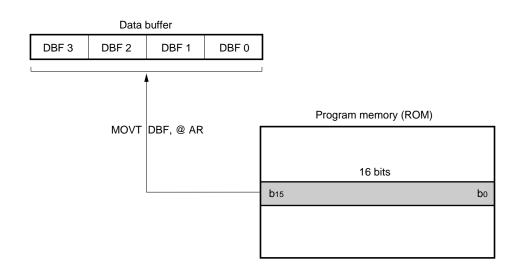
in the μ PD17232, 17233: bits 1 to 3 of AR3 are any,

in the $\mu\text{PD17234},\,\text{17235},\,\text{17236};$ bits 2 to 3 of AR3 are any

2. In the μ PD17230: bits 0 to 3 of AR3 and bit 3 of AR2 are always 0,

in the μ PD17231: bits 0 to 3 of AR3 are always 0,

in the μ PD17232, 17233: bits 1 to 3 of AR3 are always 0,


in the μ PD17234, 17235, 17236: bits 2 to 3 of AR3 are always 0

(2) Table reference

A MOVT instruction reads constant data from a specified location of the program memory (ROM) and sets it in the data buffer.

The function of the MOVT instruction is explained below.

MOVT DBF, @AR: Reads data from a program memory location pointed to by the address register (AR) and sets it in the data buffer (DBF).

(3) Note on using data buffer

When transferring data to/from the peripheral hardware via the data buffer, the unused peripheral addresses, write-only peripheral registers (only when executing PUT), and read-only peripheral registers (only when executing GET) must be handled as follows:

When device operates

Nothing changes even if data is written to the read-only register.

If the unused address is read, an undefined value is read. Nothing changes even if data is written to that address.

Using assembler

An error occurs if an instruction is executed to read a write-only register.

Again, an error occurs if an instruction is executed to write data to a read-only register.

An error also occurs if an instruction is executed to read or write an unused address.

If an in-circuit emulator (IE-17K or IE-17K-ET) is used (when instruction is executed for patch processing)

An undefined value is read if an attempt is made to read the data of a write-only register, but an error does not occur.

Nothing changes even if data is written to a read-only register, and an error does not occur.

An undefined value is read if an unused address is read; nothing changes even if data is written to this address. An error does not occur.

2.5 Register File (RF)

The register file mainly consists of registers that set the conditions of the peripheral hardware.

These registers can be controlled by dedicated instructions PEEK and POKE, and the embedded macro instructions of RA17K, SETn, CLRn, and INITFLG.

2.5.1 Configuration of register file

Figure 2-10 shows the configuration of the register file and how the register file is accessed by the PEEK and POKE instructions.

The control registers are controlled by using dedicated instructions PEEK and POKE. Since the control registers are assigned to addresses 00H-3FH regardless of the bank, the addresses 00H-3FH of the general-purpose data memory cannot be accessed when the PEEK or POKE instruction is used.

The addresses that can be accessed by the PEEK and POKE instructions are the addresses 00H-3FH of the control registers and 40H-7FH of the general-purpose data memory. The register file consists of these addresses.

The control registers are assigned to addresses 80H-BFH on the IE-17K to facilitate debugging.

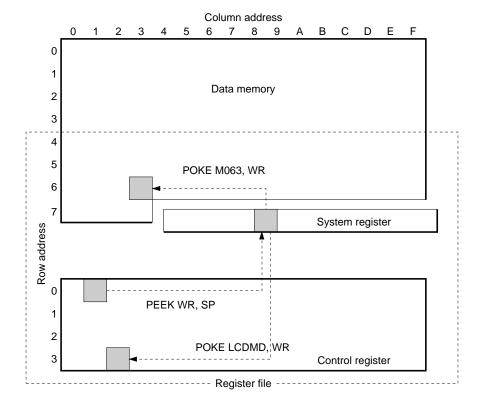


Figure 2-10. Register File Access with PEEK or POKE Instructions

2.5.2 Control registers

The control registers consists of a total of 64 nibbles (64 x 4 bits) of the addresses 00H-3FH of the register file. Of these, however, only 16 nibbles are actually used. The remaining 48 nibbles are unused registers that are inhibited from being read or written.

When the "PEEK WR, rf" instruction is executed, the contents of the register file addressed by "rf" are read to the window register.

When the "POKE rf, WR" instruction is executed, the contents of the window register are written to the register file addressed by "rf".

When using the assembler (RA17K), the macro instructions listed below, which are embedded as flag type symbol manipulation instructions, can be used. The macro instructions allow the contents of the register file to be manipulated in bit units

For the configuration of the control register, refer to Figure 11-1 Register File List.

SETn : Sets flag to "1" CLRn : Sets flag to "0"

SKTn : Skips if all flags are "1"
SKFn : Skips if all flags are "0"
NOTn : Complements flag
INITFLG : Initializes flag
INITFLGX : Initalizes flag

2.5.3 Notes on using register files

When using the register files, bear in mind the points described below. For details, refer to μ PD172xx subseries User's Manual (U12795E).

(1) When manipulating control registers (read-only and unused registers)

When manipulating the write-only (W), the read-only (R) and unused control registers by using the assembler or in-circuit emulator, keep in mind the following points:

When device operates

Nothing changes even if data is written to the read-only register.

If the unused register is read, an undefined value is read; nothing is changed even if data is written to this register.

· Using assembler

An error occurs if instruction is excecuted to read data to the write-only register.

An error occurs if an instruction is executed to write data to the read-only register.

An error also occurs if an instruction is executed to read or write the unused address.

 When an in-circuit emulator (IE-17K or IE-17K-ET) is used (when instruction is executed for patch processing)

An undefined value is read if the write-only register is read, and an error does not occur.

Nothing changes even if data is written to the read-only register, and an error does not occur.

An undefined value is read if the unused address is read; nothing changes even if data is written to this address. An error does not occur.

(2) Symbol definition of register file

An error occurs if a register file address is directly specified as a numeral by the operand "rf" of the "PEEK WR, rf" or "POKE rf, WR" instruction if the 17K Series Assembler (RA17K) is being used.

Therefore, the addresses of the register file must be defined in advance as symbols.

To define the addresses of the control registers as symbols, define them as the addresses 80H-BFH of BANKO.

The portion of the register file overlapping the data memory (40H-7FH), however, can be defined as symbols as is.

3. PORTS

3.1 Port 0A (P0A₀ through P0A₃)

This is a 4-bit input port. Data is read through port register P0A (address 70H of BANK0). This port is a CMOS input port with a pull-up resistor, and can be used for key return input for a key matrix.

In the standby mode, the standby status is released when a low level is input to at least one of these pins.

3.2 Port 0B (P0B₀ through P0B₃)

This is a 4-bit I/O port which can be set in the input or output mode in 1-bit units by using P0BBIO (address 26H) of the register file.

In the input mode, each bit of this port serves as a CMOS input pin with a pull-up resistor and can be used as a key return input line of a key matrix. In the standby mode, the standby status is released when a low level is input to at least one of these pins.

In the output mode, these pins serve as N-ch open-drain output pins and can be used as key source lines of a key matrix.

The data input to this port can be read or the data output from this port can be set by using the P0B register (address 71H of BANK0). When this port is read in the output mode, the contents of the output latch are read.

In the input mode, a pull-up resistor of 200 $k\Omega$ is connected to each bit of this port. In the output mode, the pull-up resistor is disconnected.

On reset, this port is set in the input mode.

3.3 Port 0C (P0C₀ through P0C₃)

This is a 4-bit I/O port which can be set in the input or output mode in 4-bit units (group I/O) by using P0CDGIO (bit 2 of address 37H) of the register file.

In the input mode, each bit of this port serves as a CMOS input pin with a pull-up resistor and can be used as a key return input line of a key matrix. In the standby mode, the standby status is released when a low level is input to at least one of these pins.

In the output mode, these pins serve as N-ch open-drain output pins and can be used as key source lines of a key matrix.

The data input to this port can be read or the data output from this port can be set by using the P0C register (address 72H of BANK0). When this port is read in the output mode, the contents of the output latch are read.

In the input mode, a pull-up resistor of 200 k Ω is connected to each bit of this port. In the output mode, the pull-up resistor is disconnected.

On reset, this port is set in the output mode and outputs low.

3.4 Port 0D (P0D₀ through P0D₃)

This is a 4-bit I/O port which can be set in the input or output mode in 4-bit units (group I/O) by using P0CDGIO (bit 3 of address 37H) of the register file.

In the input mode, each bit of this port serves as a CMOS input pin with a pull-up resistor and can be used as a key return input line of a key matrix. In the standby mode, the standby status is released when a low level is input to at least one of these pins.

In the output mode, these pins serve as N-ch open-drain output pins and can be used as key source lines of a key matrix.

The data input to this port can be read or the data output from this port can be set by using the P0D register (address 73H of BANK0). When this port is read in the output mode, the contents of the output latch are read.

In the input mode, a pull-up resistor of 200 $k\Omega$ is connected to each bit of this port. In the output mode, the pull-up resistor is disconnected.

On reset, this port is set in the output mode and outputs low.

3.5 Port 0E (P0E₀ through P0E₃)

This is a 4-bit I/O port which can be set in the input or output mode in 1-bit units by the P0EBIO (address 27H) of the register file.

To read the input data or to set the output data, use the P0E register (address 6FH of BANK0). When data is read in the output mode, the contents of the output latch are read.

Connection of a pull-up resistor can be specified in 1-bit units by the P0EBPU (address 17H) of the register file. (When the pull-up resistor is connected, note that the pull-up resistor is not disconnected even when the output mode is set.)

On reset, this port is set in the input port.

3.6 Port 1A (P1A₀)

This port can be set in the input or output mode by mask option.

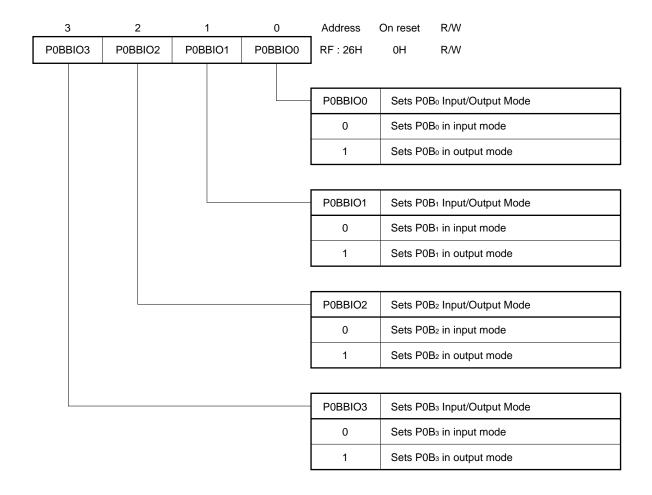
In the input mode, this port serves as a CMOS input port. The input data is read by using port register P1A (address 70H of BANK1). This port cannot be used to release the STOP mode.

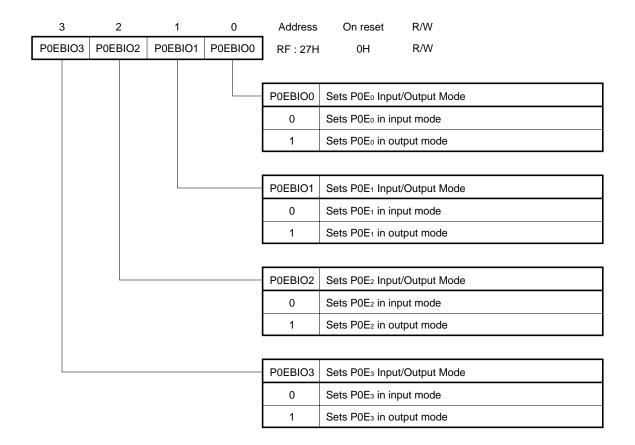
In the output mode, it serves as an N-ch open-drain output port and can be used as a key source line of a key matrix. The output data is set by using port register P1A (address 70H of BANK1). When this port is read in the output mode, the contents of the output latch are read.

On reset, this port goes into a high-impedance state.

3.7 INT Pin

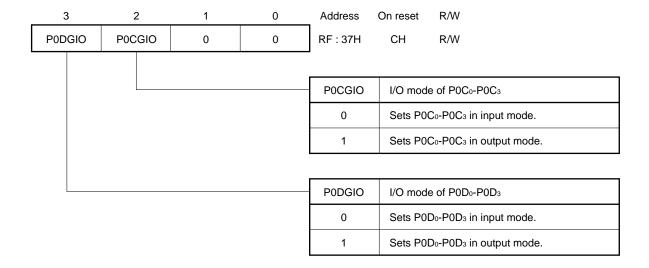
This pin inputs an external interrupt request signal. At either the rising or falling edge of the signal input to this pin, the IRQ flag (RF: address 3EH, bit 0) is set.

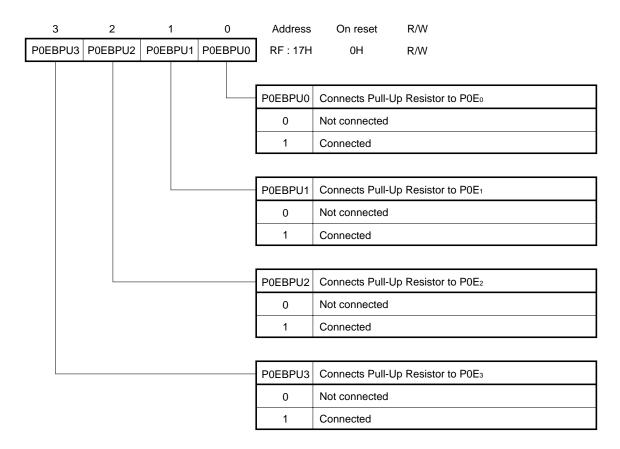

The status of this pin can be read by using the INT flag (RF: address 0FH, bit 0). When the high level is input to the pin, the INT flag is set to "1"; when the low level is input, the flag is reset to "0" (refer to **7.2.1 INT**).


Figure 3-1. Relations between Port Register and Each Pin

Bank	Address	Target Port		Bit	Output	Read C	ontents	Written	On Reset	
					Format	Input mode	Output mode	Input mode	Output mode	
0	70H	Port 0A	bз	P0A3	Input	Pin status	_	_	_	Input mode
			b ₂	P0A2						(with pull-up
			b ₁	P0A1						resistor)
			bo	P0A0						
	71H	Port 0B	bз	P0B3	N-ch		Output latch	Output latch	Output latch	
			b ₂	P0B2	open drain					
			b ₁	P0B1						
			bo	P0B0						
	72H	Port 0C	Ьз	P0C3						Output mode
			b ₂	P0C2						(low-level
			b ₁	P0C1						output)
			b ₀	P0C0						
	73H	Port 0D	bз	P0D3						
			b ₂	P0D2						
			b ₁	P0D1						
			bo	P0D0						
	6FH	Port 0E	bз	P0E3	CMOS					Input mode
			b ₂	P0E2	push-pull					(without pull-
			b ₁	P0E1						up resistor)
			bo	P0E0						
1	70H	Port 1A (input/output mode set by	bo	P1A0	Input (in input mode)		-	-	-	Input mode (without pull- up resistor)
		mask option)			N-ch open drain (in output mode)	-	Output latch	Output latch	Output latch	Output mode (high- impedance output)

3.8 Switching Bit I/O


The I/O which can be set in the input or output mode in bit units is called a bit I/O. P0B and P0E are bit I/O ports, which can be set in the input or output mode in bit units by the register file shown below. When the mode is changed from input to output, the P0B and P0E output latch contents are output to the port lines, as soon as the mode has been changed.


3.9 Selecting I/O Mode of Group I/O

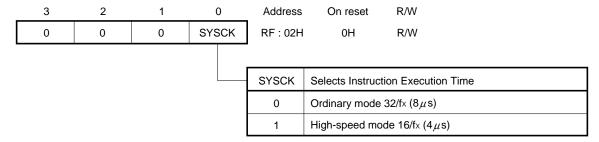
An I/O that is set in the input or output mode in 4-bit units is called a group I/O. POC and POD can be used as group I/O ports. The input and output modes of these ports are selected by using the following register file. If the mode is changed from input to output, the contents of the port register are output to the respective ports as soon as the mode has been changed.

3.10 Specifying Pull-up Resistor Connection

Whether or not a pull-up resistor is connected to port P0E can be specified by the following registers of the register file in 1-bit units Note.

Note To disconnect the pull-up resistor in the output mode, clear the corresponding bit of the P0EBPU register.

4. CLOCK GENERATOR CIRCUIT


4.1 Instruction Execution Time (CPU Clock) Selection

The μ PD17236 is equipped with a clock oscillator that supplies clocks to the CPU and hardware peripherals. Instruction execution time can be changed in two steps (ordinary mode and high-speed mode) without changing the oscillation frequency.

To change the instruction execution time, change the mode of SYSCK (RF: address 02H) of the register file by using the POKE instruction.

Note, that the mode is actually only changed when the instruction next to the POKE instruction has been executed. When using the high-speed mode, pay attention to the supply voltage. (Refer to 13. ELECTRICAL SPECIFICA-FIONS.)

On reset, the ordinary mode is set.

Figures in (): indicate figures when system clock fx = 4 MHz.

5. 8-BIT TIMER AND REMOTE CONTROLLER CARRIER GENERATOR CIRCUIT

The μ PD17236 is equipped with the 8-bit timer which is mainly used to generate the leader pulse of the remote controller signal, and to output codes.

5.1 Configuration of 8-bit Timer (with modulo function)

Figure 5-1 shows the configuration of the 8-bit timer.

As shown in this figure, the 8-bit timer consists of an 8-bit counter (TMC), an 8-bit modulo register (TMM), a comparator that compares the value of the timer with the value of the modulo register, and a selector that selects the operation clock of the 8-bit timer.

To start/stop the 8-bit timer, and to reset the 8-bit counter, TMEN (address 33H, bit 3) and TMRES (address 33H, bit 2) of the register file are used. To select the operation clock of the 8-bit timer, use TMCK1 (address 33H, bit 1) and TMCK0 (address 33H, bit 0) of the register file.

The value of the 8-bit counter is read by using the GET instruction through DBF (data buffer). No value can be set to the 8-bit counter. A value is set to the modulo register by using the PUT instruction through DBF. The value of the modulo register cannot be read.

When the value of the counter coincides with that of the modulo register, an interrupt flag (IRQTM: address 3FH, bit 0) of the register file is set.

11	VIC										
	7	6	5	4	3	2	1	0	Address	On reset	R/W
		l L	. 8	B-bit c	ounte	r	l L	1	Peripheral register: 05H	00H	R
TI	мм										
	7	6	5	4	3	2	1	0	Address	On reset	R/W
		l I	8-bit	modu	llo reg	gister	l I	I	Peripheral register: 06H	FFH	W

Caution Do not clear TMM to 0 (IRQTM is not set).

TNAC

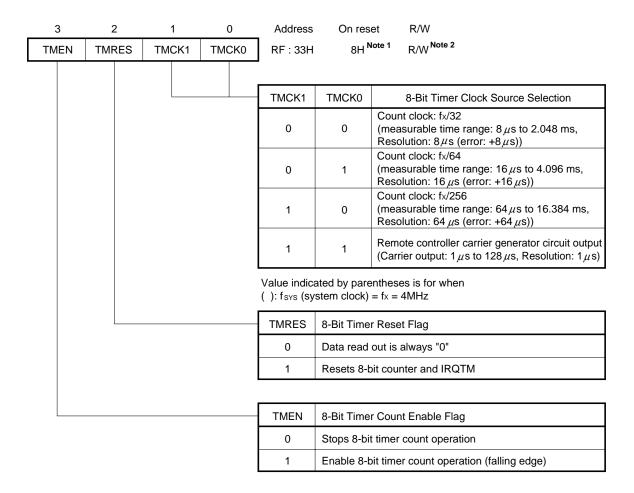
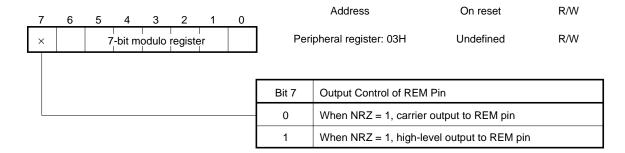

Data buffer Internal bus --- 8-bit timer --RF: 33H **TMEN TMRES** TMCK1 TMCK0 8-bit modulo register TMM fx/32 fx/64 fx/256 IRQTM Selector Comparator Q 8-bit counter TMC · Remote controller carrier generator circuit 7-bit counter RF: 11H NRZBF Comparator bit 7 RF: 12H 7-bit modulo register NRZLTMM NRZ 7-bit counter Comparator bit 7 7-bit modulo register NRZHTMM 0 fixed

Figure 5-1. Configuration of 8-bit Timer and Remote Controller Carrier Generator Circuit

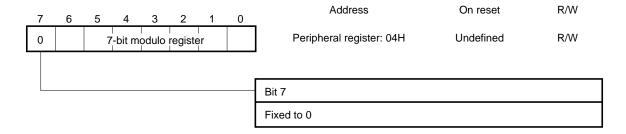
Note Mask options. Select either one of these.

Remark TMM, TMC, NRZLTMM, and NRZHTMM are peripheral registers.

5.2 Function of 8-bit Timer (with modulo function)


Notes 1. When the STOP mode is released, bit 3 must be set.

2. Bit 2 is a write-only bit.


Caution If the system clock is changed while the timer is counting, an error occurs in the timer as follows (when system clock fx = 4 MHz):

- High-speed mode 16/fx ightarrow Normal mode 32/fx ... (Error due to resolution of set timer) +1.5 μ s
- Normal mode 32/fx \rightarrow High-speed mode 16/fx ... (Error due to resolution of set timer) –1.5 μ s

NRZLTMM

NRZHTMM

5.3 Carrier Generator Circuit for Remote Controller

μPD17236 is provided with a carrier generator circuit for the remote controller.

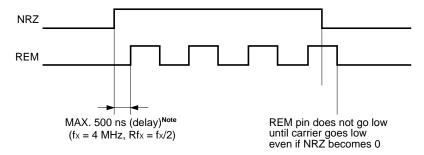
The remote controller carrier generator circuit consists of a 7-bit counter, NRZ high-level timer modulo register (NRZHTMM), and NRZ low-level timer modulo register (NRZLTMM). The high-level and low-level periods are set in the corresponding modulo registers through the DBF to determine the carrier duty factor and carrier frequency.

Either the system clock (fx) divided by two or the original oscillation can be selected by mask option as an input to the 7-bit counter (where the clock for generating carrier is Rfx). When Rfx is oscillated by a 4-MHz oscillator, therefore, the input clock is 2 MHz (fx/2) or 4 MHz (fx).

The NRZ high-level output timer modulo register is called NRZHTMM, and the NRZ low-level timer modulo register is called NRZLTMM. Data is written to these registers by the PUT instruction. The contents for these register are read by the GET instruction.

Bit 7 of NRZLTMM specifies whether the carrier or high level is output to the REM pin. To output the carrier, be sure to clear bit 7 to 0.

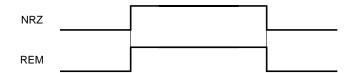
5.3.1 Remote controller signal output control

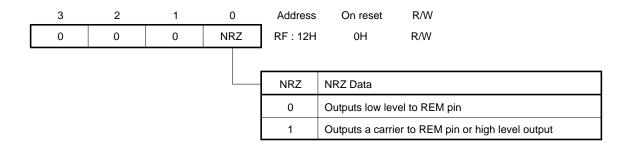

The REM pin, which outputs the carrier, is controlled by bits NRZ and NRZBF for the register file and timer 0. While the NRZ content is "1", the clock generated by the remote controller carrier generator circuit is output to the REM pin; while the NRZ content is "0", the REM pin outputs a low level. The NRZBF content is automatically transferred to NRZ by the interrupt signal generated by timer 0. If data is set in NRZBF in advance, the REM pin status changes in synchronization with the timer 0 counting operation.

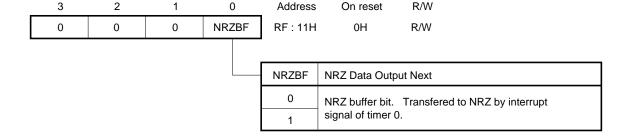
If the interrupt signal is generated from timer 0 with the REM pin at the high level, NRZ being "1", and the carrier clock at the high level, the REM pin output is not in accordance with the updated content of NRZ, until the carrier clock goes low. This processing is useful for holding the high level pulse width from the output carrier constant (refer to the figure below).

When the content of NRZ is "0", the remote controller carrier generator circuit stops. However, if the clock for timer 0 is output from the remote controller carrier generator circuit, the clock continues to operate, even when the NRZ content becomes "0".

An actual example showing a remote controller signal output to the REM pin is presented below.


When bit 7 of NRZLTMM is 0 (carrier output)




Note Value when $(TMCK1, TMCK0) \neq (1, 1)$.

When (TMCK1, TMCK0) = (1, 1), the value differs depending on how NRZ is manipulated. If NRZ is set by an instruction, the width of the first high-level pulse may be shortened. If NRZ is set by data transferred from NRZBF, the high-level pulse is delayed by the low-level pulse of the carrier clock.

When bit 7 of NRZLTMM is 0 (carrier not output)

Setting carrier frequency and duty factor

Where the system clock frequency is fx, carrier frequency is fc, and carrier generation clock is Rfx:

When Rfx = fx/2: ℓ (division ratio) = fx/(2 × fc)
 When Rfx = fx : ℓ (division ratio) = fx/fc

 ℓ is divided into m:n and is set in the modulo registers as follows:

High-level period set value = $\{ \ell \times m/(m+n) \} - 1$ Low-level period set value = $\{ \ell \times n/(m+n) \} - 1$

Example Where fc = 38 kHz, duty factor (high-level period) = 1/3, fx = 4 MHz, and Rfx = fx/2:

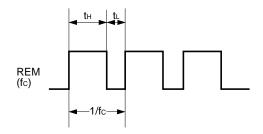
$$\ell = 4 \text{ MHz}/(2 \times 38 \text{ kHz}) = 52.6$$

m:n = 1:2

From the above, the value of the modulo register is:

High-level period ≒ 17 Low-level period ≒ 34

Therefore, the carrier frequency is 37.74 kHz.


Table 5-1. Carrier Frequency List

(1) Where fx = 4 MHz and Rfx = fx/2

Set \	/alue	tн (μs)	t∟ (<i>μ</i> s)	1/fc (μs)	fc (kHz)	Duty
NRZHTMM	NRZLTMM					
00H	00H	0.5	0.5	1.0	1000	1/2
01H	02H	1.0	1.5	2.5	400	2/5
04H	04H	2.5	2.5	5.0	200	1/2
09H	09H	5.0	5.0	10.0	100	1/2
0FH	10H	8.0	8.0	16.5	60.6	1/2
0FH	21H	8.0	17.0	25.0	40.0	1/3
11H	21H	9.0	17.0	26.0	38.5	1/3
11H	22H	9.0	17.5	26.5	37.7	1/3
19H	35H	13.0	27.0	40.0	25.0	1/3
3FH	3FH	32.0	32.0	64.0	15.6	1/2
7FH	7FH	64.0	64.0	120.0	7.8	1/2

(2) Where fx = 4 MHz, Rfx = fx (original oscillation)

Set \	/alue	tн (μs)	t∟ (<i>μ</i> s)	1/fc (μs)	fc (kHz)	Duty
NRZHTMM	NRZLTMM					
00H	00H	0.25	0.25	0.5	2000	1/2
01H	02H	0.5	0.75	1.25	800	2/5
04H	04H	1.25	1.25	2.5	400	1/2
09H	09H	2.5	2.5	5.0	200	1/2
0FH	10H	4.0	4.25	8.25	121	1/2
0FH	21H	4.0	8.5	12.5	80	1/3
11H	21H	4.5	8.5	13.0	76.9	1/3
11H	22H	4.5	8.75	13.25	75.47	1/3
19H	35H	6.5	13.5	20.0	50	1/3
3FH	3FH	16.0	16.0	32.0	31.25	1/2
7FH	7FH	32.0	32.0	60.0	16.6	1/2

5.3.2 Countermeasures against noise during transmission (carrier output)

When a signal is transmitted from the transmitter of a remote controller, a peak current of 0.5 to 1 A may flow through the infrared LED. Since two batteries are usually used as the power source of the transmitter, several Ω of equivalent resistance (r) exists in the power source as shown in Figure 5-2. This resistance increases to 10 to 20 Ω if the supply voltage drops to 2 V. While the carrier is output from the REM pin (while the infrared LED lights), therefore, a high-frequency noise may be generated on the power lines due to the voltage fluctuation that may take place especially during switching.

To minimize the influence on the microcontroller of this high-frequency noise, take the following measures:

- <1> Separate the power lines of the microcontroller from the power lines of the infrared LED with the terminals of the batteries at the center. Use thick power lines and keep the wiring short.
- <2> Locate the resonator as close as possible to the microcontroller and shield it with GND lines (as indicated by the shaded portion in the figure below).
- <3> Locate the capacitor for stabilization of the power supply closely to the power lines of the microcontroller.
 Also, use a capacitor to eliminate high-frequency noise.
- <4> To prevent data from changing, do not execute an interrupt that requires read/write processing and stack, such as key scan interrupt, and the CALL/RET instruction, while the carrier is output.
- <5> To improve the reliability in case of program hang-up, use the watchdog timer.

Infrared LED

REM

Vod

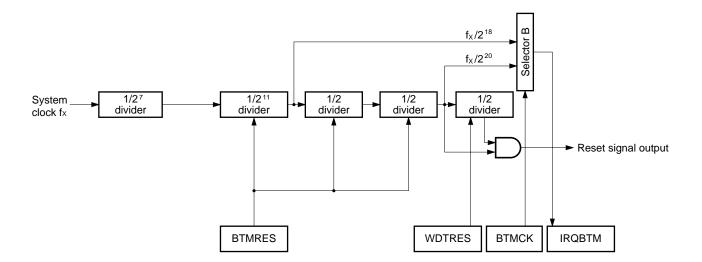
Microcomputer

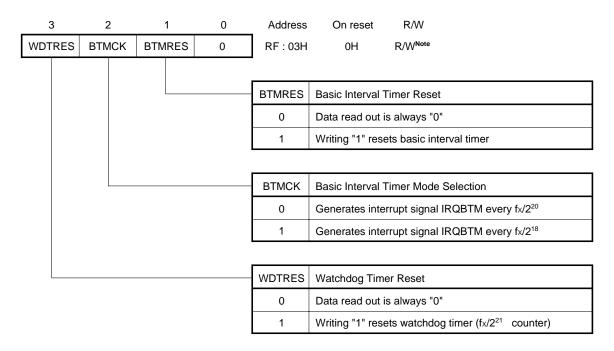
Vss

Figure 5-2. Example of Countermeasures against Noise

6. BASIC INTERVAL TIMER/WATCHDOG TIMER

The basic interval timer has a function to generate the interval timer interrupt signal and watchdog timer reset signal.


6.1 Source Clock for Basic Interval Timer


The system clock (fx) is divided, to generate the source clock for the basic interval timer. The input clock frequency for the basic interval timer is $fx/2^7$. When the CPU is set in the STOP mode, the basic interval timer also stops.

6.2 Controlling Basic Interval Timer

The basic interval timer is controlled by the bits on the register file. That is, the basic interval timer is reset by BTMRES. The frequency for the interrupt signal, output by the basic interval timer, is selected by BTMMD, and the watchdog timer is reset by WDTRES.

Figure 6-1. Basic Interval Timer Configuration

Note Bits 1 and 3 are write-only bits.

6.3 Operation Timing for Watchdog Timer

The basic interval timer can be used as a watchdog timer.

Unless the watchdog timer is reset within a fixed time Note , it judges that "the program has hung up", and the μ PD17236 is reset. It is therefore necessary to reset through programming the watchdog timer with in a fixed time. The watchdog timer can be reset by setting WDTRES to 1.

Note Fixed time: approx. 340 ms (at 4 MHz)

Caution The watchdog timer cannot be reset in the shaded range in Figure 6-2. Therefore, set WDTRES before both the $fx/2^{21}$ and $fx/2^{20}$ signals go high.

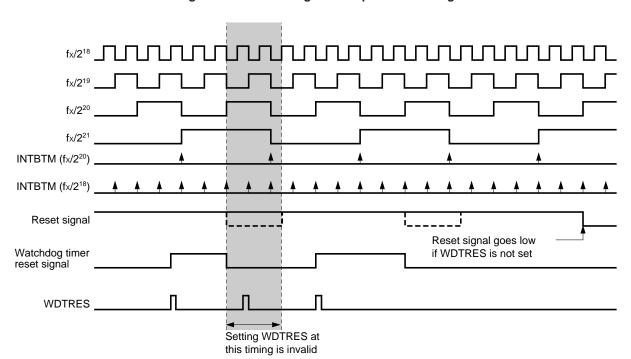


Figure 6-2. Watchdog Timer Operation Timing

7. INTERRUPT FUNCTIONS

7.1 Interrupt Sources

 μ PD17236 is provided with three interrupt sources.

When an interrupt has been accepted, the program execution automatically branches to a predetermined address, which is called a vector address. A vector address is assigned to each interrupt source, as shown in Table 7-1.

Table 7-1. Vector Address

Priority	Interrupt Source	Ext/Int	Vector Address
1	8-bit timer	Internal	0003H
2	INT pin rising and falling edges	External	0002H
3 Basic interval timer		Internal	0001H

When more than one interrupt request is issued at the same time, the interrupts are accepted in sequence, starting from the one with the highest priority.

Whether an interrupt is enabled or disabled is specified by the EI or DI instruction. The basic condition under which an interrupt is accepted is that the interrupt is enabled by the EI instruction. While the DI instruction is executed, or while an interrupt is accepted, the interrupt is disabled.

To enable accepting an interrupt after the interrupt has been processed, the EI instruction must be executed before the RETI instruction. Accepting the interrupt is enabled by the EI instruction after the instruction next to the EI instruction has been executed. Therefore, no interrupt can be accepted between the EI and RETI instructions.

Caution In interrupt processing, only the BCD, CMP, CY, Z, IXE flags are automatically saved to the stack by the hardware, to a maximum of three levels. Also, within the interrupt processing contents, when peripheral hardware (timer, A/D converter, etc.) is accessed, the DBF and WR contents are not saved by the hardware. Accordingly, it is recommended that at the beginning of interrupt processing DBF and WR be saved by software to RAM, and immediately before finishing interrupt processing the saved contents be returned to thier original location.

7.2 Hardware of Interrupt Control Circuit

This section describes the flags of the interrupt control circuit.

(1) Interrupt request flag and interrupt enable flag

The interrupt request flag (IRQxxx) is set to 1 when an interrupt request is generated, and is automatically cleared to 0 when the interrupt processing is excuted.

An interrupt enable flag (IPxxx) is provided to each interrupt request flag. When the IPxxx flag is 1, the interrupt is enabled; when it is 0, the interrupt is disabled.

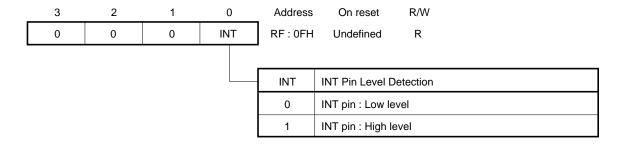
(2) EI/DI instruction

Whether an accepted interrupt is executed or not is specified by the EI or DI instruction.

When the EI instruction is executed, INTE (interrupt enable flag), which enables the interrupt, is set to 1. The INTE flag is not registered on the register file. Consequently, the status of this flag cannot be checked by an instruction.

The DI flag clears the INTE flag to 0 to disable all the interrupts.

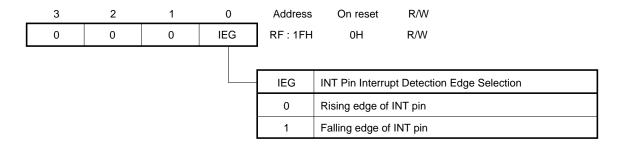
The INTE flag is also cleared to 0 at reset, disabling all the interrupts.


Table 7-2. Interrupt Request Flags and Interrupt Enable Flag

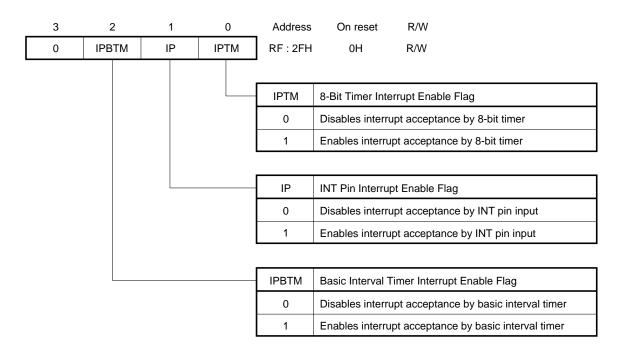
Interrupt Request Flag	Signal Setting Interrupt Request Flag	Interrupt Enable Flag
IRQTM	Reset by 8-bit timer.	IPTM
IRQ	Set when edge of INT pin input signal is detected	IP
IRQBTM	Reset by basic interval timer.	IPBTM

7.2.1 INT

This flag reads the INT pin status.


When a high level is input to the INT pin, this flag is set to "1"; when a low level is input, the flag is reset to "0".

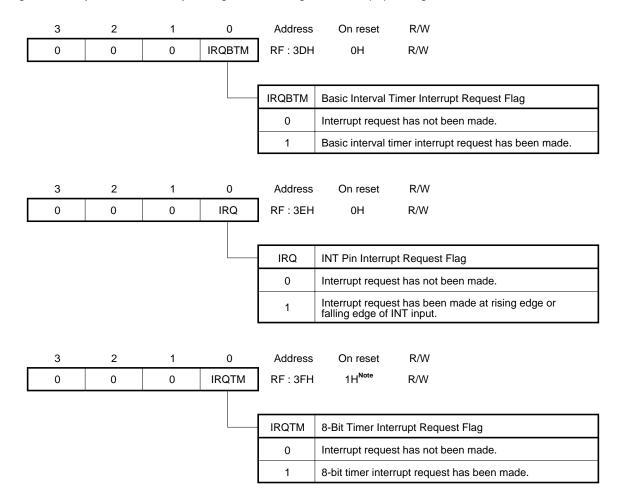
7.2.2 IEG


This pin selects the interrupt edge to be detected on the INT pin.

When this flag is "0", the interrupt is detected at the rising edge; when it is "1", the interrupt is detected at the falling edge.

7.2.3 Interrupt enable flag

This flag enables each interrupt source. When this flag is "1", the corresponding interrupt is enabled; when it is "0", the interrupt is disabled.



7.2.4 IRQ

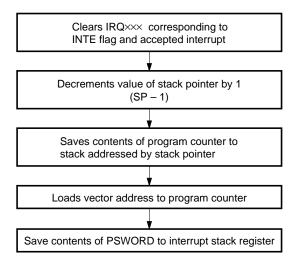
This is an interrupt request flag that indicates the interrupt request status.

When an interrupt request is generated, this flag is set to "1". When the interrupt has been accepted, the interrupt request flag is reset to "0".

The interrupt request flag can be read or written by the program. Therefore, when it is set to "1", an interrupt can be generated by the software. By writing "0" to the flag, the interrupt pending status can be canceled.

Note It is also set to 1H after releasing the STOP mode.

7.3 Interrupt Sequence

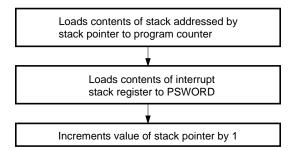

If IRQxx flag is set to "1" when IPxx flag is "1", interrupt processing is started after the instruction cycle of the instruction executed when IRQxx flag was set has ended. Since the MOVT instruction, EI instruction, and the instruction which matches the condition to skip use two instruction cycles, the interrupt enabled while this instruction is executed is processed after the second instruction cycle is over.

If IPxx flag is "0", the interrupt processing is not performed even if IRQxx flag is set, until IPxx flag is set.

If two or more interrupts are enabled simultaneously, the interrupts are processed starting from the one with the highest priority. The interrupt with the lower priority is kept pending until the processing of the interrupt with the higher priority is finished.

7.3.1 Operations when interrupt is accepted

When an interrupt has been accepted, the CPU performs processing in the following sequence:



One instruction cycle is required to perform the above processing.

7.3.2 Returning from interrupt processing routine

To return from an interrupt processing routine, use the RETI instruction.

Then the following processing is executed within an instruction cycle.

To enable an interrupt after the processing of an interrupt has been finished, the El instruction must be executed immediately before the RETI instruction.

Accepting the interrupt is enabled by the El instruction after the instruction next to the El instruction has been executed. Therefore, the interrupt is not accepted between the El and RETI instructions.

8. STANDBY FUNCTIONS

 μ PD17236 is provided with HALT and STOP modes as standby functions.

By using the standby function, current consumption can be reduced.

In the HALT mode, the program is not executed, but the system clock fx is not stopped. This mode is maintained, until the HALT mode release condition is satisfied.

In the STOP mode, the system clock is stopped and program execution is stopped. This mode is maintained, until the STOP mode release condition is satisfied.

The HALT mode is set, when the HALT instruction has been executed. The STOP mode is set, when the STOP instruction has been executed.

8.1 HALT Mode

In this mode, program execution is temporarily stopped, with the main clock continuing oscillating, to reduce current consumption.

Use the HALT instruction to set the HALT mode.

The HALT mode releasing condition can be specified by the operand for the HALT instruction, as shown in Table 8-1

After the HALT mode has been released, the operation is performed as shown in Table 8-2 and Figure 8-1.

Caution Do not execute an instruction that clears the interrupt request flag (IRQxxx) for which the interrupt enable flag (IPxxx) is set immediately before the HALT 8H instruction; otherwise, the HALT mode may not be set.

Table 8-1. HALT Mode Releasing Conditions

Operand Value	Releasing Conditions
0010B (02H)	When interrupt request (IRQTM) occurs for 8-bit timer
1000B (08H)	<1> When interrupt request (IRQTM, IRQBTM, or IRQ), whose interrupt enable flag (IPTM, IPBTM, or IP) is set, occurs <2> When any of P0Ao-P0A3 pins goes low <3> When P0Bo-P0B3, P0Co-P0C3, and P0Do-P0D3 are used as input pins and any of these goes low
Other than above	Setting prohibited

Table 8-2. Operations After HALT Mode Release (1/2)

(a) HALT 08H

HALT Mode Released by:	Interrupt Status	Interrupt Enable Flag	Operations after HALT Mode Release
Low-level input of P0A ₀ -P0A ₃ , P0B ₀ -P0B ₃ , P0C ₀ -P0C ₃ , P0D ₀ -P0D ₃	Don't care	Don't care	Instruction next to HALT is executed
When release condition is	DI	Disabled	Standby mode is not released
satisfied by interrupt		Enabled	Instruction next to HALT is executed
	EI	Disabled	Standby mode is not released
		Enabled	Branches to interrupt vector address

Table 8-2. Operations After HALT Mode Release (2/2)

(b) HALT 02H

HALT Mode Released by:	Interrupt Status	Interrupt Enable Flag	Operations after HALT Mode Release
8-bit timer	DI	Disabled	Instructions are executed from the
		Enabled	instruction next to the HALT instruction.
	EI	Disabled	
		Enabled	Branches to interrupt vector address

8.2 HALT Instruction Execution Conditions

The HALT instruction can be executed, only under special conditions, as shown in Table 8-3, to prevent the program from hangup.

If the conditions in Table 8-3 are not satisfied, the HALT instruction is treated as an NOP instruction.

Table 8-3. HALT Instruction Execution Conditions

Operand Value	Execution Conditions
0010B (02H)	When all interrupt request flags (IRQTM) of 8-bit timer are reset
1000B (08H)	<1> When interrupt request flag (IRQTH, IRQBTM, or IRQ) is reset, corresponding to interrupt whose interrupt enable flag (IPTM, IPBTM, or IP) is set <2> When high level is input to all P0A0-P0A3 pins <3> When P0B0-P0B3, P0C0-P0C3, and P0D0-P0D3 are used as input pins and any of these goes high
Other than above	Setting prohibited

8.3 STOP Mode

In the STOP mode, the system clock (fx) oscillation is stopped and the program execution is stopped to minimize current consumption.

To set the STOP mode, use the STOP instruction.

The STOP mode releasing condition can be specified by the STOP instruction operand, as shown in Table 8-4. After the STOP mode has released, the operation is performed as follows:

- <1> Resets IRQTM.
- <2> Starts the basic interval timer and watchdog timer (does not reset).
- <3> Resets and starts the 8-bit timer.
- <4> Executes the instruction next to [STOP 8H] when the current value of the 8-bit counter coincides with the value of the modulo register (IRQTM is set).

The μ PD17236 oscillator is stopped, when the STOP instruction has been executed (i.e., in the STOP mode). Oscillation is not resumed, until the STOP mode is released. After the STOP mode has been released, the HALT mode is set. Set the time required to release the HALT mode by using the timer with modulo function.

The time that elapses, after the STOP mode has been released by occurrence of an interrupt, until an operation mode is set, is shown in the following table.

Caution Do not execute an instruction that clears the interrupt request flag (IRQxxx) for which the interrupt enable flag (IPxxx) is set immediately before the STOP 8H instruction; otherwise, the STOP mode may not be set.

-		
	8-Bit Modulo Register Set Value (TMM)	Time Required to Set Operation Mode after STOP Mode Release
l		At 4 MHz
ſ	40H	4.160 ms (64 μ s $ imes$ 65)
ľ	FFH	16.384 ms (64 μs × 256)

Caution To set the time required for an operation mode to be set after the STOP mode has been released, make sure that sufficient time is allowed for oscillation to stabilize.

Remark Set the 8-bit modulo timer before executing STOP instruction.

Table 8-4. STOP Mode Releasing Conditions

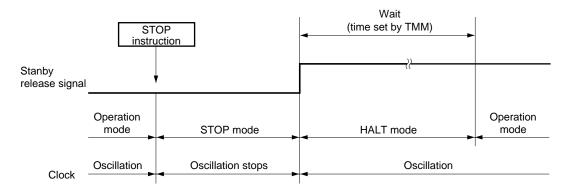
Operand Value	Releasing Conditions
1000B (08H)	<1> When any of P0A ₀ -P0A ₃ pins goes low <2> When P0B ₀ -P0B ₃ , P0C ₀ -P0C ₃ , and P0D ₀ -P0D ₃ are used as input pins and any of these goes low <3> If the interrupt request (IRQ) of an interrupt for which the INT pin interrupt enable flag (IP) is set is generated at the rising or falling edge of the INT pin
Other than above	Setting prohibited

8.4 STOP Instruction Execution Conditions

The STOP instruction can be executed, only under special conditions, as shown in Table 8-5, to prevent the program from hang-up.

If the conditions in Table 8-5 are not satisfied, the STOP instruction is treated as an NOP instruction.

Table 8-5. STOP Instruction Execution Conditions


Operand Value	Execution Conditions
1000B (08H)	<1> High level input for all P0A₀-P0A₃ pins <2> When P0B₀-P0B₃, P0C₀-P0C₃, and P0D₀-P0D₃ are used as input pins and all pins are high <3> If the INT pin interrupt request flag (IRQ) for an interrupt for which the INT pin interrupt enable flag (IP) is set is reset
Other than above	Setting prohibited

8.5 Releasing Standby Mode

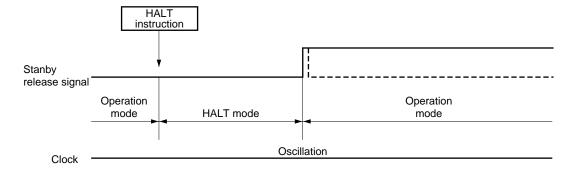

Operations for releasing the STOP and HALT modes will be as shown in Figure 8-1.

Figure 8-1. Operations After Standby Mode Release

(a) Releasing STOP mode by interrupt

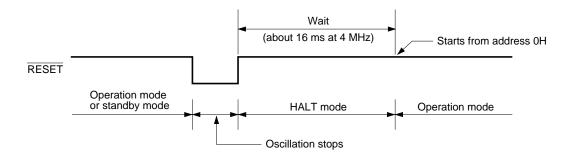
(b) Releasing HALT mode by interrupt

Remark The dotted line indicates the operation to be performed when the interrupt request, releasing the standby mode, has been accepted.

RESET

9.1 Reset by Reset Signal Input

When a low-level signal more than 10 μ s is input to the RESET pin, μ PD17236 is reset.


When the system is reset, the oscillator circuit remains in the HALT mode and then enters an operation mode, like when the STOP mode has been released. The wait time, after the reset signal has been removed, is 16.384 ms (fx = 4 MHz).

On power application, input the reset signal at least once because the internal circuitry operations are not stable. When μ PD17225 is reset, the following initialization takes place:

- (1) Program counter is reset to 0.
- (2) Flags in the register file are initialized to their default values (for the default values, refer to **Figure 11-1 Register Files**).
- (3) The default value (0320H) is written to the data buffer (DBF).
- (4) The hardware peripherals are initialized.
- (5) The system clock (fx) stops oscillation.

When the RESET pin is made high, the system clock starts oscillating, and the program execution starts from address 0 about 16 ms (at 4 MHz) later.

Figure 9-1. Reset Operation by RESET Input

9.2 Reset by Watchdog Timer (With RESET pin internally pulled down)

When the watchdog timer operates during program execution, the RESET pin is internally pulled down, and the program counter is reset to 0 (normally, the RESET pin is pulled up).

If the watchdog timer is not reset for a fixed period of time, the program can be restarted from address 0H.

Program so that the watchdog timer is reset at intervals of within 340 ms (at fx = 4 MHz) (set the WDTRES flag).

9.3 Reset by Stack Pointer (With RESET pin internally pulled down)

When the value of the stack pointer reaches 6H or 7H during program execution, the RESET pin is internally pulled down, and the program counter is reset to 0 (normally, the RESET pin is pulled up).

Therefore, if an interrupt or CALL instruction is executed when the value of the stack pointer is 0 (stack underflow) or if the stack level exceeds 6 as a result of execution of the RET instruction because the correspondence between the CALL and RET instructions is not established (stack overflow), the program can be restarted from address 0H.

Table 9-1. Status of Each Hardware After Reset

	Hardware	RESET Input During Standby Mode	RESET Input During Operation
Program counter (PC)		0000H	0000H
Port	Input/output	Input	Input
	Output latch	0	0
Data memory (RAM)	General-purpose data memory (Except DBF, port register)	Retains previous status	Undefined
	DBF	0320H	0320H
	System register (SYSREG)	0	0
	WR	Retains previous status	Undefined
Control register		Refer to Figure 11-1	Register Files
8-bit timer	Counter (TMC)	00H	00H
	Modulo register (TMM)	FFH	FFH
Remote controller carrier	NRZ high-level timer modulo register (NRZHTMM)	Retains previous	Undefined
generator	NRZ low-level timer modulo register (NRZLTMM)	status	
Basic interval timer/watchdo	og timer counter	00H	00H

10. LOW-VOLTAGE DETECTOR CIRCUIT (WITH RESET PIN INTERNALLY PULLED DOWN)

The RESET pin is internally pulled down for initialization (reset) to prevent program hang-up that may take place when the batteries are replaced, if the circuit detects a low voltage.

A drop in the supply voltage is detected if the status of $V_{DD} = 1.7$ to 2.0 V lasts for 1 ms or longer. Note, however, that 1 ms is the guaranteed value and that the microcontroller may be reset even if the above low-voltage condition lasts for less than 1 ms.

Although the voltage at which the treset function is effected ranges from 1.7 to 2.0 V, the program counter is prevented from hang-up even if the supply voltage drops until the reset function is effected, if the instruction execution time is from 4 to 32 μ s. Note that some oscillators stop oscillating before the reset function is effected.

The low-voltage detector circuit can be set arbitrarily by the mask option.

11. ASSEMBLER RESERVED WORDS

11.1 Mask Option Directives

When developing the μ PD17236 program, mask options must be specified by using mask option directives in the program.

To select the PIA $_0$ pin and remote controller carrier generator clock of the μ PD17236, a mask option must be specified.

11.1.1 OPTION and ENDOP directives

That portion of the program enclosed by the OPTION and ENDOP directives is called a mask option definition block. This block is described in the following format:

Description format:

Symbol	Mnemonic	Operand	Comment
[Label:]	OPTION : :		[;Comment]
	ENDOP		

11.1.2 Mask option definition directives

Table 11-1 lists the directives that can be used in the mask option definition block. Here is an example of mask option definition:

Description example:

Symbol	Mnemonic	Operand	Comment
	OPTION		
	OPTP1A0	INP1A0	; Sets P1A ₀ pin in input mode
	OPTPOC	USEPOC	; Internal low-voltage detector circuit
	OPTRFX	USEFX	; Sets clock for carrier generation of remote controller
			; carrier generator to fx
	ENDOP		

Name Directive Operands 2nd Operand 3rd Operand 4th Operand 1st Operand P1A0 OPTP1A0 INP1A0 1 (Sets P1Ao pin in input mode) OUTP1A0 (Sets P1A₀ pin in output mode) RFX **OPTRFX** 1 **USEFX** (Sets clock for carrier generation to fx) **USEHALFX** (Sets clock for carrier generation to fx/2) POC **OPTPOC USEPOC** (low-voltage detector circuit provided) **NOUSEPOC** (low-voltage detector circuit not provided)

Table 11-1. Mask Option Definition Directives

11.2 Reserved Symbols

The symbols defined by the μ PD17236 device file are listed in Table 11-2.

The defined symbols are the following register file names, port names, and peripheral hardware names.

11.2.1 Register file

The names of the symbols assigned to the register file are defined. These registers are accessed by the PEEK and POKE instructions through the window register (WR). Figure 11-1 shows the register file.

11.2.2 Registers and ports on data memory

The names of the registers assigned at addresses 00H through 7FH on the data memory and the names of ports assigned to address 70H and those that follow, and system register names are defined. Figure 11-2 shows the data memory configuration.

11.2.3 Peripheral hardware

The names of peripheral hardware accessed by the GET and PUT instructions are defined. Table 11-3 shows the peripheral hardware.

Table 11-2. Reserved Symbols (1/3)

Symbol Name	Attribute	Value	R/W	Description
DBF3	MEM	0.0CH	R/W	Bits 15-12 of data buffer
DBF2	MEM	0.0DH	R/W	Bits 11-8 of data buffer
DBF1	MEM	0.0EH	R/W	Bits 7-4 of data buffer
DBF0	MEM	0.0FH	R/W	Bits 3-0 of data buffer
AR3	MEM	0.74H	R/W	Bits 15-12 of address register
AR2	MEM	0.75H	R/W	Bits 11-8 of address register
AR1	MEM	0.76H	R/W	Bits 7-4 of address register
AR0	MEM	0.77H	R/W	Bits 3-0 of address register
WR	MEM	0.78H	R/W	Window register
BANK	MEM	0.79H	R/W	Bank register
IXH	MEM	0.7AH	R/W	Index register, high
MPH	MEM	0.7AH	R/W	Data memory row address pointer, high
MPE	FLG	0.7AH.3	R/W	Memory pointer enable flag
IXM	MEM	0.7BH	R/W	Index register, middle
MPL	MEM	0.7BH	R/W	Data memory row address pointer, low
IXL	MEM	0.7CH	R/W	Index register, low
RPH	MEM	0.7DH	R/W	General register pointer, high
RPL	MEM	0.7EH	R/W	General register pointer, low
PSW	MEM	0.7FH	R/W	Program status word
BCD	FLG	0.7EH.0	R/W	BCD flag
CMP	FLG	0.7FH.3	R/W	Compare flag
CY	FLG	0.7FH.2	R/W	Carry flag
Z	FLG	0.7FH.1	R/W	Zero flag
IXE	FLG	0.7FH.0	R/W	Index enable flag
P0A0	FLG	0.70H.0	R/W	Bit 0 of port 0A
P0A1	FLG	0.70H.1	R/W	Bit 1 of port 0A
P0A2	FLG	0.70H.2	R/W	Bit 2 of port 0A
P0A3	FLG	0.70H.3	R/W	Bit 3 of port 0A
P0B0	FLG	0.71H.0	R/W	Bit 0 of port 0B
P0B1	FLG	0.71H.1	R/W	Bit 1 of port 0B
P0B2	FLG	0.71H.2	R/W	Bit 2 of port 0B
P0B3	FLG	0.71H.3	R/W	Bit 3 of port 0B
P0C0	FLG	0.72H.0	R/W	Bit 0 of port 0C
P0C1	FLG	0.72H.1	R/W	Bit 1 of port 0C
P0C2	FLG	0.72H.2	R/W	Bit 2 of port 0C
P0C3	FLG	0.72H.3	R/W	Bit 3 of port 0C
P0D0	FLG	0.73H.0	R/W	Bit 0 of port 0D
P0D1	FLG	0.73H.1	R/W	Bit 1 of port 0D
P0D2	FLG	0.73H.2	R/W	Bit 2 of port 0D
P0D3	FLG	0.73H.3	R/W	Bit 3 of port 0D

Table 11-2. Reserved Symbols (2/3)

Symbol Name	Attribute	Value	R/W	Description
P0E0	FLG	0.6FH.0	R/W	Bit 0 of port 0E
P0E1	FLG	0.6FH.1	R/W	Bit 1 of port 0E
P0E2	FLG	0.6FH.2	R/W	Bit 2 of port 0E
P0E3	FLG	0.6FH.3	R/W	Bit 3 of port 0E
P1A0	FLG	1.70H.0	R/W	Bit 0 of port 1A (Input or output set by mask option)
SP	MEM	0.81H	R/W	Stack pointer
SYSCK	FLG	0.82H.0	R/W	System clock select flag
WDTRES	FLG	0.83H.3	R/W	Watchdog timer reset flag
BTMCK	FLG	0.83H.2	R/W	Basic interval timer mode select flag
BTMRES	FLG	0.83H.1 0.8FH.0	R/W	Basic interval timer mode reset flag
INT	FLG		R	INT pin status flag
NRZBF	FLG	0.91H.0	R/W	NRZ buffer data flag
NRZ	FLG	0.92H.0	R/W	NRZ data flag
P0EBPU0	FLG	0.97H.0	R/W	P0Eo pull-up setting flag
P0EBPU1	FLG	0.97H.1	R/W	P0E1 pull-up setting flag
P0EBPU2	FLG	0.97H.2	R/W	P0E2 pull-up setting flag
P0EBPU3	FLG	0.97H.3	R/W	P0E3 pull-up setting flag
IEG	FLG	0.9FH.0	R/W	INT pin interrupt edge flag
P0BBIO0	FLG	00A6H.0	R/W	P0Bo I/O select flag
P0BBIO1	FLG	00A6H.1	R/W	P0B1 I/O select flag
P0BBIO2	FLG	00A6H.2	R/W	P0B2 I/O select flag
P0BBIO3	FLG	00A6H.3	R/W	P0B3 I/O select flag
P0EBIO0	FLG	0.0A7H.0	R/W	P0Eo I/O setting flag
P0EBIO1	FLG	0.0A7H.1	R/W	P0E1 I/O setting flag
P0EBIO2	FLG	0.0A7H.2	R/W	P0E2 I/O setting flag
P0EBIO3	FLG	0.0A7H.3	R/W	P0E3 I/O setting flag
IPBTM	FLG	0.0AFH.2	R/W	Basic interval timer interrupt enable flag
IP	FLG	0.0AFH.1	R/W	INT pin interrupt enable flag
IPTM	FLG	0.0AFH.0	R/W	Timer interrupt enable flag
TMEN	FLG	0.0B3H.3	R/W	Timer enable flag
TMRES	FLG	0.0B3H.2	R/W	Timer reset flag
TMCK1	FLG	0.0B3H.1	R/W	Timer clock flag
TMCK0	FLG	0.0B3H.0	R/W	Timer clock flag
P0CGIO	FLG	00B7H.2	R/W	P0C3-P0C0 I/O select flag
PODGIO	FLG	00B7H.3	R/W	P0D3-P0D0 I/O select flag
IRQBTM	FLG	0.0BDH.0	R/W	Basic interval timer interrupt request flag
IRQ	FLG	0.0BEH.0	R/W	INT pin interrupt request flag
IRQTM	FLG	0.0BFH.0	R/W	Timer interrupt request flag
TMC	DAT	05H	R	Timer count register
TMM	DAT	06H	W	Timer modulo register

Table 11-2. Reserved Symbols (3/3)

Symbol Name	Attribute	Value	R/W	Description
NRZLTMM	DAT	03H	R/W	NRZ low-level timer modulo register
NRZHTMM	DAT	04H	R/W	NRZ high-level timer modulo register
AR	DAT	40H	R/W	Address register
DBF	DAT	0FH	_	Fixed operand value for PUT, GET, MOVT instruction
IX	DAT	01H	_	Fixed operand value for INC instruction

[MEMO]

Figure 11-1. Register Files (1/2)

	Column Address	0	1		2		3		4	5	6		7	
Row Addi	\	aton		Note		Note		Note	Note	Note		Note		Note
	Bit 3			0	0	0	WDTRES	0						
ا م ا	Bit 2		SP	1	0	0	BTMCK	0		:		1]	-
0	Bit 1		35	0	0	0	BTMRES	0				1]	1
	Bit 0			1	SYSCK	0	0	0	-			1]	-
	Bit 3	-	0	0	0	0		!	-	-		1	P0EBPU3	3 0
	Bit 2		0	0	0	0						-	P0EBPU2	2 0
1	Bit 1		0	0	0	0		-				1	P0EBPU1	1 0
İ	Bit 0		NRZBF	0	NRZ	0						-	P0EBPU0	0
	Bit 3	1		1				1	1	1	P0BBIO3	0	P0EBIO3	0
	Bit 2					r - !		:			P0BBIO2	0	P0EBIO2	0
2	Bit 1			 !				!	-		P0BBIO1	0	P0EBIO1	0
İ	Bit 0					-					P0BBIO0	0	P0EBIO0	0
	Bit 3			1			TMEN	1					P0DGIO	1
	Bit 2	-				-	TMRES	0		-		-	P0CGIO	1
3	Bit 1			r - !		r - !	TMCK1	0			1	1	0	0
Ì	Bit 0						TMCK0	0			1	-	0	0

Note On reset

Figure 11-2. Data Memory Configuration

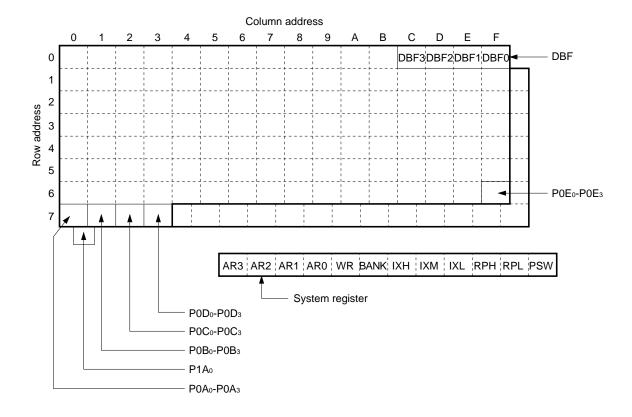


Figure 11-1. Register Files (2/2)

	Column Address	8	9	А	В	С	D	E	F	
Row Add	ress	Note	Note	Note	Note	Note	Note	Note		Note
	Bit 3								0	0
	Bit 2				-	-			0	0
" [Bit 1								0	0
	Bit 0		1	-			1		INT	Р
	Bit 3				-				0	0
1	Bit 2								0	0
	Bit 1								0	0
	Bit 0								IEG	0
	Bit 3				-	1			0	0
2	Bit 2			<u> </u>	l	l			IPBTM	0
	Bit 1		L			l			IP	0
	Bit 0					1			IPTM	0
	Bit 3	L	L	L	li	li	0 0	0 0	0	0
] [Bit 2						0 0	0 0	0	0
3	Bit 1	[l	l	l	l <u>i</u>	0 0	0 0	0	0
	Bit 0				-	!	IRQBTM 0	IRQ 0	IRQTM	1

Note On reset

P: When INT pin is high level, 1 or when INT pin is low level, 0.

Table 11-3. Peripheral Hardware

Name	Address	Valid Bit	Description		
TMC	05H	8	Timer count register		
TMM	06H	8	Timer modulo register		
NRZLTMM	03H	8	Low-level timer modulo register for NRZ		
NRZHTMM	04H	8	High-level timer modulo register for NRZ		
AR	40H	16	Address register		

12. INSTRUCTION SET

12.1 Instruction Set Outline

	b 15				
b14-b11			0		1
BIN.	HEX.				
0000	0	ADD	r, m	ADD	m, #n4
0001	1	SUB	r, m	SUB	m, #n4
0010	2	ADDC	r, m	ADDC	m, #n4
0 0 1 1	3	SUBC	r, m	SUBC	m, #n4
0100	4	AND	r, m	AND	m, #n4
0 1 0 1	5	XOR	r, m	XOR	m, #n4
0110	6	OR	r, m	OR	m, #n4
0111	7	INC INC MOVT BR CALL RET SYSCAL RETSK EI DI RETI PUSH POP GET PUT PEEK POKE RORC STOP HALT NOP	AR IX DBF, @AR @AR @AR @AR entry Note AR AR DBF, p p, DBF WR, rf rf, WR r s h		
1000	8	LD	r, m	ST	m, r
1001	9	SKE	m, #n4	SKGE	m, #n4
1010	Α	MOV	@r, m	MOV	m, @r
1011	В	SKNE	m, #n4	SKLT	m, #n4
1100	С	BR	addr (Page 0)	CALL	addr
1 1 0 1	D	BR	addr (Page 1)	MOV	m, #n4
1110	Е	BR	addr (Page 2)	SKT	m, #n
1111	F	BR	addr (Page 3)	SKF	m, #n

Note μ PD17234, 17235, 17236 only

12.2 Legend

AR : Address register

ASR : Address stack register specified by stack pointer

addr : Program memory address (low-order 11 bits)

BANK : Bank register

CMP : Compare register

CY : Carry flag

DBF : Data buffer

entry : Entry address of system segment

h : Halt releasing condition

INTEF : Interrupt enable flag

INTR : Register automatically saved to stack in case of interrupt

INTSK : Interrupt stack register

IX : Index register

MP : Data memory row address pointer

MPE : Memory pointer enable flag

m : Data memory address specified by m_R, m_C

mc : Data memory row address (high)
mc : Data memory column address (low)

n : Bit position (4 bits) n4: Immediate data (4 bits)

PAGE: Page (bit 11 and 12 of program counter)

PC : Program counter
p : Peripheral address

рн : Peripheral address (high-order 3 bits)
рь : Peripheral address (low-order 4 bits)
: General register column address

rf : Register file address

rf_R : Register file row address (high-order 3 bits)
rfc : Register file column address (low-order 4 bits)

SP : Stack pointer

s : Stop releasing condition

WR : Window register

 (\times) : Contents addressed by \times

12.3 List of Instruction Sets

Group	Mnemonic	Operand	Operation		Instruction	on Code	
Отопр	Willemonic	Орегани	Ореганоп	OP Code		Operand	
	ADD	r, m	$(r) \leftarrow (r) + (m)$	00000	m R	m c	r
	ADD	m, #n4	(m) ← (m) + n4	10000	m R	m c	n4
Add	ADDC	r, m	$(r) \leftarrow (r) + (m) + CY$	00010	mR	mс	r
Add	ADDO	m, #n4	(m) ← (m) + n4 + CY	10010	m _R	mс	n4
	INC	AR	AR ← AR + 1	00111	000	1001	0000
	INC	IX	IX ← IX + 1	00111	000	1000	0000
	SUB	r, m	$(r) \leftarrow (r) - (m)$	00001	MR	mс	r
Cubtroot	306	m, #n4	(m) ← (m) – n4	10001	m _R	m c	n4
Subtract	CLIDC	r, m	$(r) \leftarrow (r) - (m) - CY$	00011	m R	m c	r
	SUBC	m, #n4	$(m) \leftarrow (m) - n4 - CY$	10011	m R	m c	n4
	OD	r, m	$(r) \leftarrow (r) \lor (m)$	00110	m R	m c	r
	OR	m, #n4	$(m) \leftarrow (m) \lor n4$	10110	m R	m c	n4
Lawiaal	ANID	r, m	$(r) \leftarrow (r) \land (m)$	00100	m R	m c	r
Logical Judge	AND	m, #n4	(m) ← (m) ∧ n4	10100	m R	m c	n4
	VOR	r, m	$(r) \leftarrow (r) \ \forall \ (m)$	00101	mR	m c	r
	XOR	m, #n4	(m) ← (m) ∀ n4	10101	m R	m c	n4
l da a	SKT	m, #n	$CMP \leftarrow 0$, if (m) \wedge n = n, then skip	11110	mR	m c	n
Juage	SKF	m, #n	$CMP \leftarrow 0$, if (m) \wedge n = 0, then skip	11111	m R	m c	n
	SKE	m, #n4	(m) - n4, skip if zero	01001	m _R	m c	n4
Compore	SKNE	m, #n4	(m) - n4, skip if not zero	01011	m _R	m c	n4
Compare	SKGE	m, #n4	(m) - n4, skip if not borrow	11001	m R	m c	n4
	SKLT	m, #n4	(m) – n4, skip if borrow	11011	m R	m c	n4
Rotate	RORC	r		00111	000	0111	r
	LD	r, m	(r) ← (m)	01000	MR	mс	r
	ST	m, r	$(m) \leftarrow (r)$	11000	MR	mс	r
		@r, m	if MPE = 1 : (MP, (r)) \leftarrow (m) if MPE = 0 : (BANK, m _R , (r)) \leftarrow (m)	01010	MR	m c	r
Transfer	MOV	m, @r	if MPE = 1 : (m) \leftarrow (MP, (r)) if MPE = 0 : (m) \leftarrow (BANK, m _R , (r))	11010	m R	m c	r
		m, #n4	(m) ← n4	11101	MR	m c	n4
Judge Compare Rotate	MOVT	DBF, @AR	$SP \leftarrow SP - 1$, $ASR \leftarrow PC$, $PC \leftarrow AR$ $DBF \leftarrow (PC)$, $PC \leftarrow ASR$, $SP \leftarrow SP + 1$	00111	000	0001	0000

Group	Mnemonic	Operand	Operation	Instruction Code						
Отобр	oup immonionio oporano oporanon		OP Code	e Operand						
	PUSH	AR	$SP \leftarrow SP - 1$, $ASR \leftarrow AR$							
	POP	AR	$AR \leftarrow ASR, SP \leftarrow SP + 1$	00111	000	1100	0000			
Transfer	PEEK	WR, rf	$WR \leftarrow (rf)$	00111	rf _R	0011	rf c			
Transiei	POKE	rf, WR	$(rf) \leftarrow WR$	00111	rf _R	0010	rfc			
	GET	DBF, p	$(DBF) \leftarrow (p)$	00111	рн	1011	р∟			
	PUT	p, DBF	$(p) \leftarrow (DBF)$	00111	рн	1010	р∟			
Branch	BR	addr	Note 1	Note 1		addr				
Dianch	DI	@AR	PC ← AR	00111	000	0100	0000			
	addr		addr $SP \leftarrow SP - 1$, $ASR \leftarrow PC$, $PC_{10-0} \leftarrow addr$, $PAGE \leftarrow 0$			addr				
Subroutine	CALL	@AR	$SP \leftarrow SP - 1$, $ASR \leftarrow PC$, $PC \leftarrow AR$	00111	000	0101	0000			
	SYSCAL ^{Note 2}	entry	$\begin{split} \text{SP} \leftarrow \text{SP} - \text{1, ASR} \leftarrow \text{PC, SGR} \leftarrow \text{1,} \\ \text{PC}_{12,11} \leftarrow \text{0, PC}_{10\text{8}} \leftarrow \text{entry}_{\text{H}}, \text{PC}_{7\text{4}} \leftarrow \text{0,} \\ \text{PC}_{3\text{0}} \leftarrow \text{entry}_{\text{L}} \end{split}$	00111	entryн	0000	entry∟			
	RET		PC ← ASR, SP ← SP + 1	00111	000	1110	0000			
	RETSK		$PC \leftarrow ASR, SP \leftarrow SP + 1$ and skip	00111	001	1110	0000			
	RETI		$PC \leftarrow ASR$, $INTR \leftarrow INTSK$, $SP \leftarrow SP + 1$	00111	100	1110	0000			
Interrupt	EI		INTEF ← 1	00111	000	1111	0000			
interrupt	DI		INTEF ← 0	00111	001	1111	0000			
	STOP	s	STOP	00111	010	1111	S			
Other	HALT	h	HALT	00111	011	1111	h			
	NOP		No operation	00111	100	1111	0000			

Notes 1. The operation and operation codes "BR addr" of the μ PD17230, 17231, 17232, 17233, 17234, 17235, and 17236 are as follows:

(a) μ PD17230

Operand	Operation	Op Code
addr	PC₁₀-₀ ← addr	01100

(b) μ **PD17231**

Operand	Operation	Op Code
addr	PC₁₀-₀ ← addr, Page ← 0	01100
	PC ₁₀₋₀ ← addr, Page ← 1	01101

(c) μ PD17232

Operand	Operation	Op Code
addr	PC ₁₀₋₀ ← addr, Page ← 0	01100
	PC ₁₀₋₀ ← addr, Page ← 1	01101
	PC₁₀-₀ ← addr, Page ← 2	01110

(d) μ PD17233, 17234, 17235, 17236

Operand	Operation	Op Code
addr	PC ₁₀₋₀ ← addr, Page ← 0	01100
	PC₁₀-₀ ← addr, Page ← 1	01101
	PC ₁₀₋₀ ← addr, Page ← 2	01110
	PC ₁₀₋₀ ← addr, Page ← 3	01111

2. μ PD17234, 17235, and 17236 only

12.4 Assembler (RA17K) Built-In Macro Instruction

Legend

flag n : FLG type symbol

n : Bit number

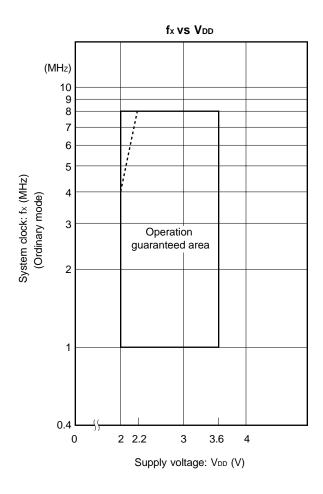
< > : Contents in < > can be omitted

	Mnemonic	Operand	Operation	n
Built-in	SKTn	flag 1,flag n	if (flag 1) to (flag n) = all "1", then skip	1 ≤ n ≤ 4
macro	SKFn	flag 1,flag n	if (flag 1) to (flag n) = all "0", then skip	1 ≤ n ≤ 4
	SETn	flag 1,flag n	(flag 1) to (flag n) \leftarrow 1	1 ≤ n ≤ 4
	CLRn	flag 1,flag n	(flag 1) to (flag n) \leftarrow 0	1 ≤ n ≤ 4
	NOTn	flag 1,flag n	if (flag n) = "0", then (flag n) \leftarrow 1 if (flag n) = "1", then (flag n) \leftarrow 0	1 ≤ n ≤ 4
	INITFLG	<not> flag 1, <<not> flag n></not></not>	$ \label{eq:state_eq} \mbox{if description} = \mbox{NOT flag } n, \mbox{ then (flag } n) \leftarrow 0 \\ \mbox{if description} = \mbox{flag } n, \mbox{ then (flag } n) \leftarrow 1 \\ $	1 ≤ n ≤ 4
	BANKn		(BANK) ← n	n = 0, 1
Expantion	BRX	Label	Jump Label	_
instruction	CALLX	function-name	CALL sub-routine	_
	INITFLGX	<not inv=""> flag 1, <not inv=""> flag n</not></not>	$ \begin{tabular}{ll} if description = NOT (or INV) \\ flag, (flag) \leftarrow 0 \\ if description = flag, (flag) \leftarrow 1 \\ \end{tabular} $	n ≤ 4

13. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Item	Symbol	Condition	ıs	Ratings	Unit
Supply voltage	V _{DD}			-0.3 to +3.8	V
Input voltage	Vı			-0.3 to V _{DD} + 0.3	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V
High-level output current Note	Іон	REM pin	Peak value	-36.0	mA
			rms value	-24.0	mA
		1 pin (P0E pin)	Peak value	-7.5	mA
			rms value	-5.0	mA
		Total of P0E pins	Peak value	-22.5	mA
			rms value	-15.0	mA
Low-level output current Note	lol	1 pin (P0B, P0C, P0D,	Peak value	7.5	mA
		P0E, P1A ₀ , REM pins)	rms value	5.0	mA
		Total of P0B, P0C, P0D,	Peak value	22.5	mA
		P1A ₀ , REM pins	rms value	15.0	mA
		Total of P0E pins	Peak value	30.0	mA
			rms value	20.0	mA
Operating temperature	TA			-40 to +85	°C
Storage temperature	T _{stg}			-65 to +150	°C
Power dissipation	Pd	TA = 85 °C		180	mW


Note Calculate rms value by this expression: [rms value] = [Peak value] $\times \sqrt{\text{Duty}}$

Caution Even if one of the parameters exceeds its absolute maximum rating even momentarily, the quality of the product may be degraded. The absolute maximum rating therefore specifies the upper or lower limit of the value at which the product can be used without physical damages. Be sure not to exceed or fall below this value when using the product.

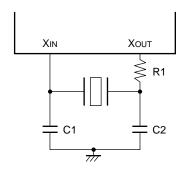
Recommended Operating Ranges (TA = -40 to +85°C, VDD = 2.0 to 3.6 V)

Item	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	V _{DD1}	fx = 1 MHz	//Hz High-speed mode (Instruction execution time: 16 μs)		3.0	3.6	V
V_{DD2} $fx = 4 MI$		fx = 4 MHz	Ordinary mode (Instruction execution time: 4 μ s)				
	V _{DD3}	fx = 8 MHz	High-speed mode (Instruction execution time: 4 μ s)				
	V _{DD4}		High-speed mode (Instruction execution time: 2 μ s)	2.2	3.0	3.6	V
Oscillation frequency	fx			1.0	4.0	8.0	MHz
Operating temperature	TA			-40	+25	+85	°C
Low-voltage detector circuit ^{Note} (Mask option)	Тсч			4		32	μs

Note Reset if the status of VDD = 1.7 to 2.0 V lasts for 1 ms or longer. Program hang-up does not occur even if the voltage drops, until the reset function is effected. Some oscillators stop oscillating before the reset function is effected.

Remark The region indicated by the broken line in the above figure is the guaranteed operating range in the high-speed mode.

System Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 2.0 to 3.6 V)


Resonator	Recommended Constants	Item	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	XIN XOUT	Oscillation frequency (fx)Note 1		1.0	4.0	8.0	MHz
		Oscillation stabilization time ^{Note 2}	After V _{DD} reached MIN. in oscillation voltage range			4	ms

- **Notes 1.** The oscillation frequency only indicates the oscillator characteristics.
 - 2. The oscillation stabilization time is necessary for oscillation to be stabilized, after VDD application or STOP mode release.

Caution To use a system clock oscillator circuit, perform the wiring in the area enclosed by the dotted line in the above figure as follows, to avoid adverse wiring capacitance influences:

- · Keep wiring length as short as possible.
- Do not cross a signal line with some other signal lines. Do not route the wiring in the vicinity of lines through which a large current flows.
- Always keep the oscillator circuit capacitor ground at the same potential as GND. Do not ground the capacitor to a ground pattern, through which a large current flows.
- Do not extract signals from the oscillator circuit.

External circuit example

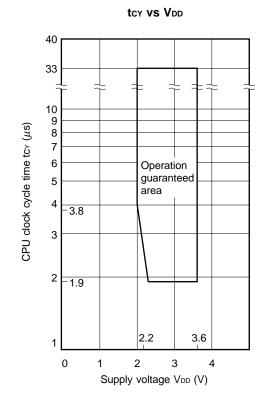
Recommended Oscillator Constants

System Clock: Ceramic Resonator ($T_A = -40 \text{ to } +85 ^{\circ}\text{C}$)

Manufacturer	Part Number	Frequency (MHz)	Recommended Circuit Constants (pF)						3		Remark
			C1	C2	MIN. (V)	MAX. (V)					
TDK Corp.	FCR4.0MC5	4.0	_	_	2.0	3.6					
	FCR6.0MC5	6.0	_	_	2.2						
	FCR8.0MC5	8.0	_	_							

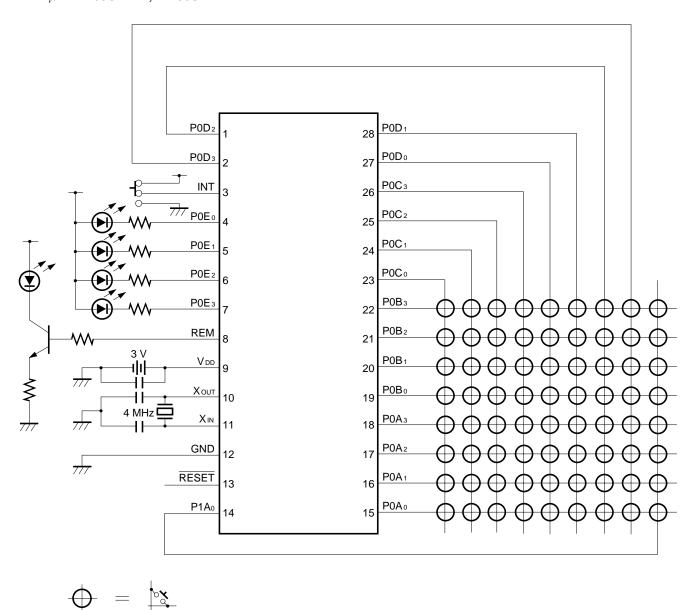
Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact the manufacturer of the resonator being used.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 2.0 to 3.6 V)


Item	Symbol		Conditions	3			MIN.	TYP.	MAX.	Unit
High-level input voltage	V _{IHI1}	P1A₀ (input), RES	ET, INT				0.80Vpd		V _{DD}	V
	V _{IH2}	P0A, P0B, P0C, F	P0D				0.70V _{DD}		V _{DD}	V
	V _{IH3}	P0E					0.80Vpp		V _{DD}	V
Low-level input voltage	V _{IL1}	P1A₀ (input), RES	ET, INT				0		0.2 V _{DD}	V
	V _{IL2}	P0A, P0B, P0C, F	P0A, P0B, P0C, P0D				0		0.3 V _{DD}	V
	VIL3	P0E					0		0.35 V _{DD}	V
High-level input leakage current	Ішн	P0A, P0B, P0C, F P1A ₀ , RESET, IN		VIH	= V	DD			3.0	μΑ
Low-level input leakage	ILIL1	INT		VIL :	= 0	V			-3.0	μΑ
current	ILIL2	P0E, RESET		V _{IL} :		V Il-up resistor			-3.0	μΑ
Internal pull-up resistor	R ₁	P0E, RESET (pull	led up)				25	50	100	kΩ
	R ₂	P0A, P0B, P0C, F	P0D				100	200	400	kΩ
	Rз	RESET (pulled do	own)				2.5	5	10	kΩ
High-level output current	Іон	REM	Voh = 1.0 V, VDD = 3 V			-6	-13	-24	mA	
High-level output voltage	Vон	P0E, REM			Ю	н = -0.5 mA	V _{DD} -0.3		V _{DD}	V
Low-level output voltage	V _{OL1}	P0B, P0C, P0D, P1	A ₀ (output),	REM	loı	_ = 0.5 mA	0		0.3	V
	V _{OL2}	P0E			loı	= 1.5 mA	0		0.3	V
Data retention characteristics	V _{DDDR}	RESET = low leve	el or STOP	mode			1.3		3.6	V
Low-voltage detection voltage (mask option)	V _D T	RESET pin pulled	down, Vdt	= V _{DD})		1.70	1.85	2.0	V
POC detection pulse width	Тот	Vdd < Vdt					1			ms
Supply current	I _{DD1}	Operating mode	V _{DD} = 3 V	±10%	6	fx = 1 MHz		0.6	1.1	mA
		(high-speed)				fx = 4 MHz		0.75	1.3	mA
						fx = 8 MHz		0.9	1.6	mA
	I _{DD2}	Operating mode	V _{DD} = 3 V	±10%	6	fx = 1 MHz		0.48	0.9	mA
		(low-speed)				fx = 4 MHz		0.6	1.1	mA
						fx = 8 MHz		0.8	1.4	mA
	IDD3	HALT mode	V _{DD} = 3 V	±10%	6	fx = 1 MHz		0.4	0.75	mA
						fx = 4 MHz		0.45	0.85	mA
					Ī	fx = 8 MHz		0.5	0.95	mA
	I _{DD4}	STOP mode	V _{DD} = 3 V	±10%	6			2.0	20.0	μΑ
			built-in PO	OC		T _A = 25 °C		2.0	5.0	μΑ

AC Characteristics (TA = -40 to +85°C, VDD = 2.0 to 3.6 V)

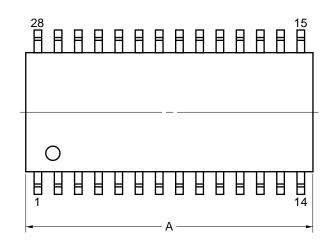
Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU clock cycle time Note	tcY1		3.8		33	μs
(Instruction execution time)	tcy2	V _{DD} = 2.2 to 3.6 V	1.9		33	μs
INT high/low level width	tinth,		20			μs
	tintl					
RESET low level width	trsl		10			μs


Note The CPU clock cycle time (instruction execution time) is determined by the oscillation frequency of the resonator connected and SYSCK (RF: address 02H) of the register file.

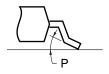
The figure on the right shows the CPU clock cycle time tcy vs. supply voltage VDD characteristics (refer to 4. CLOCK GENERATOR CIRCUIT).

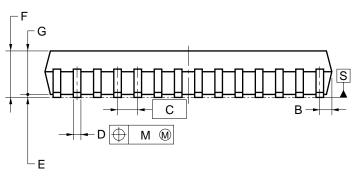
14. APPLICATION CIRCUIT EXAMPLE

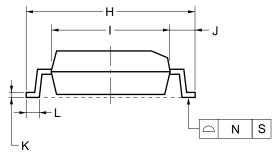
• μPD17235GT-xxx, 17236GT-xxx



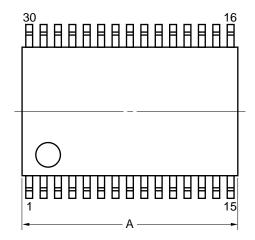
Remarks 1. In the above circuit example, P1Ao is set in the output mode by mask option.

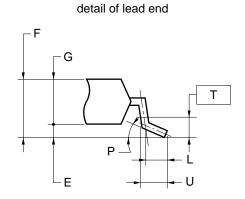

2. The above example is for the 28-pin plastic SOP (375 mil). With the 30-pin plastic shrink SOP (300 mil), open IC1 (pin 15) and IC2 (pin 30).

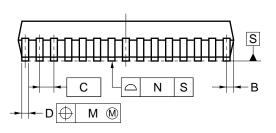

15. PACKAGE DRAWINGS


28-PIN PLASTIC SOP (375 mil)

detail of lead end

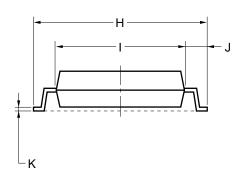

NOTE


Each lead centerline is located within 0.12 mm of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS
Α	17.9±0.17
В	0.78 MAX.
С	1.27 (T.P.)
D	$0.42^{+0.08}_{-0.07}$
E	0.1±0.1
F	2.6±0.2
G	2.50
Н	10.3±0.3
I	7.2±0.2
J	1.6±0.2
K	$0.17^{+0.08}_{-0.07}$
L	0.8±0.2
M	0.12
N	0.15
Р	3°+7°

P28GM-50-375B-4

30 PIN PLASTIC SSOP (300 mil)



NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
Е	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
N	0.10
Р	3°+5°
Т	0.25
U	0.6±0.15
	S30MC-65-5A4-1

16. RECOMMENDED SOLDERING CONDITIONS

For the μ PD17236 soldering must be performed under the following conditions.

For details of recommended conditions for surface mounting, refer to information document "Semiconductor Device Mounting Technology Manual" (C10535E).

For other soldering methods, please consult with NEC personnel.

Table 16-1. Soldering Conditions of Surface Mount Type

(1) μ PD17235GT-xxx: 28-pin plastic SOP (375 mil) μ PD17236GT-xxx: 28-pin plastic SOP (375 mil)

Soldering Method	Soldering Conditions	Symbol
Infrated reflow	Package peak temperature: 235 °C, Time: 30 seconds max. (210 °C min.), Number of times: 2 max.	IR35-00-2
VPS	Package peak temperature: 215 °C, Time: 40 seconds max. (200 °C min.), Number of times: 2 max.	VP15-00-2
Wave soldering	Solder bath temperature: 260 °C max, Time: 10 seconds max., Number of times: once, preheating temperature: 120 °C max. (package surface temperature)	WS66-00-1
Partial heating	Pin temperature: 300 °C max., Time: 3 seconds max. (per side of device)	_

Caution Do not use two or more soldering methods in combination (except the partial heating method).

```
(2) \muPD17230MC-\times\times-5A4: 30-pin plastic shrink SOP (300 mil) \muPD17231MC-\times\times-5A4: 30-pin plastic shrink SOP (300 mil) \muPD17232MC-\times\times-5A4: 30-pin plastic shrink SOP (300 mil) \muPD17233MC-\times\times-5A4: 30-pin plastic shrink SOP (300 mil) \muPD17234MC-\times\times-5A4: 30-pin plastic shrink SOP (300 mil) \muPD17235MC-\times\times-5A4: 30-pin plastic shrink SOP (300 mil) \muPD17236MC-\times\times-5A4: 30-pin plastic shrink SOP (300 mil)
```

Soldering Method	Soldering Conditions	Symbol
Infrated Reflow	Package peak temperature: 235 °C, Time: 30 seconds max. (210 °C min.), Number of times: 3 max.	IR35-00-3
VPS	Package peak temperature: 215 °C, Time: 40 seconds max. (200 °C min.), Number of times: 3 max.	VP15-00-3
Wave soldering	Solder bath temperature: 260 °C max, Time: 10 seconds max., Number of times: once, preheating temperature: 120 °C max. (package surface temperature)	WS66-00-1
Partial heating	Pin temperature: 300 °C max., Time: 3 seconds max. (per side of device)	_

Caution Do not use two or more soldering methods in combination (except the partial heating method).

APPENDIX A. DIFFERENCES BETWEEN μ PD17236 AND μ PD17P236

 μ PD17P236 is equipped with PROM to which data can be written by the user instead of the internal mask ROM (program memory) of the μ PD17236.

Table A-1 shows the differences between the μ PD17236 and μ PD17P236.

The CPU functions and internal hardware of the μ PD17P236, 17230, 17231, 17232, 17233, 17234, 17235, and 17236 are identical. Therefore, the μ PD17P236 can be used to evaluate the program developed for the μ PD17P231, 17232, 17233, 17234, 17235, and 17236 system. Note, however, that some of the electrical specifications such as supply current and low-voltage detection voltage of the μ PD17P236 are different from those of the μ PD17P231, 17232, 17233, 17234, 17235, and 17236.

Table A-1. Differences among μ PD17236 and μ PD17P236

Product Name	μΡD17P236 (μΡD17P236M1, 17P236M2, 17P236M3, 17P236M4)	μPD17236			
Program memory	One-time PROM	Mask ROM			
	32K bytes (16384 × 16) (0000H-3FFFH)				
Data memory	223 × 4 bits				
Input/output of P1A₀ pin	 Input (μPD17P236M2, 17P236M4) Output (μPD17P236M1, 17P236M3) 	Any (mask option)			
Clock selection for carrier generation	 Rfx = fx/2 (μPD17P236M1, 17P236M2) Rfx = fx (μPD17P236M3, 17P236M4) 	Any (mask option)			
Low-voltage detection circuit	Provided	Any (mask option)			
V _{PP} pin, operation mode select pin	Provided	Not provided			
Instruction execution time	 2 μs (VDD = 3.0 to 3.6 V) 4 μs (VDD = 2.2 to 3.6 V) 	 2 μs (V_{DD} = 2.2 to 3.6 V) 4 μs (V_{DD} = 2.0 to 3.6 V) 			
Supply voltage	V _{DD} = 2.2 to 3.6 V	V _{DD} = 2.0 to 3.6 V			
Packag	28-pin plastic SOP (375 mil) 30-pin plastic shrink SOP (300 mil)				

Note Although the circuit configuration is identical, its electrical characteristics differ depending on the product.

APPENDIX B. FUNCTIONAL COMPARISON OF μ PD17236 SUBSERIES RELATED PRODUCTS

			i	ı	I	I		I	
Product Name		μPD17201A	μPD17207	μPD17202A	μPD17215	μPD17216	μPD17217	μPD17218	
ROM capacity (bit)		3072 × 16	4096 × 16	2048	× 16	4096 × 16	6144 × 16	8192 × 16	
RAM capacity (b	it)	336	× 4	112 × 4	111	× 4	223	× 4	
LCD controller/di	LCD controller/driver		136 segments max.		Not provided				
Infrared remote of carrier generator				LED output is low-active	Provided (without LED output)				
I/O ports		19	ines	16 lines		20 I	ines		
External interrup	External interrupt (INT)		ine e detection)	1	line (rising-e	dge, falling-e	edge detection	1)	
Analog input		4 channels	(8-bit A/D)			Not provided			
Timer		2 channel	s 8-bit tim Watch ti		2 channel	}	er terval timer		
Watchdog timer		Provided			d (WDOUT output)				
Low-voltage dete	ector circuit ^{Note}	Not provided			Provided (WDOUT output)				
Serial interface	Serial interface		1 channel			Not provided			
Stack		5 levels (3 levels for multiplexed interrupt)							
Instruction execution time	Main system clock	4 μ s (4 MHz: with ceram crystal resonator, VDD = 2.2 to 5.5 V)			 2 μs (8 MHz ceramic resonator: in high-speed mode, V_{DD} = 3.5 to 5. 4 μs (4 MHz ceramic resonator: in high-speed mode, V_{DD} = 2.2 to 5. 8 μs (2 MHz ceramic resonator: in high-speed mode, V_{DD} = 2.0 to 5. 			2 to 5.5 V)	
	Subsystem clock	, ,	8 µs (32.768 kHz: with crystal resonator, V _{DD} = 2.0 to 5.5 V)			ovided			
Supply voltage (With subsystem clock)		V _{DD} = 2.2 to 5.5 V (V _{DD} = 2.0 to 5.5 V)			V _{DD} = 2.0 to 5.5 V				
Standby function					STOP, HALT				
Package		80-pin pla	astic QFP	64-pin plastic QFP	28-pin plastic SOP 28-pin plastic shrink DIP				
One-time PROM products		μPD1	7P207	μPD17P202A		μPD1	7P218		

Note Note that although all the products have the same circuit construction, the electrical specifications differ dependant on each product.

μPD17225	μPD17226	μPD17227	μPD17228	μPD17230	μPD17231	μPD17232	μPD17233	μPD17234	μPD17235	μPD17236
2048 × 16	4096 × 16	6144 × 16	8192 × 16	2048 × 16	4096 × 16	6144 × 16	8192 × 16	10240 × 16	12288 × 16	16384 × 16
111	× 4					223 × 4				
	Not provided									
				Provided	(without LE	D output)				
	20 բ	oins					21 pins			
			1 p	in (rising ed	lge, falling e	edge detecti	ion)			
				ı	Not provided	d				
				2 channels	8-bit tim Basic in	er terval timer				
Pı	ovided (WE	OOUT outpu	ıt)				Provided			
Pı	ovided (WE	OOUT outpu	ıt)				Provided			
				ı	Not provided	d				
				5 level	s (3 nesting	levels)				
	• 2 μ s (8-MHz ceramic resonator: in high-speed mode, V _{DD} = 2.2 to 3.6 V) • 4 μ s (4-MHz ceramic resonator: in high-speed mode, V _{DD} = 2.0 to 3.6 V)									
	Not provided									
VDD = 2.0 to 3.6 V										
STOP, HALT										
28-pin plastic SOP 30-pin plastic shrink SOP 28-pin plastic sh 28-pin plastic shrink DIP 30-pin plastic shrink SOP										
	μPD17	7P228					μPD17P236	3	l .	

APPENDIX C. DEVELOPMENT TOOLS

To develop the programs for the μ PD17235 subseries, the following development tools are available:

Hardware

Name	Remarks
In-circuit emulator (IE-17K, IE-17K-ET ^{Note 1})	IE-17K and IE-17K-ET are the in-circuit emulators used in common with the 17K series microcontroller. IE-17K and IE-17K-ET are connected to a PC-9800 series or IBM PC/AT TM compatible machines as the host machine with RS-232C. By using these in-circuit emulators with a system evaluation board corresponding to the microcomputer, the emulators can emulate the microcomputer. A higher level debugging environment can be provided by using man-machine interface <i>SIMPLEHOST</i> TM .
SE board (SE-17235)	This is an SE board for μ PD17236 subseries. It can be used alone to evaluate a system or in combination with an in-circuit emulator for debugging.
Emulation probe (EP-17K28GT)	EP-17K28GT is an emulation probe for 17K series 28-pin SOP (GM-3756). When used with EV-9500GT-28 ^{Note 2} , it connects an SE board to the target system.
Emulation probe (EP-17K30GS)	EP-17K30GS is an emulation probe for 17K series 30-pin shrink SOP (MC-5A4). When used with EV-9500GT-30 ^{Note 3} , it connects an SE board to the target system.
Conversion adapter (EV-9500GT-28 ^{Note 2})	EV-9500GT-28 is a conversion adapter for 28-pin SOP (375 mil) and is used to connect EP-17K28GT to the target system.
Conversion adapter (EV-9500GT-30 ^{Note 3})	The EV-9500GT-30 is a conversion adapter for the 30-pin shrink SOP (300 mil). It is used to connect the EP-17K30GS and target system.
PROM programmer (AF-9706 ^{Note 4} , AF-9708 ^{Note 4} , AF-9709 ^{Note 4})	AF-9706, AF-9708, and AF-9709 are PROM programmers corresponding to μ PD17P236. By connecting program adapter PA-17P236 to this PROM programmer, μ PD17P236 can be programmed.
Program adapter (PA-17P236)	PA-17P236 are adapters that is used to program μ PD17P236, and is used in combination with AF-9706, AF-9708, or AF-9709.

- Notes 1. Low-cost model: External power supply type
 - 2. Two EV-9500GT-28s are supplied with the EP-17K28GT. Five EV-9500GT-28s are optionally available as a set.
 - 3. Two EV-9500GT-30 are supplied with the EP-17K30GS. Five EV-9500GT-30s are optionally available as
 - **4.** These are products from Ando Electric Co., Ltd. For details, consult Ando Electric Co., Ltd. (Tel: 03-3733-1166).

Software

Name	Outline	Host Machine	os	Supply	Order Code
17K assembler (RA17K)	The RA17K is an assembler common to the 17K series products.	PC-9800 series	Japanese Windows TM	3.5" 2HD	μSAA13RA17K
	When developing the program of devices, RA17K is used in combi-	IBM PC/AT compatible	Japanese Windows	3.5" 2HC	μSAB13RA17K
	nation with a device file (AS17225).	machine	English Windows		μSBB13RA17K
17K series C-like compiler	The <i>emIC-17K</i> is a C-like compiler common to the 17K series.	PC-9800 series	Japanese Windows	3.5" 2HD	μSAA13CC17K
(emIC-17K TM)	Used in combination with the RA17K.	IBM PC/AT compatible machine	Japanese Windows	3.5" 2HC	μSAB13CC17K
			English Windows		μSBB13CC17K
Device file (AS17235)	The Net 1200 to a device the fet		Japanese Windows	3.5" 2HD	μSAA13AS17235
	17234, 17235, and 17236 respectively, and are used in combination with an assembler for the 17K series (RA17K).	IBM PC/AT compatible machine	Japanese Windows	3.5" 2HC	μSAB13AS17235
			English Windows		μSBB13AS17235
Support software	SIMPLEHOST is a software package that enables man-machine interface on the Windows when a program is developed by using an incircuit emulator and a personal computer.	PC-9800 series	Japanese Windows	3.5" 2HD	μSAA13ID17K
(SIMPLEHOST)		IBM PC/AT compatible machine	Japanese Windows	3.5" 2HC	μSAB13ID17K
			English Windows		μSBB13ID17K

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil

Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

J99.1

emIC-17K and SIMPLEHOST are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of IBM Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

M7 98.8