
DC TO 10GHz, CASCADABLE pHEMT MMIC AMPLIFIER

Package: Bare Die, 0.83mmx0.74mm

Product Description

RFMD's SUF-9000 is a monolithically matched broadband high IP₃ gain block covering DC to 10GHz. This pHEMT FET-based amplifier uses a self-bias Darlington topology featuring a gain and temperature compensating active bias network that operates from a single 5V supply. It offers efficient, cascadable performance in a compact 0.83mmx0.74mm die. It is well suited for RF, LO, and IF driver applications.

RFMD can provide 100% DC screening, visual inspection and Hi-Rel wafer qualification. Die can be delivered at the wafer level or picked gel or waffle paks.

Features

- Broadband Performance
- Gain=23.5dB @ 7GHz
- P_{1dB}=3.1dBm @7GHz
- Low-Noise, Efficient Gain Block
- 5V Operation, No Dropping Resistor
- Self-Bias Darlington Topology

Applications

- Broadband Communications
- Test Instrumentation
- Military and Space
- LO and IF Mixer Applications

Parameter	Specification			Unit	Condition	
Farameter	Min.	Тур.	Max.	Unit	Condition	
Frequency of Operation	DC		10.0	GHz		
Small Signal Gain		23.7		dB	Freq=3GHz	
		23.5		dB	Freq=7GHz	
		18.6		dB	Freq=10GHz	
Output Power at 1dB Compression		6.8		dBm	Freq=3GHz	
		3.1		dBm	Freq=7GHz	
		1.9		dBm	Freq=10GHz	
Output Third Order Intercept Point		15.1		dBm	Freq=3GHz	
		9.7		dBm	Freq=7GHz	
		8.5		dBm	Freq=10GHz	
Input Return Loss		22.4		dB	Freq=3GHz	
Output Return Loss		22.9		dB	Freq=3GHz	
Device Operating Voltage		5.0		V		
Current		25		mA		
Noise Figure		1.9		dB	Freq=3GHz	
Thermal Resistance		187		°C/W	Junction to backside	

Test Conditions: $Z_0 = 50 \Omega$, $V_D = 5 V$, $I_D = 25 mA$, T = 25 °C, OIP_3 Tone Spacing = 1 MHz with $P_{OUT/TONE} = 0 dBm$.

Probe Data with Bias Tees.

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^{IM}, PowerSarde, POLARIS^{IM} TOTAL RADIO^{IM} and UltimateBlue^{IM} are trademarks or RFMD, LLC, BLUETOOTH is a trademark owned by Bluetonts 156 (Jnc. LLS And licegored for use by RFMD, all other trade names trademarks and the predemarks, are the respective ownerse. ©2006, RFM blicor Devices, loc.

EDS-106169 Rev B

Preliminary

rfmd.com

Absolute Maximum Ratings

Parameter	Rating	Unit		
Total Current (I _D)	55	mA		
Device Voltage (V _D)	5.5	V		
Power Dissipation	0.3	W		
RF Input Power	+15	dBm		
Storage Temperature Range	-65 to +150	°C		
Operating Temperature Range (T_L)	-55 to +150	°C		
Operating Junction Temperature (T _J)	+150	°C		

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression: $I_DV_D < (T_J-T_L)/R_{TH}$, j-l and T_L =Backside of die

Caution! ESD sensitive device.

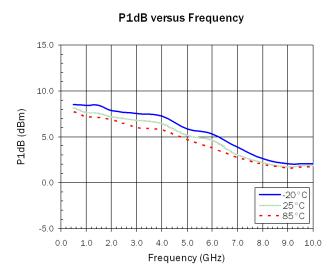
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

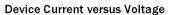
RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

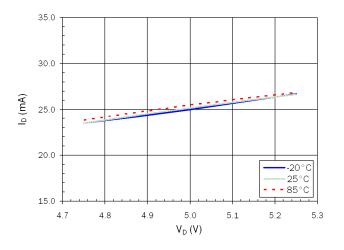
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

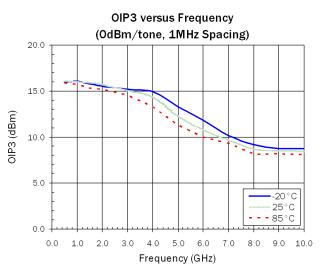
Typical Performance (Probe Data with Bias Tees) $V_D = 5V$, $I_D = 25$ mA, T = 25 °C, $Z = 50 \Omega$

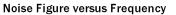
dB	23.3	23.2	23.7	24.3	23.5	18.6
dBm		16.0	15.1	12.3	9.7	8.5
dBm		7.7	6.8	5.2	3.1	1.9
dB	21.5	22.3	22.4	15.2	9.9	7.6
dB	18.8	20.0	22.9	13.5	7.4	5.0
dB	32.0	31.5	31.5	31.2	30.0	29.4
dB		2.0	1.9	2.0	2.0	2.7
	dBm dBm dB dB dB dB	dBm dBm dB dB dB dB dB dB 32.0	dBm 16.0 dBm 7.7 dB 21.5 22.3 dB 18.8 20.0 dB 32.0 31.5	dBm 16.0 15.1 dBm 7.7 6.8 dB 21.5 22.3 22.4 dB 18.8 20.0 22.9 dB 32.0 31.5 31.5	dBm 16.0 15.1 12.3 dBm 7.7 6.8 5.2 dB 21.5 22.3 22.4 15.2 dB 18.8 20.0 22.9 13.5 dB 32.0 31.5 31.5 31.2	dBm 16.0 15.1 12.3 9.7 dBm 7.7 6.8 5.2 3.1 dB 21.5 22.3 22.4 15.2 9.9 dB 18.8 20.0 22.9 13.5 7.4 dB 32.0 31.5 31.5 31.2 30.0

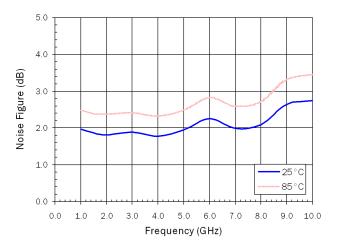

Note 1: 0dBm/tone, 1MHz tone spacing.

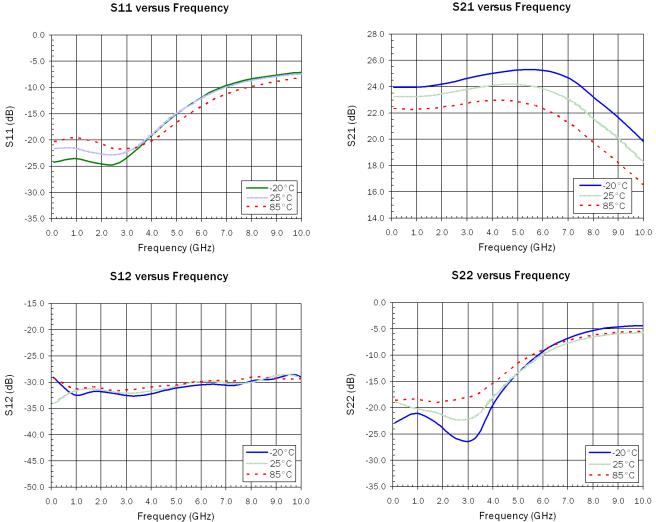





rfmd.com


Typical Performance (Probe Data with Bias Tees) $V_D = 5V$, $I_D = 25 \text{ mA}$





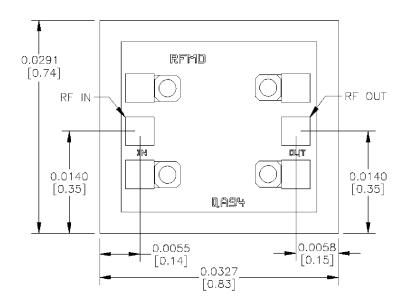
Preliminary

Typical Performance (Probe Data with Bias Tees) $V_D = 5V$, $I_D = 25mA$

rfmd.com

Pin	Function	Description		
1	RF IN	This pad is DC coupled and matched to 50Ω . An external DC block is required.		
2	RF OUT/BIAS	This pad is DC coupled and matched to 50 Ω . DC bias is applied through this pad.		
Die	GND	Die bottom must be connected to RF/DC ground using silver-filled conductive epoxy.		
Bottom				
Notes:				

1. All dimensions in inches (millimeters).


2. No connection required for unlabeled bond pads.

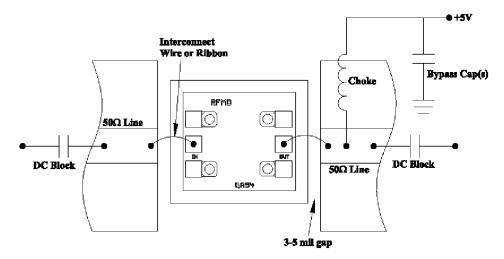
3. Die thickness is 0.004 (0.10).

4. Typical bond pad is 0.004 (0.10) square.

5. Backside and bond pad metalization is Gold.

6. Backside is ground.

Die Dimensions


SUF-9000

Preliminary

rfmd.com

Device Assembly

Ordering Information

	Part Number	Description	Devices/Container	
Ī	SUF-9000	Bare Die		