Features

Low-Frequency Dual EconOscillator

General Description

The DS1099 is a low-cost, low-power, low-frequency silicon oscillator that generates two square-wave outputs with frequencies between 0.25Hz and 1.048MHz. Individual output enables allow both outputs to be enabled/disabled independently. Both outputs are capable of sinking 16mA, allowing them to directly interface to light-emitting diodes (LEDs) as well as other external circuitry. The DS1099 operates over a wide supply voltage, making it suitable for both 3V and 5V systems. The device is shipped from the factory custom programmed and calibrated, ready to be inserted into the end application.

Contact the factory for custom frequencies or requirements.

Applications

Flashing LED Status Indicators

Consumer Appliances

Automotive

Servers

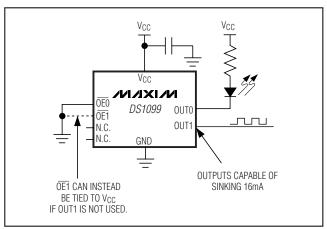
Printers

Switch-Mode Power Supplies

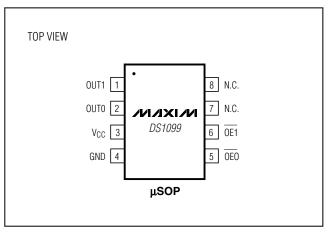
♦ Low-Cost, Low-Frequency EconOscillator™ with

- **Dual Outputs**
- **♦ Factory Programmed**
- ♦ Output Frequencies Independently Programmable from 0.25Hz to 1.048MHz
- **♦** 2.7V to 5.5V Single-Supply Operation
- ♦ No External Timing Components Required
- **♦ Independent Output Enables**
- **♦** CMOS/TTL-Compatible Outputs
- ♦ Oscillator Outputs Capable of Sinking 16mA to **Directly Drive LEDs**
- **♦** Relieves Microprocessor of Periodic Interrupt
- **♦ Low-Power Consumption**
- ♦ Operating Temperature Range: -40°C to +125°C
- ♦ ±100ppm/°C Temp Drift (MAX)

Ordering Information


PART	TEMP RANGE	PIN-PACKAGE	
DS1099U- α O α 1	-40°C to +125°C	8 µSOP	

^{*}Where α_0 and α_1 specify the factory programmed divider settings for OUT0 and OUT1, respectively.


Ordering information is continued on the last page.

EconOscillator is a trademark of Dallas Semiconductor.

Typical Operating Circuit

Pin Configuration

MIXIM

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Voltage Range on VCC Relative to Ground0.5V to +6.0V	Operating Temperature Range40°C to +125°C
Voltage Range on OEO and OE1	Storage Temperature Range55°C to +125°C
Relative to Ground0.5V to $(V_{CC} + 0.5V)$,	Soldering TemperatureSee IPC/JEDEC
not to exceed 6.0V	J-STD-020A Specification

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP N	1AX	UNITS
Supply Voltage	Vcc	(Note 1)	2.7		5.5	V
Input Logic 1 (OEO, OE1)	VIH		0.7 x V _{CC}		CC + 0.3	V
Input Logic 0 (OE0, OE1)	VIL		-0.3		0.3 x /cc	V

DC ELECTRICAL CHARACTERISTICS

(V_{CC} = +2.7V to +5.5V, T_A = -40°C to +125°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Standby Supply Current	ISTBY	OE0 = OE1 = VCC			145	275	μΑ
		$C_L = 15pF$ per output, $\overline{OE0} = \overline{OE1} = GND$, $V_{CC} = 3.3V$	1.048MHz (both)		323		μΑ
Active Supply Current (Note 2)	Icc		4kHz (both)		146		
			1Hz (both)		145		
High-Level Output Voltage (OUT0, OUT1)	Voн	I _{OH} = -1mA, V _{CC} = MIN		2.4			V
Low-Level Output Voltage (OUT0, OUT1)	V _{OL}	I _{OL} = 16mA (-40°C to +85°C) I _{OL} = 12mA (-40°C to +125°C)				0.4	V
High-Level Input Current (OEO, OE1)	lін	V _{IH} = V _{CC}				+1.0	μΑ
Low-Level Input Current (OE0, OE1)	I _{IL}	V _{IL} = 0.0V		-1.0			μА

__ /VI/IXI/VI

AC ELECTRICAL CHARACTERISTICS

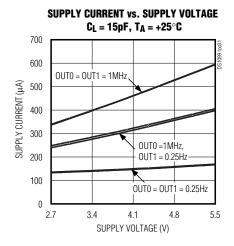
 $(V_{CC} = +2.7V \text{ to } +5.5V, T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}, \text{ unless otherwise noted.})$

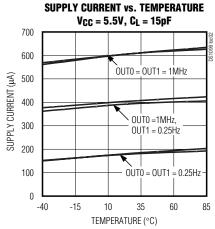
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Master Oscillator Frequency	fmosc			1.048		MHz
Nominal Output Frequency	fouto, fout1		0.25	1,	,048,000	Hz
Output Frequency Tolerance	Δ fout	T _A = +25°C, V _{CC} = 4.1V	-1.0		+1.0	%
Voltage Frequency Variation	Afour	$T_A = +25$ °C		3300		ppm/V
(Note 3)	Δf _{OUT}	2.7V to 5.5V, T _A = +25°C	-2.0		+2.5	%
Temperature Frequency Variation	Δ fout	(Notes 3, 4)	-100		+100	ppm/°C
Output Duty Cycle			45		55	%
Power-Up Time	tpu	(Note 5)		•	10	ms
Output Rise/Fall Time	t _R , t _F	C _L = 15pF (both)			20	ns

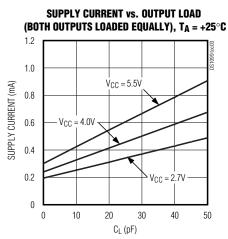
Note 1: All voltages referenced to ground.

Note 2: Active supply current combines the standby current with the output current. The output current is defined by

 $I = (C_{LOAD} + 12pF) \times V_{CC} \times f_{OUT}$ for each output when enabled.

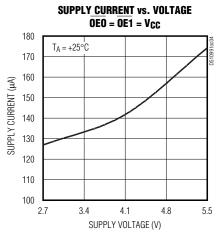

Note 3: This is the change observed in output frequency due to changes in temperature or voltage.

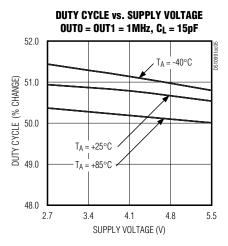

Note 4: This parameter is guaranteed by design.

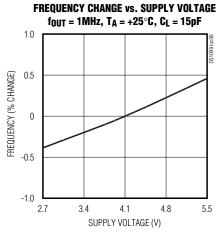

Note 5: This indicates the time between power-up and the outputs becoming active.

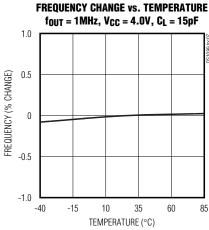
Typical Operating Characteristics

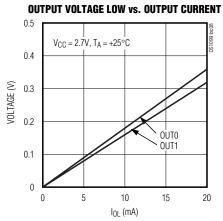
 $(V_{CC} = +5.0V, T_A = +25^{\circ}C, unless otherwise noted.)$

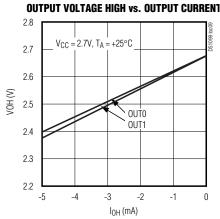


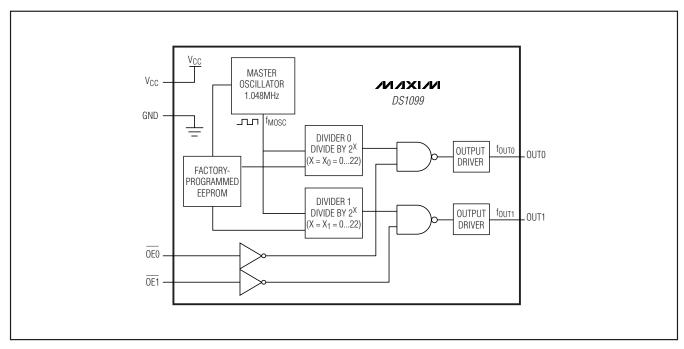





Typical Operating Characteristics (continued)


 $(V_{CC} = +5.0V, T_A = +25^{\circ}C, unless otherwise noted.)$





Pin Description

PIN	NAME	FUNCTION		
1	OUT1	Oscillator Outputs Food output is forced high when the corresponding OF is high		
2	OUT0	Oscillator Outputs. Each output is forced high when the corresponding \overline{OE} is high.		
3	Vcc	Positive Supply Terminal		
4	GND	Ground		
5	ŌE0	Output Enable for OUT0 and OUT1, respectively. When low, the outputs are enabled. When high, the		
6	ŌE1	corresponding output is disabled (forced high).		
7, 8	N.C.	No Connection		

Functional Diagram

Detailed Description

The DS1099 consists of a fixed-frequency 1.048MHz master oscillator followed by two independent factory-programmable dividers. The two divider outputs are connected to pins OUT0 and OUT1, which are inde-

Table 1. Divider Settings and Output Frequencies

DIVIDER SETTING X ₀ OR X ₁	DIVISOR fOUTO OR fo	
0	1	1.048MHz
1	2	0.524MHz
2	4	0.262MHz
3	8	0.131MHz
4	16	65.50kHz
5	32	32.75kHz
_	_	_
19	524,288	2Hz
20	1,048,576	1Hz
21	2,097,152	0.5Hz
22	4,194,304	0.25Hz

pendently enabled/disabled using the output-enable pins, $\overline{OE0}$ and $\overline{OE1}$, respectively. When the output-enable pins are active (low), the corresponding outputs are enabled. If either output-enable pin is tied to its inactive state (high), then the corresponding output is disabled and forced high immediately. The output-enable pins only disable the corresponding output driver(s) and do not shut down the master oscillator or the dividers.

Since the master oscillator frequency, f_{MOSC} , is fixed, the frequency of OUT0 and OUT1 is determined by DIVIDER 0 and DIVIDER 1, respectively. And since each output has its own divider, f_{OUT0} and f_{OUT1} can be programmed independent of each other.

The frequency of the outputs are calculated as follows:

$$\begin{array}{l} \text{fouto} = \text{fmosc} \, / \, 2^{\text{X0}} = 1.048 \text{MHz} \, / \, 2^{\text{X0}} \\ \text{fout1} = \text{fmosc} \, / \, 2^{\text{X1}} = 1.048 \text{MHz} \, / \, 2^{\text{X1}} \end{array}$$

where X_0 is the DIVIDER 0 setting and X_1 is the DIVIDER 1 setting. Valid values for X_0 and X_1 are integers 0 to 22 (dec).

Table 1 shows output frequencies and divider values for the range of divider settings.

The divider settings, X_0 and X_1 , are factory programmed. When placing an order for the DS1099, it is required to specify X_0 and X_1 . If only one output is used, it is recommended that the unused output be disabled.

The oscillator outputs are asynchronous. Since the master oscillator and dividers are free running, even when both outputs are disabled, the state of the output when \overline{OE} becomes active is unknown for up to half an four period. When \overline{OE} is brought low, the output is enabled instantaneously. Likewise, if the output is disabled while outputting the low half of a cycle, the output instantaneously is forced high before the current cycle is completed.

Ordering Information (continued)

α	DIVISOR	fOUT
Α	2°	1.048MHz
В	2 ¹	0.524MHz
С	2^2	0.262MHz
D	2 ³	0.131MHz
Е	2^4	65.50kHz
F	2 ⁵	32.750kHz
G	2^6	16.375kHz
Н	27	8.187kHz
J	2 ⁸	4.093kHz
K	2°	2.046kHz
L	2 ¹⁰	1.023kHz
М	2 ¹¹	511.7Hz
N	2 ¹²	255.8Hz
Р	2 ¹³	127.9Hz
Q	214	63.96Hz
R	2 ¹⁵	31.98Hz
S	2 ¹⁶	16Hz
Т	2 ¹⁷	8Hz
U	2 ¹⁸	4Hz
W	2 ¹⁹	2Hz
Х	2 ²⁰	1Hz
Υ	2 ²¹	0.5Hz
Z	2 ²²	0.25Hz

Branding Information

The package branding includes α_0 and α_1 on the top of the package next to or below 1099.

_Application Information

Power-Supply Decoupling

To achieve best results, it is highly recommended that a decoupling capacitor is used on the IC power-supply pins. Typical values of decoupling capacitors are 0.01 μ F and 0.1 μ F. Use a high-quality, ceramic, surface-mount capacitor, and mount it as close as possible to the V_{CC} and GND pins of the IC to minimize lead inductance.

Chip Topology

TRANSISTOR COUNT: 4221 SUBSTRATE CONNECTED TO GROUND

Package Information

For the latest package outline information, go to **www.maxim-ic.com/DallasPackInfo**.

Revision History

Pages changed at Rev 1: 1, 2, 3, 5, 6

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

6 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2007 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products, Inc.