

DS2167/DS2168 ADPCM Processor

FEATURES

- Speech compression chip compatible with standard ADPCM algorithms:
 - DS2167 supports "new" T1Y1 recommendations (July 1986) and "new" CCITT G.721 recommendations
 - DS2168 supports "old" CCITT G.721 recommendations
- Dual independent channel architecture device may be programmed to perform full duplex, 2-channel expansions, or 2-channel compressions
- Interconnects directly with $\mu\text{-law}$ or A-law codec/filter devices
- Serial PCM and control port interfaces minimize "glue logic" in multiple channel applications
 - On-chip channel counters identify input and output timeslots in TDM-based systems
 - Unique addressing scheme simplifies device control; 3-wire port shared among 64 devices
 - Bypass and idle features allow dynamic allocation of channel bandwidth, minimize system power requirements
- Hardware mode intended for stand-alone use
 - No host processor required
 - Ideal for voice mail applications
- 28-pin surface-mount package available, designated DS2167Q/DS2168Q

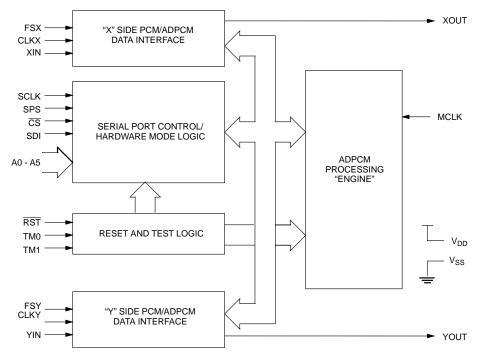
DESCRIPTION

The DS2167 and DS2168 are dedicated digital signal processor (DSP) CMOS chips optimized for Adaptive Differential Pulse Code Modulation (ADPCM) based compression algorithms. The devices halve the trans-

PIN ASSIGNMENT

RST	1	24	VDD
тмо	2	23	YIN
TM1	3	22	CLKY
A0	4	21	FSY
A1	5	20	YOUT
A2	6	19	CS
A3	7	18	SDI
A4	8	17 6	SCLK
A5	9	16 🖥	XOUT
SPS	10	15	FSX
MCLK	11	14	CLKX
VSS	12	13	XIN
:	24-Pin DIP	(600 MIL)	
5		LK J	
Ē	ž 114 z		
	321	28 27 2625	h row
	1321	20 27 2025	E -
		24	
A2 [8		22	
A2 U 0 A3 U 9		21	2 00.
A3 U 3 A4 U 10			E C
A5 [] 11		20	h
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 13 14 15	<u>16 17 18¹⁹</u>	µис
	0 X 0 0		
000	NC VSS	N X X S X X	
	2	0	

28-Pin PLCC


mission bandwidth of "toll quality" voice from 64K to 32K bits/second and are utilized in PCM-based telephony networks.

022698 1/15

#### **PRODUCT OVERVIEW**

The DS2167 and DS2168 contain three major functional blocks: a high performance (10 MIPS) DSP "engine," two independent PCM data interfaces ("X" and "Y") which connect directly to serial time division multiplexed (TDM) backplanes and a microcontroller-compatible serial port for on-the-fly device configuration. A 10MHz master clock is required by the DSP engine. The devices' dual channel architecture supports full duplex, dual compression or dual expansion operation. The PCM data interfaces support 1.544, 2.048 and 4.096 MHz data rates. Each device samples the serial PCM or ADPCM bit stream during a user-programmed input timeslot, processes the data and outputs the result during a user-programmed output timeslot. Each PCM interface has a control register which specifies functional characteristics (compress, expand, bypass and idle), data format ( $\mu$ -law or A-law) and algorithm reset control. With the SPS pin strapped high, the software mode is enabled and the serial port is used to program control and timeslot registers. In this mode, a novel addressing scheme allows multiple devices to share a common 3-wire control bus, simplifying system level interconnect.

With SPS low, the hardware mode is enabled. This mode disables the serial port and maps appropriate control register bits to address and port inputs. Under hardware mode, no host controller is required and all PCM I/O defaults to timeslot 0. This stand-alone mode is compatible with popular codecs.



## DS2168 BLOCK DIAGRAM Figure 1

022698 2/15

	ESCRIPTIC	ON Tak	
PIN	SYMBOL	TYPE	DESCRIPTION
1	RST	I	<b>Reset.</b> A high-low-high transition clears all internal registers and reset both algorithms. The device should be reset on system power-up, and/or when changing to/from hardware mode.
2 3	TM0 TM1	I	Test Modes 0 and 1. Tie to V _{SS} for normal operation
4 5 7 8 9	A0 A1 A2 A3 A4 A5	I	Address Select. A0=LSB; A5=MSB. Must match address/command word to enable serial port write.
10	SPS	I	Serial Port Select. Tie to $V_{DD}$ to select the serial port, to $V_{SS}$ to select the hardware mode.
11	MCLK	I	<b>Master Clock.</b> 10 MHz clock for ADPCM processing "engine"; may asynchronous to SCLK, CLKX and CLKY.
12	VSS	-	Signal Ground. 0.0 volts
13	XIN	I	X Data In. Samples on falling edge of CLKX during selected timeslots.
14	CLKX	I	<b>X Data Clock.</b> Data clock for X side PCM interface; must be coherent and rising edge aligned with FSX.
15	FSX	I	X Frame Sync. 8 KHz frame sync for X side PCM interface.
16	XOUT	0	X Data Out. Updated on rising edge of CLKX during selected timeslots.
17	SCLK	I	Serial Data Clock. Used to write serial port registers.
18	SDI	I	Serial Data In. Data for onboard control registers. Sampled on rising edge of SCLK.
19	CS	I	Chip Select. Must be low to write the serial port.
20	YOUT	0	Y Data Out. Updated on rising edge of CLKY during selected timeslots.
21	FSY	I	Y Frame Sync. 8 KHz frame sync for Y side PCM interface.
22	CLKY	I	<b>Y Data Clock.</b> Data clock for Y side PCM interface; must be coherent and rising edge aligned with FSY.
23	YIN	I	Y Data In. Samples on falling edge of CLKY during selected timeslots.
24	VDD	-	Positive Supply. 5.0 volts.

## PIN DESCRIPTION Table 1

## HARDWARE RESET

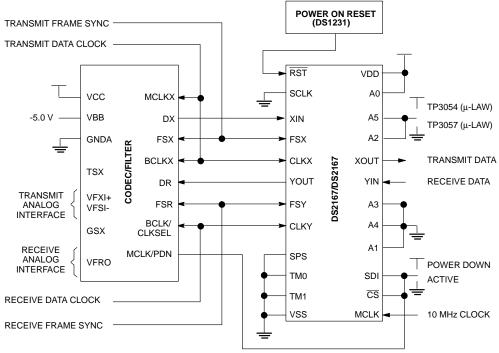
 $\overline{\text{RST}}$  allows the user to reset both channel algorithms and register contents. This input must be held low for at least 1 ms on system power-up after master clock is stable to assure proper initialization of the device.  $\overline{\text{RST}}$  should also be asserted when changing to/from the hardware mode. RST clears all bits of the control register except IPD; IPD is set for both channels, powering down the device.

022698 3/15

#### HARDWARE MODE

The hardware mode is intended for preliminary system prototyping or for applications which do not require the features of the serial port. Tying SPS to VSS disables the serial port, clears all internal registers and maps IPD,  $\mu/\overline{A}$  and CP/ $\overline{EX}$  of the X and Y side interfaces to the

port and address inputs. Input and output timeslots for the X and Y side interfaces are fixed at 0. Such applications include, but are not limited to: 1) systems in which timeslot and algorithm are fixed, 2) stand-alone ADPCM combo applications, 3) "hardware" oriented systems where no host controller is available.


HARDW	ARE MO	DE Table 2
-------	--------	------------

PIN #/NAME	REG. LOCATION	NAMES AND DESCRIPTION
4/A0	CP/EX (X)	Channel X coding 0 = Expand 1 = Compress
6/A2	μ/Ā (X)	Channel X data format 0 = A-law 1 = μ-law
7/A3	CP/EX (Y)	Channel Y coding 0 = Expand 1 = Compress
9/A5	μ/Ā (Y).2	Channel Y data format 0 = A-law 1 = μ-law
18/SDI	IPD (Y)	Y idle select 0 = Channel active 1 = Channel idle
19/CS	IPD (X)	X idle select 0 = Channel active 1 = Channel idle

## NOTES:

- 1. SCLK, A1 and A4 must be tied to VSS when the hardware mode is selected.
- 2. When both X and Y sides are idled, the devices enter a stand-by mode which significantly reduces power consumption.
- 3. The DS2167 will power-up within 200 ms after the X or Y side is reactivated (SDI and/or  $\overline{CS}$  not equal to 0) from standby.
- 4. The DS2168 must be hardware reset when reactivated from standby. Power-up occurs immediately after the reset.

022698 4/15



## CODEC/FILTER HARDWARE MODE INTERCONNECT Figure 2

#### NOTE:

Suggested Codec/Filters

 TP305X
 National Semiconductor

 ETC505X
 SGS-Thomson Microelectronics

 MC1455XX
 Motorola

 TCM29CXX
 Texas Instruments

 HD44238C
 Hitachi

 *other generic Codec/Filter devices can be substituted.

## SOFTWARE MODE

Tying SPS high enabled the software mode. In this mode, a host microcontroller writes configuration data to the DS2167/DS2168 serial port via inputs SCLK, SDI, and  $\overline{CS}$ . Independent control and timeslot registers establish operating characteristics for the X-side and Y-side PCM interfaces.

#### ADDRESS/COMMAND BYTE

In the software mode, the address/command byte is the first byte written to the serial port; it identifies which of 64 possible ADPCM processors sharing the port wiring is to be updated. Address data must match that at inputs

A0–A5. If no match occurs, the device ignores the following configuration data. If an address match occurs, the next three bytes written are accepted as control, input and output timeslot data. Bit ACB.6 determines which side (X or Y) of the device is to be updated.

#### **CONTROL REGISTER**

The control register establishes idle, algorithm reset, bypass, data format and channel coding for the selected PCM interface.

The X and Y side PCM interfaces may be independently disabled (output tri-stated) via IPD; when IPD is set for

022698 5/15

both X and Y interfaces, the device enters a low-power standby mode. The DS2167 will power-up within 200 ms after the X or Y side is reactivated (IPD=0) from standby. The DS2168 requires an external hardware reset after IPD is cleared to "wake-up" from standby. The DS2168 will power-up immediately after the low-high transition on  $\overline{\text{RST}}$ .

ALRST resets the algorithm coefficients for the selected channel to their initial values. ALRST will be cleared by the device when the algorithm reset is complete.

The bypass feature is enabled when BYP is set and IPD is clear. During bypass, no expansion or compression of data occurs. This feature allows the user to interchange timeslots under control of the timeslot registers. Bypass

operates on byte-wide slots when  $CP/\overline{EX}=1$ , on nibblewide slots when  $CP/\overline{EX}=0$ .

A-law ( $\mu/\overline{A}=0$ ) or  $\mu$ -law PCM ( $\mu/\overline{A}=1$ ) coding is independently selected for the X and Y side interfaces by bit  $\mu/A$ . If BYP and IPD are clear, CP/ $\overline{EX}$  determines if input data is to be compressed or expanded.

#### TIMESLOT ASSIGNMENT

On-chip counters establish when PCM data I/O occurs and are programmed via the timeslot registers. Timeslot size (4 or 8 bits wide) is determined by the state of  $CP/\overline{EX}$ . Timeslots are counted from the rising edge of FSX and FSY.

#### ADDRESS/COMMAND BYTE Figure 3

(MSB)							(LSB)
-	X/Y	A5	A4	A3	A2	A1	a0
SYMBOL	- POSITIC				or operation	-	-
- X/ <u>Y</u>	ACB.		/Y Channel S	t be 0 for prop	er operation.		
A/ f	ACB.	0	= Update cha	nnel Y charac			
A5	ACB.5	5 N	ISB of Device	Address.			
A4	ACB.4	4					
A3	ACB.3	3					
A2	ACB.2	2					
A1	ACB.	1					
A0	ACB.0	) L	SB of Device	Address.			

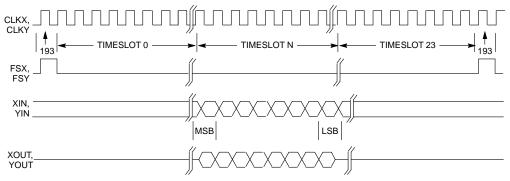
022698 6/15

_

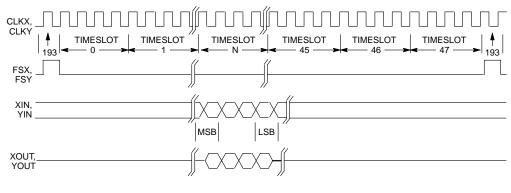
(MSB)		-					(LSB)	
-	-	IPD	ALRST	BYP	μ/Ā	-	CP/EX	
SYMBOL	. POSITIO	ON	NAME AND DE	SCRIPTION				
-	CR.7	.	Reserved, mus	t be 0 for prop	er operation.			
-	CR.6	;	Reserved, mus	t be 0 for prop	er operation.			
IPD	CR.5	(	Idle and Power Down. 0 = channel enabled. 1 = channel disabled (output tri-stated).					
ALRST	CR.4		Algorithm Reset. 0 = Normal operation. 1 = Reset algorithm for selected channel.					
BYP	CR.3		<b>Bypass.</b> 0 = Normal ope 1 = Bypass sele					
μ/Ā	CR.2		<b>Data Format</b> 0 = A-law. 1 = μ-law.					
-	CR.1		Reserved, mus	t be 0 for prop	er operation.			
CP/EX	CR.0		<b>Channel Codir</b> 0 = Expand (de 1 = Compress (	code) selected				

# CONTROL REGISTER Figure 4

# INPUT TIMESLOT REGISTER Figure 5


(MSB)							(LSB)
-	-	D5	D4	D3	D2	D1	D0
SYMBOL	. POSITIO	ON N	IAME AND DE	SCRIPTION	-	_	
_	ITR.7	R	eserved, mus	t be 0 for prop	er operation.		
-	ITR.6	R	eserved, mus	t be 0 for prop	er operation.		
D5	ITR.5	N	ISB of input tir	meslot word.			
D4	ITR.4						
D3	ITR.3						
D2	ITR.2						
D1	ITR.1						
D0	ITR.0	L	SB of input tim	neslot word.			

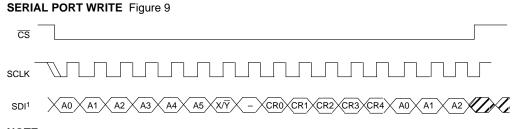
022698 7/15


## OUTPUT TIMESLOT REGISTER Figure 6

(MSB)							(LSB)		
-	-	D5	D4	D3	D2	D1	D0		
SYMBOL	- POSITIO	ON N	IAME AND DE	SCRIPTION					
_	OTR.	7 R	Reserved, mus	t be 0 for prop	er operation.				
-	OTR.6	6 R	Reserved, must be 0 for proper operation.						
D5	OTR.	5 N	ISB of output t	imeslot word.					
D4	OTR.4	4							
D3	OTR.3	3							
D2	OTR.2	2							
D1	OTR.	1							
D0	OTR.	) L	SB of output ti	meslot word.					

# PCM I/O TIMING (1.544 MHz BACKPLANE) Figure 7

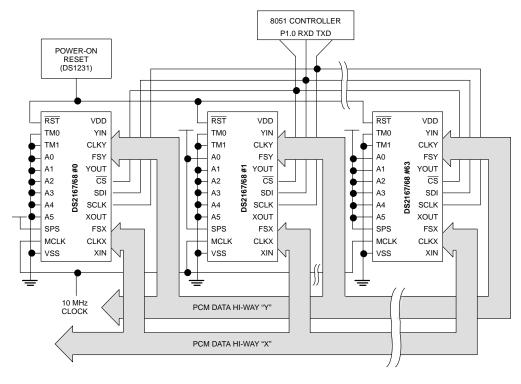



# ADPCM I/O TIMING (1.544 MHz BACKPLANE) Figure 8



022698 8/15

#### SERIAL PORT WRITE


All port writes are initiated by driving  $\overline{CS}$  low and terminated when  $\overline{CS}$  returns high. Data is sampled on the rising edge of SCLK and must be written to the device LSB first. Writes to the device may be two bytes (address/ command and control) or four bytes (address/command, control, input timeslot and output timeslot) in length. Writes should be terminated on byte boundaries to insure data integrity. PCM and ADPCM outputs will tristate during register updates.



#### NOTE:

1. 2-byte write shown.

## 8051-BASED CONTROL SYSTEM Figure 10



022698 9/15

## **ABSOLUTE MAXIMUM RATINGS***

Voltage on Any Pin Relative to Ground Operating Temperature Storage Temperature Soldering Temperature

-1.0V to 7.0V  $0^{\circ}$ C to +70 $^{\circ}$ C –55°C to 125°C 260°C for 10 seconds

* This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATI	(0	°C to 70°C)				
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Logic 1	VIH	2.0		V _{CC} +0.3	V	
Logic 0	V _{IL}	-0.3		+0.8	V	
Supply	V _{DD}	4.5		5.5	V	

## CAPACITANCE

CAPACITANCE						$(t_{A} = 25^{\circ}C)$
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Input Capacitance	C _{IN}			5	pF	
Output Capacitance	C _{OUT}			10	pF	

## DC ELECTRICAL CHARACTERISTICS

(0°C to 70°C;  $V_{DD} = 5V \pm 10\%$ )

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Supply Current (Active)	I _{DDA}		30		mA	1,2
Supply Current (Idle)	I _{DDPD}		1		mA	1,2,3
Input Leakage	١ _{IL}	-1.0		+1.0	μΑ	
Output Leakage	I _{TRI}	-1.0		+1.0	μΑ	4
Output Current @ 2.4V	I _{OH}	-1.0			mA	
Output Current @ 0.4V	I _{OL}	4.0			mA	

## NOTES:

1. CLKX = CLKY = 1.544 MHz; MCLK = 10 MHz.

2. Outputs open; inputs swinging full supply levels.

3. Both channels in idle mode.

4. XOUT and YOUT when tri-stated.

022698 10/15

_

## PCM INTERFACE AC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
MCLK Period	t _{PM}		100		ns	5
MCLK Pulse Width	t _{WMH} , t _{WML}	45	50	55	ns	
MCLK Rise and Fall Times	t _{RM} , t _{FM}		5	10	ns	
CLKX, CLKY Period	t _{PXY}	244	488	5208	ns	4
CLKX, CLKY Pulse Width	t _{WXYH} , t _{WXYL}	100	244		ns	
CLKX, CLKY Rise and Fall Times	t _{RXY} , t _{FXY}		10	20	ns	
Hold Time from CLKX, CLKY to FSX, FSY	t _{HOLD}	0			ns	1
Setup Time from FSX, FSY to CLKX, CLKY low	t _{SF}	50			ns	1
Hold Time from CLKX, CLKY low to FSX, FSY low	t _{HF}	100			ns	1
XIN, YIN Setup to CLKX, CLKY low	t _{SD}	50			ns	1
XIN, YIN Hold to CLKX, CLKY low	t _{HD}	50			ns	1
Delay Time from CLKX, CLKY to Valid XOUT, YOUT	t _{DXYO}	10		150	ns	2
Delay Time from CLKX, CLKY to XOUT, YOUT Tri-stated	t _{DXYZ}	20		150	ns	1,2,3

## NOTES:

- 1. Measured at  $V_{IH}$  = 2.0V,  $V_{IL}$  = 0.8V, and 10 ns maximum rise and fall times.
- 2. Load = 150 pF + 2 LSTTL loads.
- 3. For LSB of PCM byte or ADPCM nibble.
- 4. Maximum width of FSX, FSY is one CLKX, CLKY period.
- 5. MCLK = 10 MHz <u>+</u> 500 ppm.

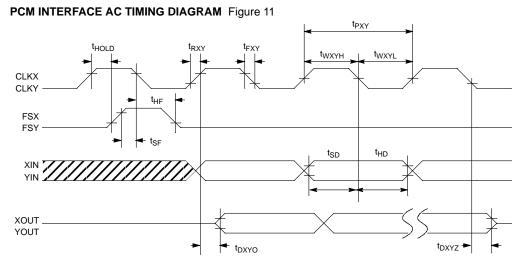
022698 11/15

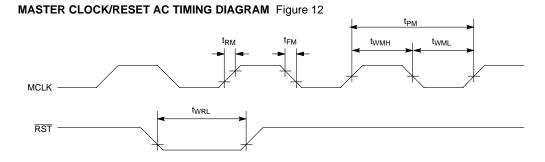
# MASTER CLOCK/RESET

## AC ELECTRICAL CHARACTERISTICS

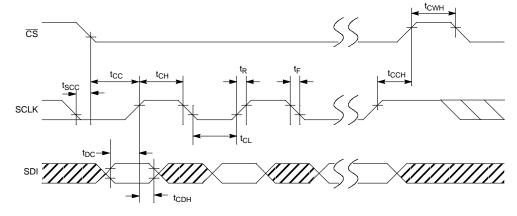
AC ELECTRICAL CHARACTERISTICS					(0° to 70°C, V _{DD} = 5V <u>+</u> 10%)		
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES	
MCLK Period	t _{PM}		100		ns	5	
MCLK Pulse Width	t _{WMH} , t _{WML}	45	50	55	ns		
RST Pulse Width	t _{WRL}	1			ms		

## SERIAL PORT


**AC ELECTRICAL CHARACTERISTICS**  $(0^{\circ}C \text{ to } 70^{\circ}C, V_{DD} = 5V \pm 10\%)$ NOTES PARAMETER SYMBOL MIN TYP MAX UNITS SDI to SCLK Setup 55 1 ns t_{DC} SCLK to SDI Hold 55 1 t_{CDH} ns SCLK Low Time  $t_{\text{CL}}$ 250 ns 1 SCLK High Time 250 1 t_{CH} ns SCLK Rise and Fall Times 100 1 ns  $t_R, t_F$ CS to SCLK Setup 1 t_{CC} 50 ns SCLK to CS Hold 250 1 t_{CCH} ns CS Inactive Time t_{CWH} 250 ns 1 SCLK Setup to  $\overline{\text{CS}}$  Falling 1 t_{SCC} 50 ns

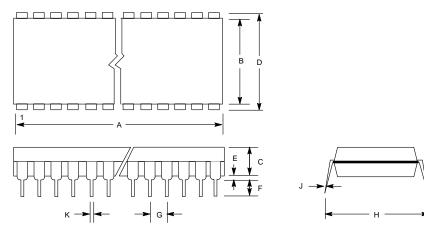

## NOTES:

1. Measured at  $V_{IH}$  = 2.0V,  $V_{IL}$  = 0.8V, and 10 ns maximum rise and fall times.


2. MCLK = 10 MHz + 500 ppm.

022698 12/15

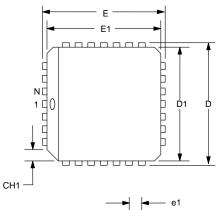


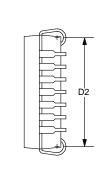


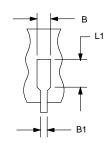

# SERIAL PORT WRITE AC TIMING DIAGRAM Figure 13

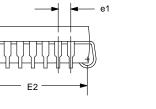


022698 13/15


# DS2167/DS2168 ADPCM PROCESSOR 24-PIN DIP





	INCHES				
DIM	MIN	MAX			
A IN.	1.245	1.270			
MM	31.62	32.25			
B IN.	0.530	0.550			
MM	13.46	13.97			
C IN.	0.140	0.160			
MM	3.56	4.06			
D IN.	0.600	0.625			
MM	15.24	15.88			
E IN.	0.015	0.050			
MM	0.380	1.27			
F IN.	0.120	0.145			
MM	3.05	3.68			
G IN.	0.090	0.110			
MM	2.29	2.79			
H IN.	0.625	0.675			
MM	15.88	17.15			
J IN.	0.008	0.012			
MM	0.20	0.30			
K IN.	0.015	0.022			
MM	0.38	0.56			


022698 14/15


DS2167/DS2168Q ADPCM PROCESSOR 28-PIN PLCC











	INCHES		
DIM.	MIN.	MAX.	
А	0.165	0.180	
A1	0.090	0.120	
A2	0.020	-	
В	0.026	0.033	
B1	0.013	0.021	
С	0.009	0.012	
D	0.485	0.495	
D1	0.450	0.456	
D2	0.390	0.430	
E	0.485	0.495	
E1	0.450	0.456	
E2	0.390	0.430	
L1	0.060	-	
N	28	-	
e1	0.050 BSC		
CH1	0.042	0.048	

022698 15/15