

©1995 National Semiconductor Corporation TL/F/5827

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note 1)

V_{CC} Supply Voltage

V3-V2 Voltage Differential

Lead Temperature (Soldering, 4 seconds)

*Derate metal can package 4.6 mW/°C above 25°C.

Maximum Power Dissipation* at 25°C Metal Can (TO-5) Package

Storage Temperature

V2 Supply Voltage V3 Supply Voltage

Input Voltage

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Operating Conditions

	Min	Max	Units
Supply Voltage, V _{CC}			
DS7800	4.5	5.5	V
DS8800	4.75	5.25	V
Temperature (T _A)			
DS7800	-55	+ 125	°C
DS8800	0	+70	°C

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ (Note 6)	Max	Units
VIH	Logical "1" Input Voltage	V _{CC} = Min		2.0			V
VIL	Logical "0" Input Voltage	V _{CC} = Min				0.8	V
IIH	Logical "1" Input Current	V _{CC} = Max	$V_{IN} = 2.4V$			5	μΑ
			$V_{IN} = 5.5V$			1	mA
IIL	Logical "0" Input Current	$V_{CC} = Max, V_{IN} = 0.4V$			-0.2	-0.4	mA
I _{OL}	Output Sink Current	$V_{CC} = Min, V_{IN} = 2V,$	DS7800	1.6			mA
		V3 Open	DS8800	2.3			mA
IOH	Output Leakage Voltage	$V_{CC}=$ Max, $V_{\text{IN}}=$ 0.8V (Notes 4 and 7)				10	μΑ
R _O	Output Collector Resistor	$T_A = 25^{\circ}C$		11.5	16.0	20.0	kΩ
VOL	Logical "0" Output Voltage	$V_{CC} = Min, V_{IN} = 2.0V$ (Note 7)				V ₂ + 2.0	V
I _{CC(MAX)}	Power Supply Current Output "ON" Per Gate	$V_{CC} = Max$, $V_{IN} = 4.5V$ (Note 5)			0.85	1.6	mA
I _{CC(MIN)}	Power Supply Current Output "OFF" Per Gate	$V_{CC} = Max$, $V_{IN} = 0V$ (Note 5)			0.22	0.41	mA

7.0V

-30V

30V

40V

5.5V

260°C

690 mW

-65°C to +150°C

Switching Characteristics $T_A = 25^{\circ}C$, nominal power supplies unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0}	Transition Time to Logical "0" Output	$T_A = 25^{\circ}C, C = 15 \text{ pF}$ (Note 8)	25	70	125	ns
t _{pd1}	Transition Time to Logical "1" Output	$T_A = 25^{\circ}C, C = 15 \text{ pF}$ (Note 9)	25	62	125	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS7800 and across the 0°C to $+70^{\circ}$ C range for the DS8800.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Current measured is drawn from V_3 supply.

Note 5: Current measured is drawn from V_{CC} supply.

Note 6: All typical values are measured at T_A = 25°C with V_{CC} = 5.0V, V_2 = $-22V,\,V_3$ = +8V.

Note 7: Specification applies for all allowable values of V_2 and $\mathsf{V}_3.$

Note 8: Measured from 1.5V on input to 50% level on output.

Note 9: Measured from 1.5V on input to logic "0" voltage, plus 1V.

Theory of Operation

The two input diodes perform the AND function on TTL input voltage levels. When at least one input voltage is a logical "0", current from V_{CC} (nominally 5.0V) passes through R₁ and out the input(s) which is at the low voltage. Other than small leakage currents, this current drawn from V_{CC} through the 20 kΩ resistor is the only source of power dissipation in the logical "1" output state.

When both inputs are at logical "1" levels, current passes through R₁ and diverts to transistor Q₁, turning it on and thus pulling current through R₂. Current is then supplied to the PNP transistor, Q₂. The voltage losses caused by current through Q₁, D₃, and Q₂ necessitate that node P reach a voltage sufficient to overcome these losses before current begins to flow. To achieve this voltage at node P, the inputs must be raised to a voltage level which is one diode potential lower than node P. Since these levels are exactly the same as those experienced with conventional TTL, the interfacing with these types of circuits is achieved.

Transistor Q_2 provides "constant current switching" to the output due to the common base connection of Q_2 . When at least one input is at the logical "0" level, no current is delivered to Q_2 ; so that its collector supplies essentially zero current to the output stage. But when both inputs are raised to a logical "1" level current is supplied to Q_2 .

Selecting Power Supply Voltage

The graph shows the boundary conditions which must be used for proper operation of the unit. The range of operation for power supply V₂ is shown on the X axis. It must be between -25V and -8V. The allowable range for power supply V₃ is governed by supply V₂. With a value chosen for V₂, V₃ may be selected as any value along a vertical line passing through the V₂ value and terminated by the boundaries of the operating region. A voltage difference between power supplies of at least 5V should be maintained for adequate signal swing.

Since this current is relatively constant, the collector of Q2 acts as a constant current source for the output stage. Logic inversion is performed since logical "1" input voltages cause current to be supplied to Q_2 and Q_3 . And when Q_3 turns on the output voltage drops to the logical "0" level. The reason for the PNP current source, Q₂, is so that the output stage can be driven from a high impedance. This allows voltage V_2 to be adjusted in accordance with the application. Negative voltages to -25V can be applied to V2. Since the output will neither source nor sink large amounts of current, the output voltage range is almost exclusively dependent upon the values selected for V_2 and V_3 . Maximum leakage current through the output transistor Q3 is specified at 10 μ A under worst-case voltage between V₂ and V₃. This will result in a logical "1" output voltage which is 0.2V below V₃. Likewise the clamping action of diodes D₄, D₅, and D₆, prevents the logical "0" output voltage from falling lower than 2V above V_2 , thus establishing the ouput voltage swing at typically 2 volts less than the voltage separation between V2 and V3.

3

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.