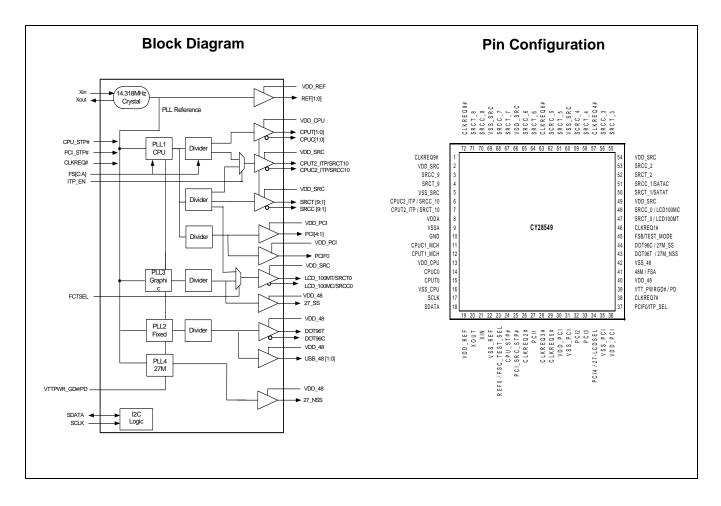


PRELIMINARY

CY28549

Clock Generator for Intel[®] CK410M


Features

- Compliant to Intel[®] CK410M
- Selectable CPU frequencies
- Low power differential CPU clock pairs
- 100-MHz low power differential SRC clocks
- 96-MHz low power differential dot clock
- 27-MHz Spread and Non-spread video clock
- 48-MHz USB clock
- SRC clocks independently stoppable through CLKREQ#[1:9]

Table 1. Output Confguration Table

- 96/100-MHz low power spreadable differential video clock
- 33-MHz PCI clocks
- Buffered Reference Clock 14.318 MHz
- Low-voltage frequency select inputs
- I²C support with readback capabilities
- Ideal Lexmark Spread Spectrum profile for maximum electromagnetic interference (EMI) reduction
- 3.3V power supply
- 72-pin QFN package

CPU	SRC	PCI	REF	DOT96	USB_48M	LCD	27M
x2/x3	x9/11	x5	x 2	x 1	x 1	x1	x2

Cypress Semiconductor Corporation Document #:xxx-xxxx Rev ** 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised April 14, 2006

Pin Description

Pin No.	Name	Туре	Description		
1	CLKREQ9#	I	3.3V LVTTL input for enabling assigned SRC clock (active LOW).		
2	VDD_SRC	PWR	3.3V power supply for outputs.		
3	SRCC_9	O, DIF	Complementary 100-MHz Differential serial reference clocks.		
4	SRCT_9	O, DIF	True 100-MHz Differential serial reference clocks.		
5	VSS_SRC	GND	Ground for outputs.		
6	CPUC2_ITP/SRCC10	O, DIF	Selectable Complementary differential CPU or SRC clock output. ITP_SEL = 0 @ VTTPWRGD#/PD assertion = SRC10 ITP_SEL = 1 @ VTTPWRGD#/PD assertion = CPU2		
7	CPUT2_ITP/SRCT10,	O, DIF	Selectable True differential CPU or SRC clock output. ITP_SEL = 0 @ VTTPWRGD#/PD assertion = SRC10 ITP_SEL = 1 @ VTTPWRGD#/PD assertion = CPU2		
8	VDDA	PWR	3.3V power supply for PLL.		
9	VSSA	GND	Ground for PLL.		
10	GND	GND	Ground for outputs.		
11	CPUC1_MCH,	O, DIF	Complementary Differential CPU clock output to MCH		
12	CPUT1_MCH,	O, DIF	True Differential CPU clock output to MCH		
13	VDD_CPU	PWR	3.3V power supply for outputs.		
14	CPUC0	O, DIF	Complementary Differential CPU clock output		
15	CPUT0	O, DIF	True Differential CPU clock output		
16	VSS_CPU	GND	Ground for outputs.		
17	SCLK	I	SMBus-compatible SCLOCK.		
18	SDATA	I/O, OD	SMBus-compatible SDATA.		
19	VDD_REF	PWR	3.3V power supply for outputs.		
20	XOUT	O, SE	14.318-MHz crystal output.		
21	XIN	Ι	14.318-MHz crystal input.		
22	VSS_REF	GND	Ground for outputs.		
23	REF0/FSC_TESTSEL	I/O	Fixed 14.318 clock output/3.3V-tolerant input for CPU frequency selection/Selects test mode if pulled to V _{IMFS_C} when VTTPWRGD#/PD is asserted LOW. <i>Refer to DC Electrical Specifications table for</i> V _{ILFS_C} ,V _{IMFS_C} ,V _{IHFS_C} <i>specifications.</i>		
24	CPU_STP#	I	3.3V LVTTL input for CPU_STP# active LOW		
25	PCI_SRC_STP#	I	3.3V LVTTL input for PCI_STP# active LOW		
26	CLKREQ2#	Ι	3.3V LVTTL input for enabling assigned SRC clock (active LOW).		
27	PCI1	O, SE	33MHz clock output		
28	CLKREQ3#	I	3.3V LVTTL input for enabling assigned SRC clock (active LOW).		
29	CLKREQ5#	I	3.3V LVTTL input for enabling assigned SRC clock (active LOW).		
30	VDD_PCI	PWR	3.3V power supply for outputs.		
31	VSS_PCI	GND	Ground for outputs.		
32	PCI2	O, SE	33-MHz clock output		
33	PCI3	O, SE	33-MHz clock output		

Pin Description (continued)

Pin No.	Name	Туре	Description			
34	PCI4/FCTSEL1	I/O, SE,	33-MHz clock output/3.3V LVTTL input for selecting pins 47,48 (SRC[T/C]0, 100M[T/C]) and pins 43,44 (DOT96[T/C] and 27M Spread and Non-spread) (sampled on VTTPWRGD#/PD assertion).			
			FCTSEL1 Pin 43 Pin 44 Pin 47 Pin 48			
			0 DOT96T DOT96C 96/100M_T 96/100M_C			
			1 27M_NSS 27M_SS SRCT0 SRCC0			
35	VSS_PCI	GND	Ground for outputs.			
36	VDD_PCI	PWR	3.3V power supply for outputs.			
37	ITP_SEL/PCIF0	I/O, SE	3.3V LVTTL input to enable SRC10 or CPU2_ITP/33-MHz clock output. (sampled on VTTPWRGD#/PD assertion). 1 = CPU2_ITP, 0 = SRC10			
38	CLKREQ7#	I	3.3V LVTTL input for enabling assigned SRC clock (active LOW).			
39	VTT_PWRGD#/PD	I	3.3V LVTTL input. This pin is a level sensitive strobe. it latches data on the FSA, FSB, FSC, FCTSEL1 and ITP_SEL pins. After assertion, it becomes a real time input for controlling power down.			
40	VDD_48	PWR	3.3V power supply for outputs.			
41	48M/FSA	I/O	Fixed 48-MHz clock output/3.3V-tolerant input for CPU frequency selection Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.			
42	VSS_48	GND	Ground for outputs.			
43	DOT96T/ 27M_NSS	O, DIF	True Fixed 96-MHz clock output or 27 Mhz Spread and Non-spread output Selected via FCTSEL1 at VTTPWRGD#/PD assertion.			
44	DOT96C/ 27M_SS	O, DIF	Complementary Fixed 96-MHz clock output or 27 Mhz Spread and Non-spread output Selected via FCTSEL1 at VTTPWRGD#/PD assertion.			
45	FSB/TEST_MODE	I	3.3V-tolerant input for CPU frequency selection. Selects Ref/N or Tri-state when in test mode 0 = Tri-state, 1 = Ref/N Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.			
46	CLKREQ6#	I	3.3V LVTTL input for enabling assigned SRC clock (active LOW).			
47	SRCT_0/ LCD100MT	O,DIF	True 100-MHz differential serial reference clock output/Differential 96/100-MHz SS clock for flat-panel display Selected via FCTSEL1 at VTTPWRGD#/PD assertion.			
48	SRCC0/ LCD100MC	O,DIF	Complementary 100-MHz differential serial reference clock output/Differential 96/100-MHz SS clock for flat-panel display Selected via FCTSEL1 at VTTPWRGD#/PD assertion.			
49	VDD_SRC	PWR	3.3V power supply for outputs.			
50	SRCT_1/SATAT,	O, DIF	True 100-MHz Differential serial reference clocks.			
51	SRCC_1/SATAC	O, DIF	Complementary 100-MHz Differential serial reference clocks.			
52	SRCT_2	O, DIF	True 100-MHz Differential serial reference clocks.			
53	SRCC_2	O, DIF	Complementary 100-MHz Differential serial reference clocks.			
54	VDD_SRC	PWR	3.3V power supply for outputs.			
55	SRCT_3	O, DIF	True 100-MHz Differential serial reference clocks.			
56	SRCC_3	O, DIF	Complementary 100-MHz Differential serial reference clocks.			
57	CLKREQ4#	Ι	3.3V LVTTL input for enabling assigned SRC clock (active LOW).			
58	SRCT_4	O, DIF	True 100-MHz Differential serial reference clocks.			
59	SRCC_4	O, DIF	Complementary 100-MHz Differential serial reference clocks.			
60	VSS_SRC	GND	Ground for outputs.			
61	SRCT_5	O, DIF	True 100-MHz Differential serial reference clocks.			

Pin Description (continued)

Pin No.	Name	Туре	Description	
62	SRCC_5	O, DIF	Complementary 100-MHz Differential serial reference clocks.	
63	CLKREQ6#	I	3.3V LVTTL input for enabling assigned SRC clock (active LOW).	
64	SRCT_6	O, DIF	True 100-MHz Differential serial reference clocks.	
65	SRCC_6	O, DIF	Complementary 100-MHz Differential serial reference clocks.	
66	VDD_SRC	PWR	3.3V power supply for outputs.	
67	SRCT_7	O, DIF	True 100-MHz Differential serial reference clocks.	
68	SRCC_7	O, DIF	Complementary 100-MHz Differential serial reference clocks.	
69	VSS_SRC	GND	Ground for outputs.	
70	SRCC_8	O, DIF	Complementary 100-MHz Differential serial reference clocks.	
71	SRCT_8	O, DIF	True 100-MHz Differential serial reference clocks.	
72	CLKREQ8#	I	3.3V LVTTL input for enabling assigned SRC clock (active LOW).	

Frequency Select Pins (FSA, FSB, and FSC)

Host clock frequency selection is achieved by applying the appropriate logic levels to FSA, FSB, FSC inputs prior to VTT_PWRGD# assertion (as seen by the clock synthesizer). Upon VTT_PWRGD# being sampled LOW by the clock chip (indicating processor VTT voltage is stable), the clock chip samples the FSA, FSB, and FSC input values. For all logic levels of FSA, FSB, and FSC, VTT_PWRGD# employs a one-shot functionality in that once a valid LOW on VTT_PWRGD# has been sampled, all further VTT_PWRGD#, FSA, FSB, and FSC transitions will be ignored, except in test mode.

Serial Data Interface

To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through the Serial Data Interface, various device functions, such as individual clock output buffers, can be individually enabled or disabled. The registers associated with the Serial Data Interface **Table 2. Frequency Select Table FSA, FSB, and FSC** initialize to their default setting upon power-up, and therefore use of this interface is optional. Clock device register changes are normally made upon system initialization, if any are required. The interface cannot be used during system operation for power management functions.

Data Protocol

The clock driver serial protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, the bytes must be accessed in sequential order from lowest to highest byte (most significant bit first) with the ability to stop after any complete byte has been transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The offset of the indexed byte is encoded in the command code, as described in *Table 3*.

The block write and block read protocol is outlined in *Table 4* while *Table 5* outlines the corresponding byte write and byte read protocol. The slave receiver address is 11010010 (D2h)

FSC	FSB	FSA	CPU	SRC	PCIF/PCI	27MHz	REF	DOT96	USB
1	0	1	100 MHz	100 MHz	33 MHz	27 MHz	14.318 MHz	96 MHz	48 MHz
0	0	1	133 MHz	100 MHz	33 MHz	27 MHz	14.318 MHz	96 MHz	48 MHz
0	1	1	166 MHz	100 MHz	33 MHz	27 MHz	14.318 MHz	96 MHz	48 MHz
0	1	0	200 MHz	100 MHz	33 MHz	27 MHz	14.318 MHz	96 MHz	48 MHz

Table 3. Command Code Definition

Bit	Description
7	0 = Block read or block write operation, 1 = Byte read or byte write operation
(6:0)	Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'

Table 4. Block Read and Block Write Protocol

	Block Write Protocol	Block Read Protocol		
Bit	Description	Bit	Description	
1	Start	1	Start	
8:2	Slave address–7 bits	8:2	Slave address–7 bits	
9	Write	9	Write	

PRELIMINARY

Table 4. Block Read and Block Write Protocol (continued)

	Block Write Protocol		Block Read Protocol
Bit	Description	Bit	Description
10	Acknowledge from slave	10	Acknowledge from slave
18:11	Command Code–8 bits	18:11	Command Code–8 bits
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Byte Count–8 bits (Skip this step if I ² C_EN bit set)	20	Repeat start
28	Acknowledge from slave	27:21	Slave address–7 bits
36:29	Data byte 1–8 bits	28	Read = 1
37	Acknowledge from slave	29	Acknowledge from slave
45:38	Data byte 2–8 bits	37:30	Byte Count from slave-8 bits
46	Acknowledge from slave	38	Acknowledge
	Data Byte/Slave Acknowledges	46:39	Data byte 1 from slave-8 bits
	Data Byte N–8 bits	47	Acknowledge
	Acknowledge from slave	55:48	Data byte 2 from slave-8 bits
	Stop	56	Acknowledge
			Data bytes from slave/Acknowledge
			Data Byte N from slave-8 bits
			NOT Acknowledge
			Stop

Table 5. Byte Read and Byte Write Protocol

	Byte Write Protocol		Byte Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
8:2	Slave address–7 bits	8:2	Slave address–7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
18:11	Command Code–8 bits	18:11	Command Code–8 bits
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Data byte-8 bits	20	Repeated start
28	Acknowledge from slave	27:21	Slave address–7 bits
29	Stop	28	Read
		29	Acknowledge from slave
		37:30	Data from slave-8 bits
		38	NOT Acknowledge
		39	Stop

Control Registers

Byte 0 Control Register 0

Bit	@Pup	Name	Description
7	0	RESEREVD	RESERVED
6	0	RESEREVD	RESERVED
5	0	RESEREVD	RESERVED
4	0	RESEREVD	RESERVED

Control Registers

Byte 0 Control Register 0

Bit	@Pup	Name	Description
3	0	RESEREVD	RESERVED
2	0	RESEREVD	RESERVED
1	0	RESEREVD	RESERVED
0	1	RESEREVD	RESERVED

Byte 1 Control Register 1

Bit	@Pup	Name	Description
7	1	SRC[T/C]7	SRC[T/C]7 Output Enable 0 = Disabled, 1 = Enabled
6	1	SRC[T/C]6	SRC[T/C]6 Output Enable 0 = Disabled, 1 = Enabled
5	1	SRC[T/C]5	SRC[T/C]5 Output Enable 0 = Disabled, 1 = Enabled
4	1	SRC[T/C]4	SRC[T/C]4 Output Enable 0 = Disabled, 1 = Enabled
3	1	SRC[T/C]3	SRC[T/C]3 Output Enable 0 = Disabled, 1 = Enabled
2	1	SRC[T/C]2	SRC[T/C]2 Output Enable 0 = Disabled, 1 = Enabled
1	1	SRC[T/C]1	SRC[T/C]1 Output Enable 0 = Disabled, 1 = Enabled
0	1	SRC[T/C]0 /LCD_96_100M[T/C]	SRC[T/C]0/LCD_96_100M[T/C] Output Enable 0 = Disabled, 1 = Enabled

Byte 2 Control Register 2

Bit	@Pup	Name	Description
7	1	PCIF0	PCIF0 Output Enable 0 = Disabled, 1 = Enabled
6	1	27M NSS/DOT_96[T/C]	27M Non-spread and DOT_96 MHz Output Enable 0 = Disable, 1 = Enabled
5	1	48M	48-MHz Output Enable 0 = Disabled, 1 = Enabled
4	1	REF0	REF0 Output Enable 0 = Disabled, 1 = Enabled
3	1	RESERVED	RESERVED
2	1	CPU[T/C]1	CPU[T/C]1 Output Enable 0 = Disabled, 1 = Enabled
1	1	CPU[T/C]0	CPU[T/C]0 Output Enable 0 = Disabled, 1 = Enabled
0	1	CPU, SRC, PCI, PCIF Spread Enable	PLL1 (CPU PLL) Spread Spectrum Enable 0 = Spread off, 1 = Spread on

Byte 3 Control Register 3

Bit	@Pup	Name	Description
7	1	PCI4	PCl4 Output Enable 0 = Disabled, 1 = Enabled
6	1	PCI3	PCI3 Output Enable 0 = Disabled, 1 = Enabled
5	1	PCI2	PCI2 Output Enable 0 = Disabled, 1 = Enabled

Byte 3 Control Register 3

Bit	@Pup	Name	Description
4	1	PCI1	PCI1 Output Enable 0 = Disabled, 1 = Enabled
3	1	RESERVED	RESERVED
2	1	RESERVED	RESERVED
1	1		CPU[T/C]2/SRC[T/C]10 Output Enable 0 = Disabled, 1 = Enabled
0	1	RESERVED	RESERVED

Byte 4 Control Register 4

-	•		
Bit	@Pup	Name	Description
7	0	SRC7	Allow control of SRC[T/C]7 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
6	0	SRC6	Allow control of SRC[T/C]6 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
5	0	SRC5	Allow control of SRC[T/C]5 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
4	0	SRC4	Allow control of SRC[T/C]4 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
3	0	SRC3	Allow control of SRC[T/C]3 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
2	0	SRC2	Allow control of SRC[T/C]2 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
1	0	SRC1	Allow control of SRC[T/C]1 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
0	0	SRC0	Allow control of SRC[T/C]0 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#

Byte 5 Control Register 5

Bit	@Pup	Name	Description
7	0	LCD_96_100M[T/C]	LCD_96_100M[T/C] PWRDWN Drive Mode 0 = Driven in PWRDWN, 1 = Tri-state
6	0	DOT96[T/C]	DOT PWRDWN Drive Mode 0 = Driven in PWRDWN, 1 = Tri-state
5	0	RESERVED	RESERVED, Set = 0
4	0	RESERVED	RESERVED, Set = 0
3	0	PCIF0	Allow control of PCIF0 with assertion of SW and HW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
2	1	CPU[T/C]2	Allow control of CPU[T/C]2 with assertion of CPU_STP# 0 = Free running, 1 = Stopped with CPU_STP#
1	1	CPU[T/C]1	Allow control of CPU[T/C]1 with assertion of CPU_STP# 0 = Free running, 1 = Stopped with CPU_STP#
0	1	CPU[T/C]0	Allow control of CPU[T/C]0 with assertion of CPU_STP# 0 = Free running, 1 = Stopped with CPU_STP#

Byte 6 Control Register 6

Bit	@Pup	Name	Description	
7	0	SRC[T/C]	SRC[T/C] Stop Drive Mode 0 = Driven when PCI_STP# asserted 1 = Tri-state when PCI_STP# asserted	
6	0	CPU[T/C]2	CPU[T/C]2 Stop Drive Mode 0 = Driven when CPU_STP# asserted 1 = Tri-state when CPU_STP# asserted	

Byte 6 Control Register 6

5	0	CPU[T/C]1	CPU[T/C]1 Stop Drive Mode 0 = Driven when CPU_STP# asserted 1 = Tri-state when CPU_STP# asserted
4	0	CPU[T/C]0	CPU[T/C]0 Stop Drive Mode 0 = Driven when CPU_STP# asserted 1 = Tri-state when CPU_STP# asserted
3	0	SRC[T/C][9:1]	SRC[T/C][9:1] PWRDWN Drive Mode 0 = Driven when PD asserted 1 = Tri-state when PD asserted
2	0	CPU[T/C]2	CPU[T/C]2 PWRDWN Drive Mode 0 = Driven when PD asserted 1 = Tri-state when PD asserted
1	0	CPU[T/C]1	CPU[T/C]1 PWRDWN Drive Mode 0 = Driven when PD asserted 1 = Tri-state when PD asserted
0	0	CPU[T/C]0	CPU[T/C]0 PWRDWN Drive Mode 0 = Driven when PD asserted 1 = Tri-state when PD asserted

Byte 7 Control Register 7

Bit	@Pup	Name	Description
7	0	TEST_SEL	REF/N or Tri-state Select 0 = Tri-state, 1 = REF/N Clock
6	0	TEST_MODE	Test Clock Mode Entry Control 0 = Normal operation, 1 = REF/N or Tri-state mode,
5	1	RESEREVD	RESERVED
4	1	REF0	REF0 Output Drive Strength 0 = Low, 1 = High
3	1		SW PCI_STP Function 0 = SW PCI_STP assert, 1= SW PCI_STP deassert When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs will be stopped in a synchronous manner with no short pulses. When this bit is set to 1, all STOPPED PCI, PCIF and SRC outputs will resume in a synchronous manner with no short pulses.
2	HW	FSC	FSC Reflects the value of the FSC pin sampled on power up 0 = FSC was low during VTT_PWRGD# assertion
1	HW	FSB	FSB Reflects the value of the FSB pin sampled on power up 0 = FSB was low during VTT_PWRGD# assertion
0	HW	FSA	FSA Reflects the value of the FSA pin sampled on power up 0 = FSA was low during VTT_PWRGD# assertion

Byte 8 Vendor ID

Bit	@Pup	Name	Description
7	0	Revision Code Bit 3	Revision Code Bit 3
6	1	Revision Code Bit 2	Revision Code Bit 2
5	0	Revision Code Bit 1	Revision Code Bit 1
4	1	Revision Code Bit 0	Revision Code Bit 0
3	1	Vendor ID Bit 3	Vendor ID Bit 3
2	0	Vendor ID Bit 2	Vendor ID Bit 2
1	0	Vendor ID Bit 1	Vendor ID Bit 1
0	0	Vendor ID Bit 0	Vendor ID Bit 0

Byte 9 Control Register 9

Bit	@Pup	Name	Description
-----	------	------	-------------

Byte 9 Control Register 9

7	0	RESERVED	RESERVED, Set = 0
6	0	RESERVED	RESERVED, Set = 0
5	0	RESERVED	RESERVED
4	0	RESERVED	RESERVED
3	0	RESERVED	RESERVED
2	1	48M	48-MHz Output Drive Strength 0 = Low, 1 = High
1	1	RESERVED	RESERVED
0	1	PCIF0	PCIF0 Output Drive Strength 0 = Low, 1 = High

Byte 10 Control Register 10

Bit	@Pup	Name	Description
7	0	RESERVED	RESERVED
6	0	RESERVED	RESERVED
5	0	S1	27M_SS/LCD 96_100M SS Spread Spectrum Selection table:
4	0	SO	S[1:0] SS% '00' = -0.5%(Default value) '01' = -1.0% '10' = -1.5% '11' = -2.0%
3	1	RESERVED	RESERVED
2	1	27M_SS	27M Spread Output Enable 0 = Disabled, 1 = Enabled
1	1	27M_SS/LCD_100M Spread Enable	27M_SS/LCD_100M Spread spectrum enable. 0 = Disabled, 1 = Enabled
0	0	RESERVED	RESERVED

Byte 11 Control Register 11

Bit	@Pup	Name	Description
7	0	RESERVED	RESERVED
6	0	RESERVED	RESERVED
5	1	SRC[T/C]9	SRC[T/C]9 Output Enable 0 = Disable (Hi-Z), 1 = Enable
4	1	SRC[T/C]8	SRC[T/C]8 Output Enable 0 = Disable (Hi-Z), 1 = Enable
3	1	RESERVED	RESERVED
2	0	SRC[T/C]10	Allow control of SRC[T/C]10 with assertion of SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
1	0	SRC[T/C]9	Allow control of SRC[T/C]9 with assertion of SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
0	0	SRC[T/C]8	Allow control of SRC[T/C]8 with assertion of SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#

Byte 12 Control Register 12

Bit	@Pup	Name	Description
7	0	RESERVED	RESERVED, Set = 0
6	HW	RESERVED	RESERVED
5	HW	RESERVED	RESERVED
4	HW	RESERVED	RESERVED

Byte 12 Control Register 12

Bit	@Pup	Name	Description
3	1		27-MHz (spread and non-spread) Output Drive Strength 0 = Low, 1 = High
2	0	RESERVED	RESERVED
1	1	RESERVED	RESERVED, Set = 1
0	HW	RESERVED	RESERVED

Byte 13 Control Register 13

Bit	@Pup	Name	Description
7	0	CLKREQ#9	CLKREQ#9 Input Enable 0 = Disabled, 1 = Enabled
6	0	CLKREQ#8	CLKREQ#8 Input Enable 0 = Disabled, 1 = Enabled
5	0	CLKREQ#7	CLKREQ#7 Input Enable 0 = Disabled, 1 = Enabled
4	0	CLKREQ#6	CLKREQ#6 Input Enable 0 = Disabled, 1 = Enabled
3	0	CLKREQ#5	CLKREQ#5 Input Enable 0 = Disabled, 1 = Enabled
2	0	CLKREQ#4	CLKREQ#4 Input Enable 0 = Disabled, 1 = Enabled
1	0	CLKREQ#3	CLKREQ#3 Input Enable 0 = Disabled, 1 = Enabled
0	0	CLKREQ#2	CLKREQ#2 Input Enable 0 = Disabled, 1 = Enabled

Byte 14 Control Register 14

Bit	@Pup	Name	Description
7	0	CLKREQ#1	CLKREQ#1 Input Enable 0 = Disabled, 1 = Enabled
6	1	LCD 96_100M Clock Speed	LCD 96_100M Clock Speed 0 = 96 MHz 1 = 100 MHz
5	1	RESERVED	RESERVED, Set = 1
4	1	RESERVED	RESERVED, Set = 1
3	1	PCI4	PCI4 (Spread and Non-spread) Output Drive Strength 0 = Low, 1 = High
2	1	PCI3	PCI3 (Spread and Non-spread) Output Drive Strength 0 = Low, 1 = High
1	1	PCI2	PCI2 (Spread and Non-spread) Output Drive Strength 0 = Low, 1 = High
0	1	PCI1	PCI1 (Spread and Non-spread) Output Drive Strength 0 = Low, 1 = High

Byte 15 Control Register 15

Bit	@Pup	Name	Description
7	HW	RESEREVD	RESERVED
6	1	RESERVED	RESERVED
5	1	RESERVED	RESERVED
4	1	RESERVED	RESERVED
3	1	RESERVED	RESERVED

Byte 15 Control Register 15

Bit	@Pup	Name	Description
2	1	IO_VOUT2	IO_VOUT[2,1,0]
1	0	IO_VOUT1	000 = 0.63V 001 = 0.71V
0	1	IO_VOUT0	010 = 0.77V 010 = 0.82V (Default) 100 = 0.86V 101 = 0.90V 110 = 0.93V 111 = Reserved

Table 6. Crystal Recommendations

Frequency (Fund)	Cut	Loading	Load Cap	Drive (max.)	Shunt Cap (max.)	Motional (max.)	Tolerance (max.)	Stability (max.)	Aging (max.)
14.31818 MHz	AT	Parallel	20 pF	0.1 mW	5 pF	0.016 pF	35 ppm	30 ppm	5 ppm

The CY28549 requires a Parallel Resonance Crystal. Substituting a series resonance crystal will cause the CY28549 to operate at the wrong frequency and violate the ppm specification. For most applications there is a 300-ppm frequency shift between series and parallel crystals due to incorrect loading.

Crystal Loading

Crystal loading plays a critical role in achieving low ppm performance. To realize low ppm performance, the total capacitance the crystal will see must be considered to calculate the appropriate capacitive loading (CL).

Figure 1 shows a typical crystal configuration using the two trim capacitors. An important clarification for the following discussion is that the trim capacitors are in series with the crystal not parallel. It's a common misconception that load capacitors are in parallel with the crystal and should be approximately equal to the load capacitance of the crystal. This is not true.

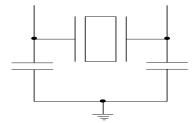
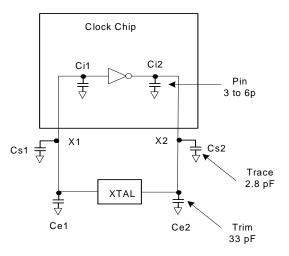



Figure 1. Crystal Capacitive Clarification

Calculating Load Capacitors

In addition to the standard external trim capacitors, trace capacitance and pin capacitance must also be considered to correctly calculate crystal loading. As mentioned previously, the capacitance on each side of the crystal is in series with the crystal. This means the total capacitance on each side of the crystal load capacitance (CL). While the capacitance on each side of the crystal is in series with the crystal, trim capacitors (Ce1,Ce2) should be calculated to provide equal capacitive loading on both sides.

Figure 2. Crystal Loading Example

Use the following formulas to calculate the trim capacitor values for Ce1 and Ce2.

Load Capacitance (each side)

Ce = 2 * CL - (Cs + Ci)

Total Capacitance (as seen by the crystal)

$CLe = \frac{1}{\left(\frac{1}{Ce1 + Cs1 + Ci1} + \frac{1}{Ce2 + Cs2 + Ci2}\right)}$
CLCrystal load capacitance
CLeActual loading seen by crystal using standard value trim capacitors
Ce External trim capacitors
CsStray capacitance (terraced)
Ci Internal capacitance (lead frame, bond wires etc.)

CLK_REQ# Description

The CLKREQ# signals are active LOW inputs used for clean enabling and disabling selected SRC outputs. The outputs



Figure 3. CLK_REQ#[1:9] Deassertion/Assertion Waveform

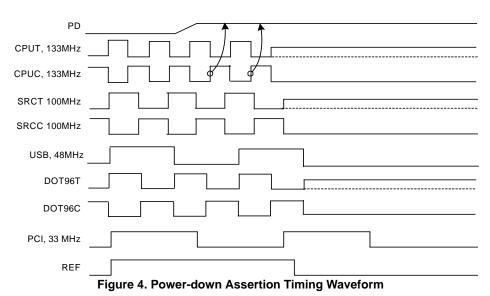
controlled by CLKREQ# are determined by the settings in register byte 8. The CLKREQ# signal is a de-bounced signal in that it's state must remain unchanged during two consecutive rising edges of SRCC to be recognized as a valid assertion or deassertion. (The assertion and deassertion of this signal is absolutely asynchronous.)

CLK_REQ[1:9]# Assertion (CLKREQ# -> LOW)

All differential outputs that were stopped are to resume normal operation in a glitch-free manner. The maximum latency from the assertion to active outputs is between 2 and 6 SRC clock periods (2 clocks are shown) with all SRC outputs resuming simultaneously. All stopped SRC outputs must be driven HIGH within 10 ns of CLKREQ# deassertion to a voltage greater than 200 mV.

CLK_REQ[1:9]# Deassertion (CLKREQ# -> HIGH)

The impact of deasserting the CLKREQ# pins is that all SRC outputs that are set in the control registers to stoppable via deassertion of CLKREQ# are to be stopped after their next transition. The final state of all stopped SRC clocks is Low/Low.


PD (Power-down) Clarification

The VTT_PWRGD#/PD pin is a dual-function pin. During initial power-up, the pin functions as VTT_PWRGD#. Once VTT_PWRGD# has been sampled LOW by the clock chip, the pin assumes PD functionality. The PD pin is an asynchronous active HIGH input used to shut off all clocks cleanly prior to

shutting off power to the device. This signal is synchronized internal to the device prior to powering down the clock synthesizer. PD is also an asynchronous input for powering up the system. When PD is asserted HIGH, all clocks need to be driven to a LOW value and held prior to turning off the VCOs and the crystal oscillator.

PD (Power-down) Assertion

When PD is sampled HIGH by two consecutive rising edges of CPUC, all single-ended outputs will be held LOW on their next HIGH-to-LOW transition and differential clocks must be held HIGH or tri-stated (depending on the state of the control register drive mode bit) on the next diff clock# HIGH-to-LOW transition within 4 clock periods. When the SMBus PD drive mode bit corresponding to the differential (CPU, SRC, and DOT) clock output of interest is programmed to '0', the clock outputs are held with "Diff clock" pin driven HIGH, and "Diff clock#" tri-state. If the control register PD drive mode bit corresponding to the output of interest is programmed to "1", then both the "Diff clock" and the "Diff clock#" are tri-state. Note that Figure 4 shows CPUT = 133 MHz and PD drive mode = '1' for all differential outputs. This diagram and description is applicable to valid CPU frequencies 100, 133, 166, and 200 MHz. In the event that PD mode is desired as the initial power-on state, PD must be asserted HIGH in less than 10 µs after asserting Vtt_PwrGd#. It should be noted that 96_100_SSC will follow the DOT waveform when selected for 96 MHz and the SRC waveform when in 100-MHz mode.

Document #:xxx-xxxxx Rev **

PD Deassertion

The power-up latency is less than 1.8 ms. This is the time from the deassertion of the PD pin or the ramping of the power supply until the time that stable clocks are output from the clock chip. All differential outputs stopped in a three-state condition resulting from power down will be driven high in less than 300 μ s of PD deassertion to a voltage greater than 200 mV. After the clock chip's internal PLL is powered up and locked, all outputs will be enabled within a few clock cycles of each other. *Figure 5* is an example showing the relationship of clocks coming up. It should be noted that 96_100_SSC will follow the DOT waveform when selected for 96 MHz and the SRC waveform when in 100-MHz mode.

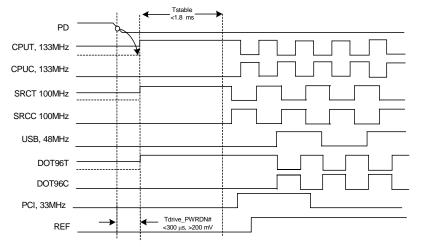
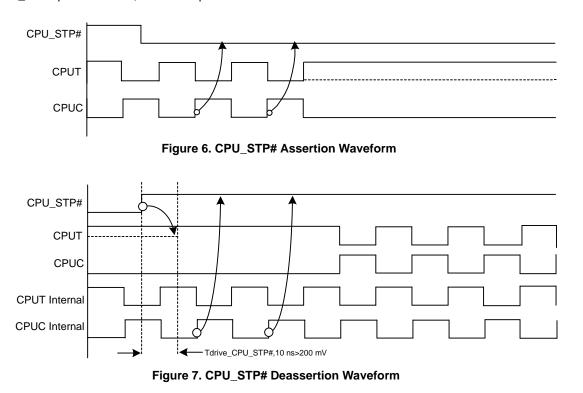



Figure 5. Power-down Deassertion Timing Waveform

CPU_STP# Assertion

The CPU_STP# signal is an active LOW input used for synchronous stopping and starting the CPU output clocks while the rest of the clock generator continues to function. When the CPU_STP# pin is asserted, all CPU outputs that are

set with the SMBus configuration to be stoppable via assertion of CPU_STP# will be stopped within two-six CPU clock periods after being sampled by two rising edges of the internal CPUC clock. The final state of all stopped CPU clocks is High/Low when driven, Low/Low when tri-stated.

PCI_STP# Assertion

The PCI_STP# signal is an active LOW input used for synchronous stopping and starting the PCI outputs and SRC outputs if they are set to be stoppable in SMbus while the rest of the clock generator continues to function. The set-up time for capturing PCI_STP# going LOW is 10 ns (t_{SU}). (See *Figure 9.*) The PCIF clocks will not be affected by this pin if their corresponding control bit in the SMBus register is set to allow them to be free running. All stopped PCI outputs are

driven Low, SRC outputs are High/Low if set to driven and Low/Low if set to tri-state.

PCI_STP# Deassertion

The deassertion of the PCI_STP# signal will cause all PCI and stoppable PCIF clocks to resume running in a synchronous manner within two PCI clock periods after PCI_STP# transitions to a HIGH level

1.8mS

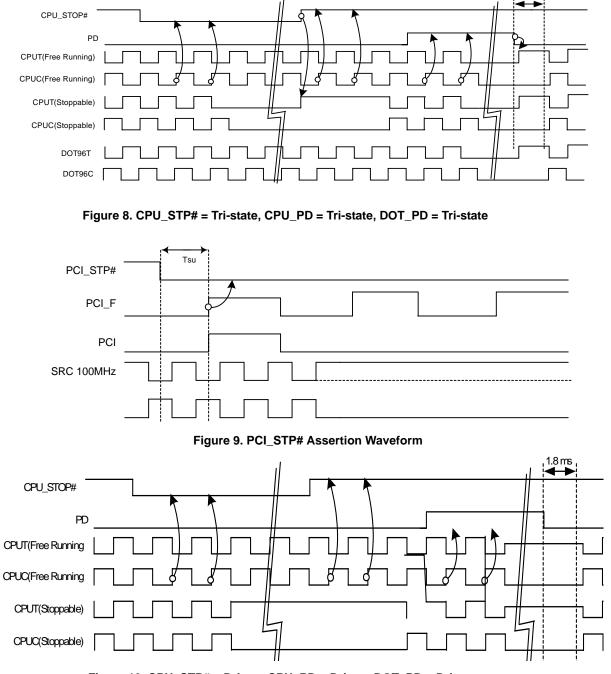


Figure 10. CPU_STP# = Driven, CPU_PD = Driven, DOT_PD = Driven

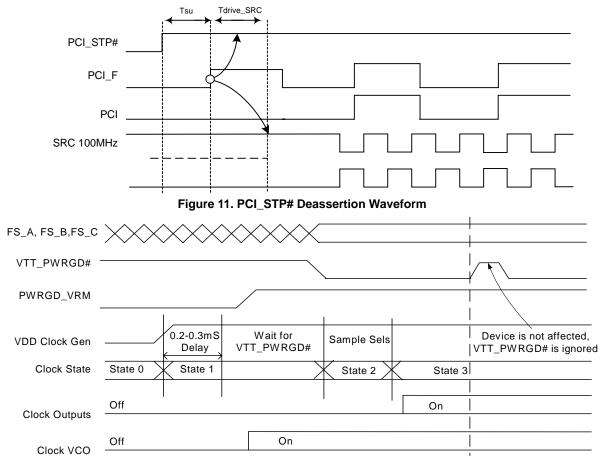


Figure 12. VTTPWRGD# Timing Dlagram

Absolute Maximum Conditions

Parameter	Description	Condition	Min.	Max.	Unit
V _{DD}	Core Supply Voltage		-0.5	4.6	V
V _{DD_A}	Analog Supply Voltage		-0.5	4.6	V
V _{IN}	Input Voltage	Relative to V _{SS}	-0.5	$V_{DD} + 0.5$	VDC
Τ _S	Temperature, Storage	Non-functional	-65	150	°C
T _A	Temperature, Operating Ambient	Functional	0	85	°C
TJ	Temperature, Junction	Functional	-	150	°C
Ø _{JC}	Dissipation, Junction to Case	Mil-STD-883E Method 1012.1	-	20	°C/W
Ø _{JA}	Dissipation, Junction to Ambient	JEDEC (JESD 51)	-	60	°C/W
ESD _{HBM}	ESD Protection (Human Body Model)	MIL-STD-883, Method 3015	2000	_	V
UL-94	Flammability Rating	At 1/8 in.	V	·0	
MSL	Moisture Sensitivity Level			1	

Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.

DC Electrical Specifications

Parameter	Description	Condition	Min.	Max.	Unit
All VDDs	3.3V Operating Voltage	3.3 ± 5%	3.135	3.465	V
V _{ILI2C}	Input Low Voltage	SDATA, SCLK	_	1.0	V
V _{IHI2C}	Input High Voltage	SDATA, SCLK	2.2	-	V
V _{IL_FS}	FS_[A,B] Input Low Voltage		$V_{SS} - 0.3$	0.35	V
V _{IH_FS}	FS_[A,B] Input High Voltage		0.7	V _{DD} + 0.5	V
V _{ILFS_C}	FS_C Input Low Voltage		$V_{SS} - 0.3$	0.35	V
V _{IMFS_C}	FS_C Input Middle Voltage		0.7	1.7	V
V _{IHFS_C}	FS_C Input High Voltage		2.0	V _{DD} + 0.5	V
V _{IL}	3.3V Input Low Voltage		$V_{SS} - 0.3$	0.8	V
V _{IH}	3.3V Input High Voltage		2.0	V _{DD} +0.3	V
IIL	Input Low Leakage Current	Except internal pull-up resistors, 0 < V _{IN} < V _{DD}	-5	5	μΑ
I _{IH}	Input High Leakage Current	Except internal pull-down resistors, 0 < V _{IN} < V _{DD}	_	5	μΑ
V _{OL}	3.3V Output Low Voltage	I _{OL} = 1 mA	-	0.4	V
V _{OH}	3.3V Output High Voltage	$I_{OH} = -1 \text{ mA}$	2.4	_	V
I _{OZ}	High-impedance Output Current		-10	10	μΑ
C _{IN}	Input Pin Capacitance		3	5	pF
C _{OUT}	Output Pin Capacitance		3	6	pF
L _{IN}	Pin Inductance		_	7	nH
V _{XIH}	Xin High Voltage		0.7V _{DD}	V _{DD}	V
V _{XIL}	Xin Low Voltage		0	0.3V _{DD}	V
I _{DD3.3V}	Dynamic Supply Current	In low drive mode per <i>Figure 13</i> and <i>Figure 15</i> @133 MHz	-	250	mA
I _{PD3.3V}	Power-down Supply Current	PD asserted, Outputs Driven	-	30	mA
I _{PD3.3V}	Power-down Supply Current	PD asserted, Outputs Tri-state	_	5	mA

AC Electrical Specifications

Parameter	Description	Condition	Min.	Max.	Unit
Crystal				I	
T _{DC}	XIN Duty Cycle	The device will operate reliably with input duty cycles up to 30/70 but the REF clock duty cycle will not be within specification	47.5	52.5	%
T _{PERIOD}	XIN Period	When XIN is driven from an external clock source	69.841	71.0	ns
T _R /T _F	XIN Rise and Fall Times	Measured between $0.3V_{DD}$ and $0.7V_{DD}$	-	10.0	ns
T _{CCJ}	XIN Cycle to Cycle Jitter	As an average over 1-µs duration	-	500	ps
L _{ACC}	Long-term Accuracy	Measured at crossing point V _{OX}	-	300	ppm
CPU at 0.8V	,				
T _{DC}	CPUT and CPUC Duty Cycle	Measured at crossing point V _{OX}	45	55	%
T _{PERIOD}	100-MHz CPUT and CPUC Period	Measured at crossing point V _{OX}	9.997001	10.00300	ns
T _{PERIOD}	133-MHz CPUT and CPUC Period	Measured at crossing point V _{OX}	7.497751	7.502251	ns
T _{PERIOD}	166-MHz CPUT and CPUC Period	Measured at crossing point V _{OX}	5.998201	6.001801	ns
T _{PERIOD}	200-MHz CPUT and CPUC Period	Measured at crossing point V _{OX}	4.998500	5.001500	ns
T _{PERIODSS}	100-MHz CPUT and CPUC Period, SSC	Measured at crossing point V _{OX}	9.997001	10.05327	ns
T _{PERIODSS}	133-MHz CPUT and CPUC Period, SSC	Measured at crossing point V_{OX}	7.497751	7.539950	ns
T _{PERIODSS}	166-MHz CPUT and CPUC Period, SSC	Measured at crossing point V _{OX}	5.998201	6.031960	ns
T _{PERIODSS}	200-MHz CPUT and CPUC Period, SSC	Measured at crossing point V _{OX}	4.998500	5.026634	ns
T _{PERIODAbs}	100-MHz CPUT and CPUC Absolute period	Measured at crossing point V _{OX}	9.912001	10.08800	ns
T _{PERIODAbs}	133-MHz CPUT and CPUC Absolute period	Measured at crossing point V _{OX}	7.412751	7.587251	ns
T _{PERIODAbs}	166-MHz CPUT and CPUC Absolute period	Measured at crossing point V _{OX}	5.913201	6.086801	ns
T _{PERIODAbs}	200-MHz CPUT and CPUC Absolute period	Measured at crossing point V _{OX}	4.913500	5.086500	ns
T _{PERI-} ODSSAbs	100-MHz CPUT and CPUC Absolute period, SSC	Measured at crossing point V _{OX}	9.912001	10.13827	ns
T _{PERI-} ODSSAbs	133-MHz CPUT and CPUC Absolute period, SSC	Measured at crossing point V _{OX}	7.412751	7.624950	ns
T _{PERI-} ODSSAbs	166-MHz CPUT and CPUC Absolute period, SSC	Measured at crossing point V _{OX}	5.913201	6.116960	ns
T _{PERI-} ODSSAbs	200-MHz CPUT and CPUC Absolute period, SSC	Measured at crossing point V _{OX}	4.913500	5.111634	ns
T _{CCJ}	CPUT/C Cycle to Cycle Jitter	Measured at crossing point V _{OX}	-	85 ^[1]	ps
T _{CCJ2}	CPU2_ITP Cycle to Cycle Jitter	Measured at crossing point V _{OX}	-	125 ^[1]	ps
L _{ACC}	Long-term Accuracy	Measured at crossing point V _{OX}	-	300	ppm
T _{SKEW}	CPU1 to CPU0 Clock Skew	Measured at crossing point V _{OX}	_	100	ps
T _{SKEW2}	CPU2_ITP to CPU0 Clock Skew	Measured at crossing point V _{OX}	_	150	ps
T _R /T _F		Measured from $V_{OL} = 0.175$ to $V_{OH} = 0.525V$	175	700	ps
T _{RFM}	Rise/Fall Matching	Determined as a fraction of $2^{*}(T_{R} - T_{F})/(T_{R} + T_{F})$	_	20	%

AC Electrical Specifications (continued)

AT _F Fall Time Variation - 125 ps Note:: Meximum with one REF on. - 1.45 660 850 mV Vicow Voltage Low Math averages Figure 15 -150 - mV V _{OW} Voltage Low Math averages Figure 15 -150 - mV V _{OW} Crossing Point Voltage at 0.7V Swing 250 550 mV V _{OW} Maximum Overshoot Voltage - - V _{HIGH} + V V _{DB} Minimum Undershoot Voltage - - 0.2 V SRC at 0.8V - - 0.2 V S - 0.2 V SRC at 0.8V - - 0.2 V S 9.97001 10.05327 ns Seco	Parameter	Description	Condition	Min.	Max.	Unit
Note: 1. Measured with one REF on.Nath VirightNath averages Figure 15660850mVVirighVoltage LowMath averages Figure 15-150-mtVV _{LOW} Vottage at 0.7V Swing250550mVV _{OX} Crossing Point Voltage at 0.7V Swing250550mVV _{OX} Maximum Overshoot Voltage $V_{HGH} + V$ V _{UDS} Minimum Undershoot Voltage0.2VV _{DS} Ring Back VoltageSee Figure 15. Measure SE-0.2T _{DC} SRCT and SRCC Duty CycleMeasured at crossing point V _{OX} 9.99700110.03000T _{PERIODSS} 100-MHz SRCT and SRCC PeriodMeasured at crossing point V _{OX} 9.99700110.03000SGC100-MHz SRCT and SRCC AbsoluteMeasured at crossing point V _{OX} 9.87200110.12800T _{PERIODSS} 100-MHz SRCT and SRCC AbsoluteMeasured at crossing point V _{OX} 9.87200110.17827T _{PERIODSS} 100-MHz SRCT and SRCC AbsoluteMeasured at crossing point V _{OX} 9.87200110.17827T _{PERIODSS} 100-MHz SRCT and SRCC AbsoluteMeasured at crossing point V _{OX} -250psT _{PERIODSS} 100-MHz SRCT and SRCC AbsoluteMeasured at crossing point V _{OX} -250psT _{PERIODSS} 6K7/C Cycle to Cycle JitterMeasured at crossing point V _{OX} -12511psT _{CLC} SRCT/C to SRCT/C lock SkewMeasured at crossing point V _{OX} -12511ps <t< td=""><td>ΔT_R</td><td>Rise Time Variation</td><td></td><td>-</td><td>125</td><td>ps</td></t<>	ΔT_R	Rise Time Variation		-	125	ps
1. Measured with one REF on.VHIGHVoltage LowMath averages Figure 15660850mVV _{LOW} Voltage LowMath averages Figure 15-160-mVV _{QVS} Crossing Point Voltage at 0.7V Swing250550mVV _{QVS} Maximum Overshoot Voltage-0.3-VV _{DS} Minimum Undershoot Voltage-0.3-VV _{P8} Ring Back VoltageSee Figure 15. Measure SE-0.2VSRCT and SRCC Duly CycleMeasured at crossing point V _{OX} 9.9700110.00300nsT _{PENLOD} 100-MHz SRCT and SRCC Period.Measured at crossing point V _{OX} 9.9700110.00300nsSSC100-MHz SRCT and SRCC AbsoluteMeasured at crossing point V _{OX} 9.87200110.17827nsSSC100-MHz SRCT and SRCC AbsoluteMeasured at crossing point V _{OX} 9.87200110.17827nsPeriod SSCSCTC Cycle SCT/C Clock SkewMeasured at crossing point V _{OX} 9.87200110.17827nsT _{FERL} OM-Mtz SRCT and SRCC AbsoluteMeasured at crossing point V _{OX} -250psLaccSRCT/C to SRCT/C Clock SkewMeasured at crossing point V _{OX} -2126 ¹¹ psLaccSRCT/C to SRCT/C Clock SkewMeasured for N _{OL} = 0.175 to175800psLaccSRCT/C Log Term AccuracyMeasured for N _{OL} = 0.175 to175800psT _R /T _F SRCT and SRCC Rise and Fall TimeSSC-125ps<	ΔT_F	Fall Time Variation		-	125	ps
	Note: 1. Measured wi	th one REF on.				
ViLOW Voltage Low Math averages Figure 15 -150 - mV Vax Crossing Point Voltage at 0.7V Swing 250 550 mV Voys Maximum Overshoot Voltage - V _{HGH} + V Vups Minimum Undershoot Voltage - 0.3 - V SRC at 0.8V Fing Back Voltage See Figure 15. Measure SE - 0.2 V SRC at 0.8V SRCT and SRCC Duty Cycle Measured at crossing point Vox 9.997001 10.00300 ns TPERIODS 100-MHz SRCT and SRCC Period, Measured at crossing point Vox 9.997001 10.105327 ns SC 100-MHz SRCT and SRCC Absolute Measured at crossing point Vox 9.872001 10.17827 ns TFERILOPAS 100-MHz SRCT and SRCC Absolute Measured at crossing point Vox - 250 ps Typeriod SRCT/C Coloc SREW Measured at crossing point Vox - 250 ps Typeriod SRCT/C Coloc SREW Measured at crossing point Vox - 1251 ps			Math averages Figure 15	660	850	mV
Vox Crossing Point Voltage 10.7V Swing 250 550 mV Voys Maximum Overshoot Voltage - - V _{HGH} V Vups Minimum Undershoot Voltage - - 0.3 - V Ring Back Voltage See Figure 15. Measure SE - 0.2 V SRC at 0.8V SRCT and SRCC Duty Cycle Measured at crossing point V _{OX} 9.997001 10.05327 ns TpERIOD 100-MHz SRCT and SRCC Period Measured at crossing point V _{OX} 9.997001 10.05327 ns TpERIODAS 100-MHz SRCT and SRCC Absolute Measured at crossing point V _{OX} 9.872001 10.12800 ns TpERIODAS 100-MHz SRCT and SRCC Absolute Measured at crossing point V _{OX} 9.872001 10.17827 ns Speriod SSC SSC 9.872001 10.17827 ns Typeshot SSC SSC 9.872001 10.17827 ns TpERIODAS SPEriod.SSC SSC - 1250 ps Typeriod.SSC SSC <td></td> <td>Voltage Low</td> <td>Math averages Figure 15</td> <td>-150</td> <td>_</td> <td>mV</td>		Voltage Low	Math averages Figure 15	-150	_	mV
Vovs Maximum Overshoot Voltage - V _{HIGH} + V VUDS Minimum Undershoot Voltage -0.3 - V VuDS Ring Back Voltage See Figure 15. Measure SE - 0.2 V SRC at 0.8V - 0.2 V SRC at 0.8V - 0.2 V Tpc SRCT and SRCC Duty Cycle Measured at crossing point V _{OX} 9.997001 10.0300 ns TpERIOD 100-MHz SRCT and SRCC Period Measured at crossing point V _{OX} 9.997001 10.0300 ns TPERIODABS 100-MHz SRCT and SRCC Absolute Measured at crossing point V _{OX} 9.872001 10.17827 ns Prefield SSC 9.872001 10.7827 ns 250 ps Tc_GL SRCT/C to SRCT/C Clock Skew Measured at crossing point V _{OX} - 12511 ps Lacc SRCT/C Clog to Cycle Jitter Measured at crossing point V _{OX} - 1251 ps Lacc SRCT/C Log Term Accuracy Measured at crossing point V _{OX} - 1251 ps <		Crossing Point Voltage at 0.7V Swing		250	550	mV
NRB Ring Back Voltage See Figure 15. Measure SE - 0.2 V SRC at 0.8V V V SRCT and SRCC Duty Cycle Measured at crossing point V _{OX} 45 55 % TpERIOD 100-MHz SRCT and SRCC Period Measured at crossing point V _{OX} 9.997001 10.0300 ns TPERIODABS 100-MHz SRCT and SRCC Absolute Measured at crossing point V _{OX} 9.872001 10.12800 ns TPERIODABS 100-MHz SRCT and SRCC Absolute Measured at crossing point V _{OX} 9.872001 10.17827 ns Sec Sec Sec Measured at crossing point V _{OX} 9.872001 10.17827 ns TypeRindows Any SRCT/C to SRCT/C Clock Skew Measured at crossing point V _{OX} - 125 ¹¹ ps Tq_TF SRCT/C Cycle to Cycle Jitter Measured at crossing point V _{OX} - 125 ¹¹ ps Tq_TF, SRCT and SRCC Rise and Fall Time Measured at crossing point V _{OX} - 125 ¹¹ ps Tq_TF, SRC Coubut enable after PCL_STP# Measured at crossing point V _{OX} - <		Maximum Overshoot Voltage		-	V _{HIGH} + 0.3	V
NRB Ring Back Voltage See Figure 15. Measure SE - 0.2 V SRC at 0.8V V V SRCT and SRCC Duty Cycle Measured at crossing point V _{OX} 45 55 % TpERIOD 100-MHz SRCT and SRCC Period Measured at crossing point V _{OX} 9.997001 10.0300 ns TPERIODABS 100-MHz SRCT and SRCC Absolute Measured at crossing point V _{OX} 9.872001 10.12800 ns TPERIODABS 100-MHz SRCT and SRCC Absolute Measured at crossing point V _{OX} 9.872001 10.17827 ns Sec Sec Sec Measured at crossing point V _{OX} 9.872001 10.17827 ns TypeRindows Any SRCT/C to SRCT/C Clock Skew Measured at crossing point V _{OX} - 125 ¹¹ ps Tq_TF SRCT/C Cycle to Cycle Jitter Measured at crossing point V _{OX} - 125 ¹¹ ps Tq_TF, SRCT and SRCC Rise and Fall Time Measured at crossing point V _{OX} - 125 ¹¹ ps Tq_TF, SRC Coubut enable after PCL_STP# Measured at crossing point V _{OX} - <	V _{UDS}	Minimum Undershoot Voltage		-0.3	-	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ring Back Voltage	See Figure 15. Measure SE	-	0.2	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SRC at 0.8V				1	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T _{DC}	SRCT and SRCC Duty Cycle	Measured at crossing point V _{OX}	45	55	%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		100-MHz SRCT and SRCC Period	Measured at crossing point V _{OX}	9.997001	10.00300	ns
PeriodPeriodCrCrCrTPERI- ODSSAbs100-MHz SRCT and SRCC Absolute Period, SSCMeasured at crossing point V_{OX} 9.87200110.17827nsTSKEWAny SRCT/C to SRCT/C Clock Skew SRCT/C Cycle to Cycle JitterMeasured at crossing point V_{OX} -250psT_C_JSRCT/C Cycle to Cycle JitterMeasured at crossing point V_{OX} -125 ^[11] psLACCSRCT/C Long Term AccuracyMeasured at crossing point V_{OX} -300ppmT_R/TSRCT and SRCC Rise and Fall Time 	T _{PERIODSS}		Measured at crossing point V _{OX}	9.997001	10.05327	ns
DOSSADS TODESADSPeriod, SSCConstructionConstructionTSKEWAny SRCT/C to SRCT/C Clock SkewMeasured at crossing point V_{OX} -250psT_C_JSRCT/C Cycle to Cycle JitterMeasured at crossing point V_{OX} -125 ^[1] psLaccSRCT/C Long Term AccuracyMeasured at crossing point V_{OX} -300ppmT_R/T_FSRCT and SRCC Rise and Fall TimeMeasured from $V_{OL} = 0.175$ to $V_{OH} = 0.525V$ 175800psT_RFMRise/Fall MatchingDetermined as a fraction of $2^*(T_R - T_F)/(T_R + T_F)$ -125psAT_FFall Time Variation-125psfsfssTdriveSRC output enable after PCI_STP# de-assertionMath averages Figure 15660850mVVLOWVoltage LighMath averages Figure 15-150-mVVVoxCrossing Point Voltage at 0.7V Swing180550mVVV_USMaximum Overshoot Voltage-0.2VVVubsMinimum Undershoot Voltage-0.3-VUDSSSCT and SSCC Duty CycleMeasured at crossing point V_{OX} 9.99700110.0300nsTPERIOD100-MHz SSCT and SSCC Period, SSCMeasured at crossing point V_{OX} 9.87200110.17827nsTPERIODAbs100-MHz SSCT and SSCC AbsoluteMeasured at crossing point V_{OX} 9.87200110.17827ns	T _{PERIODAbs}		Measured at crossing point V _{OX}	9.872001	10.12800	ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T _{PERI-} ODSSAbs		Measured at crossing point V _{OX}	9.872001	10.17827	ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	Any SRCT/C to SRCT/C Clock Skew	Measured at crossing point V _{OX}	-	250	ps
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		SRCT/C Cycle to Cycle Jitter	Measured at crossing point V _{OX}	-	125 ^[1]	ps
N T $V_{OH} = 0.525V$ CT T_{RFM} Rise/Fall MatchingDetermined as a fraction of $2^{*}(T_{R} - T_{F})/(T_{R} + T_{F})$ -20% ΔT_{R} Rise Time Variation-125ps ΔT_{F} Fall Time Variation-125psTdriveSRC output enable after PCI_STP# de-assertion-15ns V_{HGH} Voltage HighMath averages Figure 15660850mV V_{LOW} Voltage LowMath averages Figure 15-150-mV V_{OX} Crossing Point Voltage at 0.7V Swing180550mV V_{OVS} Maximum Overshoot Voltage0.2V V_{QVS} Minimum Undershoot Voltage-0.3-V V_{RB} Ring Back VoltageSee Figure 15. Measure SE-0.2V $LCD 96_100M_SSC at 0.8V$ TMeasured at crossing point V_{OX} 9.99700110.00300ns $T_{PERIODS}$ 100-MHz SSCT and SSCC PeriodMeasured at crossing point V_{OX} 9.99700110.05327ns $T_{PERIODAbs}$ 100-MHz SSCT and SSCC AbsoluteMeasured at crossing point V_{OX} 9.87200110.17827ns $T_{PERIODAbs}$ 100-MHz SSCT and SSCC AbsoluteMeasured at crossing point V_{OX} 9.87200110.17827ns $T_{PERIODAbs}$ 100-MHz SRCT and SRCC AbsoluteMeasured at crossing point V_{OX} 9.87200110.17827ns		SRCT/C Long Term Accuracy	Measured at crossing point V _{OX}	-	300	ppm
Initial2*(T _R - T _F)/(T _R + T _F)1 ΔT_R Rise Time Variation-125ps ΔT_F Fall Time Variation-125psTdriveSRC output enable after PCI_STP# de-assertion15ns V_{HGH} Voltage HighMath averages Figure 15660850 V_{LOW} Voltage LowMath averages Figure 15-150- V_{QX} Crossing Point Voltage at 0.7V Swing180550mV V_{OX} Crossing Point Voltage at 0.7V Swing180550mV V_{QX} Maximum Overshoot Voltage V_{HGH} +V V_{QX} Minimum Undershoot Voltage-0.3-V V_{DS} Minimum Undershoot VoltageSee Figure 15. Measure SE-0.2VLCD 96_100M_SSC at 0.8VTTTVVTDCSSCT and SSCC Duty CycleMeasured at crossing point V_{OX} 9.99700110.00300nsTPERIODS100-MHz SSCT and SSCC Period, SSCMeasured at crossing point V_{OX} 9.87200110.12800nsTPERIODAbs100-MHz SSCT and SSCC AbsoluteMeasured at crossing point V_{OX} 9.87200110.17827nsTPERIOAbs100-MHz SRCT and SRCC AbsoluteMeasured at crossing point V_{OX} 9.87200110.17827nsTPERIOAbs100-MHz SRCT and SRCC AbsoluteMeasured at crossing point V_{OX} 9.87200110.17827ns	T _R /T _F	SRCT and SRCC Rise and Fall Time	Measured from $V_{OL} = 0.175$ to $V_{OH} = 0.525V$	175	800	ps
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	T _{RFM}	Rise/Fall Matching		-	20	%
TdriveSRC output enable after PCI_STP# de-assertion15ns V_{HIGH} Voltage HighMath averages Figure 15660850mV V_{LOW} Voltage LowMath averages Figure 15-150-mV V_{OX} Crossing Point Voltage at 0.7V Swing180550mV V_{OVS} Maximum Overshoot Voltage- V_{HIGH} V V_{OVS} Maximum Overshoot Voltage V_{HIGH} V_{UDS} Minimum Undershoot Voltage-0.3-V V_{BB} Ring Back VoltageSee Figure 15. Measure SE-0.2VLCD 96_100M_SSC at 0.8VTTTVNo.300ns T_{PERIOD} 100-MHz SSCT and SSCC PeriodMeasured at crossing point V_{OX} 9.99700110.00300ns $T_{PERIODAbs}$ 100-MHz SSCT and SSCC AbsoluteMeasured at crossing point V_{OX} 9.87200110.12800ns $T_{PERIODAbs}$ 100-MHz SSCT and SSCC AbsoluteMeasured at crossing point V_{OX} 9.87200110.17827ns $T_{PERIODAbs}$ 100-MHz SSCT and SSCC AbsoluteMeasured at crossing point V_{OX} 9.87200110.17827ns $T_{PERI-DAbs}$ 100-MHz SRCT and SRCC AbsoluteMeasured at crossing point V_{OX} 9.87200110.17827ns	ΔT_R	Rise TimeVariation		-	125	ps
de-assertionde-assertionmeande-assertion V_{HIGH} Voltage HighMath averages Figure 15660850mV V_{LOW} Voltage LowMath averages Figure 15-150-mV V_{OX} Crossing Point Voltage at 0.7V Swing180550mV V_{OX} Maximum Overshoot Voltage V_{HIGH} V_{OVS} Minimum Undershoot Voltage0.3-V V_{UDS} Minimum Undershoot Voltage0.2V V_{RB} Ring Back VoltageSee Figure 15. Measure SE-0.2V $LCD 96_100M_SSC at 0.8V$ TTTVVT_DCSSCT and SSCC Duty CycleMeasured at crossing point VOX9.99700110.00300ns T_{PERIOD} 100-MHz SSCT and SSCC Period, SSCMeasured at crossing point VOX9.99700110.05327ns $T_{PERIODAbs}$ 100-MHz SSCT and SSCC AbsoluteMeasured at crossing point VOX9.87200110.17827ns $T_{PERIODAbs}$ 100-MHz SRCT and SSCC AbsoluteMeasured at crossing point VOX9.87200110.17827ns $T_{PERI-ODAbs}$ 100-MHz SRCT and SRCC AbsoluteMeasured at crossing point VOX9.87200110.17827ns $T_{PERI-ODAbs}$ 100-MHz SRCT and SRCC AbsoluteMeasured at crossing point VOX9.87200110.17827ns	ΔT_F	Fall Time Variation		-	125	ps
V_{LOW} Voltage LowMath averages Figure 15 -150 $-$ mV V_{OX} Crossing Point Voltage at 0.7V Swing180550mV V_{OVS} Maximum Overshoot Voltage $ V_{HIGH} +$ V V_{UDS} Minimum Undershoot Voltage -0.3 $ V$ V_{BB} Ring Back VoltageSee Figure 15. Measure SE $ 0.2$ V LCD 96_100W_SSC at 0.8V T_{DC} SSCT and SSCC Duty CycleMeasured at crossing point V_{OX} 4555 $\%$ T_{PERIOD} 100-MHz SSCT and SSCC PeriodMeasured at crossing point V_{OX} 9.99700110.00300ns $T_{PERIODSs}$ 100-MHz SSCT and SSCC Period, SSCMeasured at crossing point V_{OX} 9.87200110.12800ns $T_{PERIODAbss}$ 100-MHz SSCT and SSCC AbsoluteMeasured at crossing point V_{OX} 9.87200110.17827ns $T_{PERIODAbss}$ 100-MHz SSCT and SRCC AbsoluteMeasured at crossing point V_{OX} 9.87200110.17827ns	Tdrive				15	ns
V_{LOW} Voltage LowMath averages Figure 15 -150 $-$ mV V_{OX} Crossing Point Voltage at 0.7V Swing180550mV V_{OVS} Maximum Overshoot Voltage $ V_{HIGH} +$ V V_{UDS} Minimum Undershoot Voltage -0.3 $ V$ V_{BB} Ring Back VoltageSee Figure 15. Measure SE $ 0.2$ V LCD 96_100W_SSC at 0.8V T_{DC} SSCT and SSCC Duty CycleMeasured at crossing point V_{OX} 4555 $\%$ T_{PERIOD} 100-MHz SSCT and SSCC PeriodMeasured at crossing point V_{OX} 9.99700110.00300ns $T_{PERIODSs}$ 100-MHz SSCT and SSCC Period, SSCMeasured at crossing point V_{OX} 9.87200110.12800ns $T_{PERIODAbss}$ 100-MHz SSCT and SSCC AbsoluteMeasured at crossing point V_{OX} 9.87200110.17827ns $T_{PERIODAbss}$ 100-MHz SSCT and SRCC AbsoluteMeasured at crossing point V_{OX} 9.87200110.17827ns	V _{HIGH}	Voltage High	Math averages Figure 15	660	850	mV
		Voltage Low	Math averages Figure 15	-150	-	mV
V _{UDS} Minimum Undershoot Voltage -0.3 $-$ VV _{RB} Ring Back VoltageSee Figure 15. Measure SE $ 0.2$ VLCD 96_100M_SSC at 0.8VMeasured at crossing point V _{OX} 4555%T _{DC} SSCT and SSCC Duty CycleMeasured at crossing point V _{OX} 9.99700110.00300nsT _{PERIOD} 100-MHz SSCT and SSCC PeriodMeasured at crossing point V _{OX} 9.99700110.00300nsT _{PERIODSS} 100-MHz SSCT and SSCC Period, SSCMeasured at crossing point V _{OX} 9.99700110.05327nsT _{PERIODAbs} 100-MHz SSCT and SSCC AbsoluteMeasured at crossing point V _{OX} 9.87200110.12800nsT _{PERIODAbs} 100-MHz SRCT and SRCC AbsoluteMeasured at crossing point V _{OX} 9.87200110.17827nsT _{PERI-} ODSSAbs100-MHz SRCT and SRCC AbsoluteMeasured at crossing point V _{OX} 9.87200110.17827ns	V _{OX}	Crossing Point Voltage at 0.7V Swing		180	550	mV
VRBRing Back VoltageSee Figure 15. Measure SE $ 0.2$ VLCD 96_100M_SSC at 0.8VT_DCSSCT and SSCC Duty CycleMeasured at crossing point V_{OX} 4555%T_PERIOD100-MHz SSCT and SSCC PeriodMeasured at crossing point V_{OX} 9.99700110.00300nsT_PERIODSS100-MHz SSCT and SSCC Period, SSCMeasured at crossing point V_{OX} 9.99700110.05327nsT_PERIODAbs100-MHz SSCT and SSCC Absolute PeriodMeasured at crossing point V_{OX} 9.87200110.12800nsT_PERIODAbs100-MHz SRCT and SRCC Absolute Period, SSCMeasured at crossing point V_{OX} 9.87200110.17827ns	V _{OVS}	Maximum Overshoot Voltage		-	V _{HIGH} + 0.3	V
V_{RB} Ring Back VoltageSee Figure 15. Measure SE-0.2VLCD 96_100M_SSC at 0.8V T_{DC} SSCT and SSCC Duty CycleMeasured at crossing point V_{OX} 4555% T_{PERIOD} 100-MHz SSCT and SSCC PeriodMeasured at crossing point V_{OX} 9.99700110.00300ns $T_{PERIODSS}$ 100-MHz SSCT and SSCC Period, SSCMeasured at crossing point V_{OX} 9.99700110.05327ns $T_{PERIODAbs}$ 100-MHz SSCT and SSCC Absolute PeriodMeasured at crossing point V_{OX} 9.87200110.12800ns $T_{PERI-ODAbs}$ 100-MHz SRCT and SRCC Absolute Period, SSCMeasured at crossing point V_{OX} 9.87200110.17827ns	V _{UDS}	Minimum Undershoot Voltage		-0.3	-	V
T_{DC} SSCT and SSCC Duty CycleMeasured at crossing point V_{OX} 4555% T_{PERIOD} 100-MHz SSCT and SSCC PeriodMeasured at crossing point V_{OX} 9.99700110.00300ns $T_{PERIODSS}$ 100-MHz SSCT and SSCC Period, SSCMeasured at crossing point V_{OX} 9.99700110.05327ns $T_{PERIODAbs}$ 100-MHz SSCT and SSCC Absolute PeriodMeasured at crossing point V_{OX} 9.87200110.12800ns $T_{PERIODAbs}$ 100-MHz SSCT and SSCC Absolute PeriodMeasured at crossing point V_{OX} 9.87200110.17827ns $T_{PERI-ODSSAbs}$ 100-MHz SRCT and SRCC Absolute Period, SSCMeasured at crossing point V_{OX} 9.87200110.17827ns		Ring Back Voltage	See Figure 15. Measure SE	-	0.2	V
TPERIOD100-MHz SSCT and SSCC PeriodMeasured at crossing point VOX9.99700110.00300nsTPERIODSS100-MHz SSCT and SSCC Period, SSCMeasured at crossing point VOX9.99700110.05327nsTPERIODAbs100-MHz SSCT and SSCC Absolute PeriodMeasured at crossing point VOX9.87200110.12800nsTPERIODAbs100-MHz SSCT and SSCC Absolute PeriodMeasured at crossing point VOX9.87200110.12800nsTPERI- ODSSAbs100-MHz SRCT and SRCC Absolute Period, SSCMeasured at crossing point VOX9.87200110.17827ns	LCD 96_100	M_SSC at 0.8V				•
TPERIOD100-MHz SSCT and SSCC PeriodMeasured at crossing point V _{OX} 9.99700110.00300nsTPERIODSS100-MHz SSCT and SSCC Period, SSCMeasured at crossing point V _{OX} 9.99700110.05327nsTPERIODAbs100-MHz SSCT and SSCC Absolute PeriodMeasured at crossing point V _{OX} 9.87200110.12800nsTPERIODAbs100-MHz SSCT and SSCC Absolute PeriodMeasured at crossing point V _{OX} 9.87200110.12800nsTPERI- ODSSAbs100-MHz SRCT and SRCC Absolute Period, SSCMeasured at crossing point V _{OX} 9.87200110.17827ns	T _{DC}	SSCT and SSCC Duty Cycle	Measured at crossing point VOX	45	55	%
TPERIODSS100-MHz SSCT and SSCC Period, SSCMeasured at crossing point V _{OX} 9.99700110.05327nsTPERIODAbs100-MHz SSCT and SSCC Absolute PeriodMeasured at crossing point V _{OX} 9.87200110.12800nsTPERI- ODSSAbs100-MHz SRCT and SRCC Absolute Period, SSCMeasured at crossing point V _{OX} 9.87200110.17827ns		100-MHz SSCT and SSCC Period	Measured at crossing point V _{OX}	9.997001	10.00300	ns
Period Period T _{PERI-} ODSSAbs 100-MHz SRCT and SRCC Absolute Measured at crossing point V _{OX} 9.872001 10.17827 ns	_		Measured at crossing point V _{OX}	9.997001	10.05327	ns
ODSSAbs Period, SSC	T _{PERIODAbs}		Measured at crossing point V _{OX}	9.872001	10.12800	ns
	T _{PERI-} ODSSAbs		Measured at crossing point V _{OX}	9.872001	10.17827	ns
	-	96-MHz SSCT and SSCC Period	Measured at crossing point VOX	10.41354	10.41979	ns

AC Electrical Specifications (continued)

Parameter	Description	Condition	Min.	Max.	Unit
T _{PERIODSS}	96-MHz SSCT and SSCC Period, SSC	Measured at crossing point V _{OX}	10.41354	10.47215	ns
T _{PERIODAbs}	96-MHz SSCT and SSCC Absolute Period	Measured at crossing point V _{OX}	10.16354	10.66979	ns
T _{PERI-} ODSSAbs	96-MHz SRCT and SRCC Absolute Period, SSC	Measured at crossing point V _{OX}	10.16354	10.72266	ns
T _{CCJ}	SSCT/C Cycle to Cycle Jitter	Measured at crossing point V _{OX}	—	125	ps
L _{ACC}	SSCT/C Long Term Accuracy	Measured at crossing point V _{OX}	-	300	ppm
T _R /T _F	SSCT and SSCC Rise and Fall Time	Measured from V _{OL} = 0.175 to V _{OH} = 0.525V	175	700	ps
T _{RFM}	Rise/Fall Matching	Determined as a fraction of $2^{*}(T_{R} - T_{F})/(T_{R} + T_{F})$	-	20	%
ΔT_R	Rise TimeVariation		-	125	ps
ΔT_F	Fall Time Variation		-	125	ps
V _{HIGH}	Voltage High	Math averages Figure 15	660	850	mV
V _{LOW}	Voltage Low	Math averages Figure 15	-150	-	mV
V _{OX}	Crossing Point Voltage at 0.7V Swing		250	550	mV
V _{OVS}	Maximum Overshoot Voltage		-	V _{HIGH} + 0.3	V
V _{UDS}	Minimum Undershoot Voltage		-0.3	-	V
V _{RB}	Ring Back Voltage	See Figure 15. Measure SE	-	0.2	V
PCI/PCIF at	3.3V				
T _{DC}	PCI Duty Cycle	Measurement at 1.5V	45	55	%
T _{PERIOD}	Spread Disabled PCIF/PCI Period	Measurement at 1.5V	29.99100	30.00900	ns
T _{PERIODSS}	Spread Enabled PCIF/PCI Period, SSC	Measurement at 1.5V	29.9910	30.15980	ns
T _{PERIODAbs}	Spread Disabled PCIF/PCI Period	Measurement at 1.5V	29.49100	30.50900	ns
T _{PERI-} ODSSAbs	Spread Enabled PCIF/PCI Period, SSC	Measurement at 1.5V	29.49100	30.65980	ns
T _{HIGH}	PCIF and PCI high time	Measurement at 2.4V	12.0	-	ns
T _{LOW}	PCIF and PCI low time	Measurement at 0.4V	12.0	_	ns
T _R /T _F	PCIF/PCI rising and falling Edge Rate	Measured between 0.8V and 2.0V	1.0	4.0	V/ns
T _{SKEW}	Any PCI clock to Any PCI clock Skew	Measurement at 1.5V	-	1000	ps
T _{delay}	Intentional PCI-PCI delay	Measurement at 1.5V		200	pS
Tdrive	PCI output enable after PCI_STP# de-assertion			15	ns
T _{CCJ}	PCIF and PCI Cycle to Cycle Jitter	Measurement at 1.5V	-	500	ps
L _{ACC}	PCIF/PCI Long Term Accuracy	Measured at crossing point V _{OX}	-	300	ppm
DOT96 at 0.8	BV		·		
T _{DC}	DOT96T and DOT96C Duty Cycle	Measured at crossing point V _{OX}	45	55	%
T _{PERIOD}	DOT96T and DOT96C Period	Measured at crossing point V _{OX}	10.41354	10.41979	ns
T _{PERIODAbs}	DOT96T and DOT96C Absolute Period	Measured at crossing point V _{OX}	10.16354	10.66979	ns
T _{CCJ}	DOT96T/C Cycle to Cycle Jitter	Measured at crossing point V _{OX}	-	250	ps
L _{ACC}	DOT96T/C Long Term Accuracy	Measured at crossing point V _{OX}	-	300	ppm
T _R /T _F	DOT96T and DOT96C Rise and Fall Time	Measured from $V_{OL} = 0.175$ to $V_{OH} = 0.525V$	175	900	ps

AC Electrical Specifications (continued)

Parameter	Description	Condition	Min.	Max.	Unit
T _{RFM}	Rise/Fall Matching	Determined as a fraction of $2^{*}(T_{R} - T_{F})/(T_{R} + T_{F})$	-	20	%
ΔT _R	Rise Time Variation		-	125	ps
ΔT_F	Fall Time Variation		-	125	ps
V _{HIGH}	Voltage High	Math averages <i>Figure 15</i>	660	850	mV
V _{LOW}	Voltage Low	Math averages <i>Figure 15</i>	-150	_	mV
V _{OX}	Crossing Point Voltage at 0.7V Swing		250	550	mV
V _{OVS}	Maximum Overshoot Voltage		-	V _{HIGH} + 0.3	V
V _{UDS}	Minimum Undershoot Voltage		-0.3	_	V
V _{RB}	Ring Back Voltage	See Figure 15. Measure SE	-	0.2	V
48_M at 3.3	v		·		
T _{DC}	Duty Cycle	Measurement at 1.5V	45	55	%
T _{PERIOD}	Period	Measurement at 1.5V	20.83125	20.83542	ns
T _{PERIODAbs}	Absolute Period	Measurement at 1.5V	20.48125	21.18542	ns
T _{HIGH}	48_M High time	Measurement at 2.4V	8.094	11.100	ns
T _{LOW}	48_M Low time	Measurement at 0.4V	7.694	11.100	ns
T _R /T _F	Rising and Falling Edge Rate	Measured between 0.8V and 2.0V	1.0	2.0	V/ns
T _{CCJ}	Cycle to Cycle Jitter	Measurement at 1.5V	-	350	ps
L _{ACC}	48M Long Term Accuracy	Measured at crossing point V _{OX}	-	100	ppm
27_M at 3.3	v	•			
T _{DC}	Duty Cycle	Measurement at 1.5V	45	55	%
T _{PERIOD}	Spread Disabled 27M Period	Measurement at 1.5V	27.000	27.0547	ns
	Spread Enabled 27M Period	Measurement at 1.5V	27.000	27.0547	
T _{HIGH}	27_M High time	Measurement at 2.0V	10.5	-	ns
T _{LOW}	27_M Low time	Measurement at 0.8V	10.5	-	ns
T _R /T _F	Rising and Falling Edge Rate	Measured between 0.8V and 2.0V	1.0	4.0	V/ns
T _{CCJ}	Cycle to Cycle Jitter	Measurement at 1.5V	-	500	ps
L _{ACC}	27_M Long Term Accuracy	Measured at crossing point V _{OX}	-	50	ppm
REF at 3.3V	·		·		
T _{DC}	REF Duty Cycle	Measurement at 1.5V	45	55	%
T _{PERIOD}	REF Period	Measurement at 1.5V	69.8203	69.8622	ns
T _{PERIODAbs}	REF Absolute Period	Measurement at 1.5V	68.82033	70.86224	ns
T _R /T _F	REF Rising and Falling Edge Rate	Measured between 0.8V and 2.0V	1.0	4.0	V/ns
T _{SKEW}	REF Clock to REF Clock	Measurement at 1.5V	-	500	ps
T _{CCJ}	REF Cycle to Cycle Jitter	Measurement at 1.5V	-	1000	ps
L _{ACC}	Long Term Accuracy	Measurement at 1.5V	-	300	ppm
ENABLE/DI	SABLE and SET-UP				
T _{STABLE}	Clock Stabilization from Power-up		-	1.8	ms
T _{SS}	Stopclock Set-up Time		10.0	_	ns
T _{SH}	Stopclock Hold Time 0		_	ns	

Test and Measurement Set-up

For Single-ended Signals and Reference

The following diagram shows test load configurations for the single-ended PCI, USB, and REF output signals.

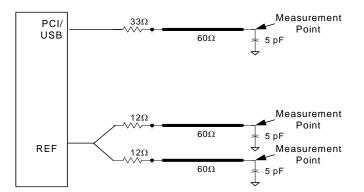


Figure 13.Single-ended Load Configuration Low Drive Option

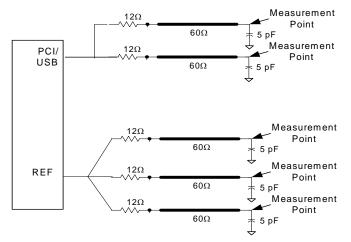
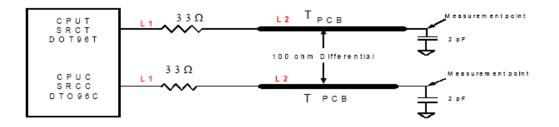
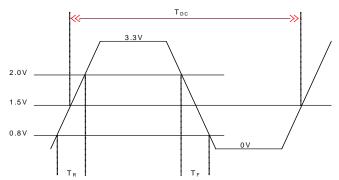
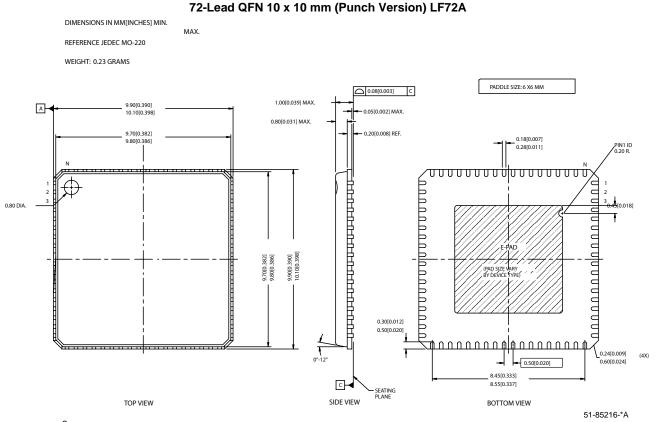



Figure 14. Single-ended Load Configuration High Drive Option


The following diagram shows the test load configuration for the differential CPU and SRC outputs.

3.3V signals



Ordering Information

Part Number	Package Type	Product Flow	
Lead-free			
CY28549LFXC	72-pin QFN	Commercial, 0° to 85°C	
CY28549LFXCT 72-pin QFN-Tape and Reel Commercial, 0°		Commercial, 0° to 85°C	

Package Diagram

Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. Intel and Pentium are registered trademarks of Intel Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

Document Title: CY28549 Clock Generator for Intel [®] CK410M Document Number: xxx-xxxxx				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**				New data sheet

Document #:xxx-xxxxx Rev **

Page 23 of 23

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products for use and in doing so indemnifies Cypress against all charges. Downloaded from Elcodis.com