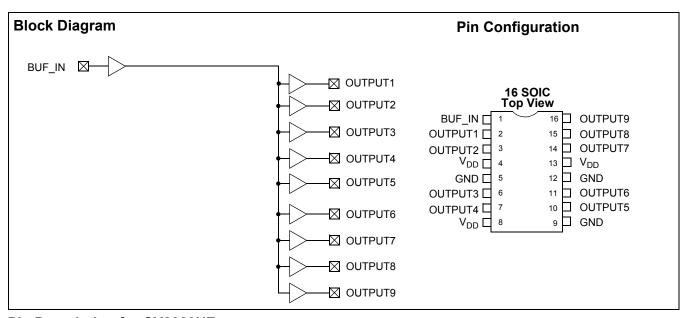


Nine-Output 3.3V Buffer


Features

- · One-input to nine-output buffer/driver
- Supports two DIMMs or four SO-DIMMs with one additional output for feedback to an external or chipset PLL
- Low power consumption for mobile applications
 Less than 32 mA at 66.6 MHz with unloaded outputs
- 1-ns Input-Output delay
- Buffers all frequencies from DC to 133.33 MHz
- · Output-output skew less than 250 ps
- Multiple V_{DD} and V_{SS} pins for noise and electromagnetic interference (EMI) reduction
- · Space-saving 16-pin 150-mil SOIC package
- · 3.3V operation
- · Industrial temperature available

Functional Description

The CY2309NZ is a low-cost buffer designed to distribute high-speed clocks in mobile PC systems and desktop PC systems with SDRAM support. The part has nine outputs, eight of which can be used to drive two DIMMs or four SO-DIMMs, and the remaining can be used for external feedback to a PLL. The device operates at 3.3V and outputs can run up to 133.33 MHz.

The CY2309NZ is designed for low EMI and power optimization. It has multiple $V_{\rm SS}$ and $V_{\rm DD}$ pins for noise optimization and consumes less than 32 mA at 66.6 MHz, making it ideal for the low-power requirements of mobile systems. It is available in an ultra-compact 150-mil 16-pin SOIC package.

Pin Description for CY2309NZ

Pin	Signal	Description
4, 8, 13	V_{DD}	3.3V Digital Voltage Supply
5, 9, 12	GND	Ground
1	BUF_IN	Input Clock
2, 3, 6, 7, 10, 11, 14, 15, 16	OUTPUT [1:9]	Outputs

Maximum Ratings

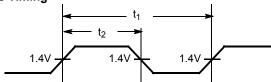
Supply Voltage to Ground Potential -0.5V to +7.0V DC Input Voltage (Except REF)-0.5V to V_{DD} + 0.5V DC Input Voltage REF......-0.5V to 7V

Storage Temperature	65°C to +150°C
Junction Temperature	150°C
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2,000V

Operating Conditions for Commercial and Industrial Temperature Devices

Parameter	Description	Min.	Max.	Unit
V_{DD}	Supply Voltage	3.0	3.6	V
T _A	(Ambient Operating Temperature) Commercial	0	70	°C
	(Ambient Operating Temperature) Industrial	-40	85	°C
C _L	Load Capacitance, Fout < 100 MHz		30	pF
	Load Capacitance,100 MHz < Fout < 133.33 MHz		15	pF
C _{IN}	Input Capacitance		7	pF
BUF_IN, SDRAM [1:9]	Operating Frequency	DC	133.33	MHz
t _{PU}	Power-up time for all VDDs to reach minimum specified voltage (power ramps must be monotonic)	0.05	50	ms

Electrical Characteristics for Commercial and Industrial Temperature Devices

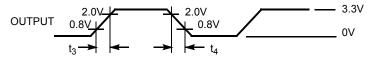

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{IL}	Input LOW Voltage ^[1]			0.8	V
V _{IH}	Input HIGH Voltage ^[1]		2.0		V
I _{IL}	Input LOW Current	V _{IN} = 0V		50.0	μΑ
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$		100.0	μА
V _{OL}	Output LOW Voltage ^[2]	I _{OL} = 8 mA		0.4	V
V _{OH}	Output HIGH Voltage ^[2]	I _{OH} = -8 mA	2.4		V
I _{DD}	Supply Current	Unloaded outputs at 66.66 MHz		32	mA

Switching Characteristics for Commercial and Industrial Temperature Devices^[3]

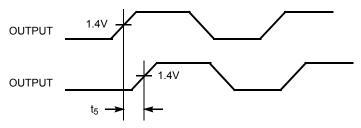
Parameter	Name	Description	Min.	Тур.	Max.	Unit
	Duty Cycle ^[2] = $t_2 \div t_1$	Measured at 1.4V	40.0	50.0	60.0	%
t ₃	Rise Time ^[2]	Measured between 0.8V and 2.0V			1.50	ns
t ₄	Fall Time ^[2]	Measured between 0.8V and 2.0V			1.50	ns
t ₅	Output to Output Skew ^[2]	All outputs equally loaded			250	ps
t ₆	Propagation Delay, BUF_IN Rising Edge to OUTPUT Rising Edge ^[2]	Measured at V _{DD} /2	1	5	9.2	ns

Switching Waveforms

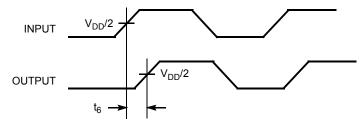
Duty Cycle Timing

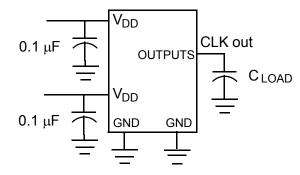

Notes:

- BUF_IN input has a threshold voltage of V_{DD}/2.
 Parameter is guaranteed by design and characterization. It is not 100% tested in production.
 All parameters specified with loaded outputs.



Switching Waveforms (continued)

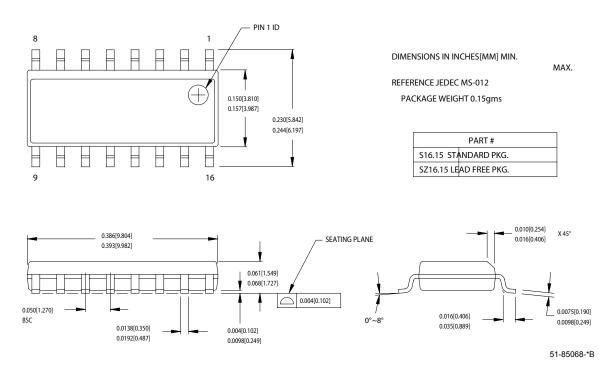

All Outputs Rise/Fall Time


Output-Output Skew

Input-Output Propagation Delay

Test Circuits

Ordering Information


Ordering Code	Package Type	Operating Range
CY2309NZSC-1H	16-pin 150-mil SOIC	Commercial
CY2309NZSC-1HT	16-pin 150-mil SOIC – Tape and Reel	Commercial
CY2309NZSI-1H	16-pin 150-mil SOIC	Industrial
CY2309NZSI-1HT	16-pin 150-mil SOIC – Tape and Reel	Industrial
Lead-free		•
CY2309NZSXC-1H	16-pin 150-mil SOIC	Commercial
CY2309NZSXC-1HT	16-pin 150-mil SOIC – Tape and Reel	Commercial
CY2309NZSXI-1H	16-pin 150-mil SOIC	Industrial
CY2309NZSXI-1HT	16-pin 150-mil SOIC – Tape and Reel	Industrial

Document #: 38-07182 Rev. *D

Package Diagram

16-Lead (150-Mil) SOIC S16

All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	111858	12/09/01	DSG	Change from Spec number: 38-00709 to 38-07182
*A	121834	12/14/02	RBI	Power-up requirements added to Operating Conditions Information
*B	130563	10/23/03	SDR	Added industrial operating temperature to operating conditions
*C	212991	See ECN	RGL/GGK	Updated the propagation delay T_6 spec to 9.2 ns in the Switching Character istics table
*D	270149	See ECN	RGL	Added Lead-free devices Replaced 8.7ns Input/Output Delay to 1ns Input/Output Delayin the features section