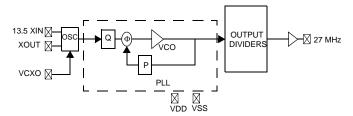
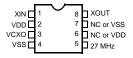


MPEG Clock Generator with VCXO


Features

- Integrated phase-locked loop (PLL)
- · Low-jitter, high-accuracy outputs
- · VCXO with analog adjust
- 3.3V operation
- Compatible with MK3727 (-1, -4)
- · Application compatibility for a wide variety of designs
- Enables design compatibility
- Lower drive strength settings (CY241V08A-04)

Benefits


- Digital VCXO control
- · Second source for existing designs
- Highest-performance PLL tailored for multimedia applications
- Meets critical timing requirements in complex system designs

CY241V08A-01,-04 Logic Block Diagram

Pin Configurations

CY241V08A-01,-04 8-pin SOIC

Part Number	Outputs	Input Frequency Range	Output Frequencies	VCXO Control Curve	Other Features
CY241V08A-01		13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	linear	Compatible with MK3727
CY241V08A-04		13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz		Same as CY241V08A-01 except lower drive strength settings

Pin Description

Name	Pin Number	Description
XIN	1	Reference crystal input
VDD	2	Voltage supply
VCXO	3	Input analog control for VCXO
VSS	4	Ground
27 MHz	5	27-MHz clock output
NC/VDD	6	No connect or voltage supply
NC/VSS	7	No connect or ground
XOUT	8	Reference crystal output

Absolute Maximum Conditions

(Above which the useful life may be impaired. For user guidelines, not tested.)

Supply Voltage (V_{DD})-0.5 to +7.0V DC Input Voltage –0.5V to V_{DD} + 0.5

Storage Temperature (Non-condensing) –55°C to +125°C
Junction Temperature40°C to +125°C
Data Retention @ Tj = 125°C > 10 years
Package Power Dissipation350 mW
ESD (Human Body Model) MIL-STD-883> 2000V

Pullable Crystal Specifications^[1]

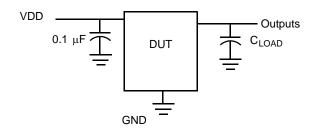
Parameter	Description	Comments	Min.	Тур.	Max.	Unit
F _{NOM}	Nominal crystal frequency	Parallel resonance, fundamental mode, AT cut	_	13.5	-	MHz
C _{LNOM}	Nominal load capacitance		_	14	_	pF
R ₁	Equivalent series resistance (ESR)	Fundamental mode	_	_	25	Ω
R ₃ /R ₁	Ratio of third overtone mode ESR to fundamental mode ESR	Ratio used because typical R ₁ values are much less than the maximum spec	3	_	-	-
DL	Crystal drive level	No external series resistor assumed	150	_	_	μW
F _{3SEPHI}	Third overtone separation from 3*F _{NOM}	High side	300	_	-	ppm
F _{3SEPLO}	Third overtone separation from 3*F _{NOM}	Low side	_	_	-150	ppm
C ₀	Crystal shunt capacitance		_	_	7	pF
C ₀ /C ₁	Ratio of shunt to motional capacitance		180	_	250	-
C ₁	Crystal motional capacitance		14.4	18	21.6	fF

Recommended Operating Conditions

Parameter	Description	Min.	Тур.	Max.	Unit
VDD	Operating Voltage	3.135	3.3	3.465	V
T _A	Ambient Temperature	0	_	70	°C
C _{LOAD}	Max. Load Capacitance	_	_	15	pF
t _{PU}	Power-up time for all VDD pins to reach minimum specified voltage (power ramps must be monotonic)	0.05	-	500	ms

DC Electrical Specifications

Parameter	Name	Description	Min.	Тур.	Max.	Unit
I _{OH}	Output HIGH Current	$V_{OH} = V_{DD} - 0.5V, V_{DD} = 3.3V$	12	24	_	mA
I _{OL}	Output LOW Current	$V_{OL} = 0.5V, V_{DD} = 3.3V$	12	24	_	mA
C _{IN}	Input Capacitance	Except XIN, XOUT pins	_	_	7	pF
V_{VCXO}	VCXO Input Range		0	_	V_{DD}	V
f _{ΔXO} ^[2]	VCXO Pullability Range	Low Side	_	_	-115	ppm
		High Side	115	_	_	ppm
I_{VDD}	Supply Current		_	30	35	mA


Crystals that meet this specification includes: Ecliptek ECX-5788-13.500M,Siward XTL001050A-13.5-14-400, Raltron A-13.500-14-CL,PDI HA13500XFSA14XC.
 -115/+115 ppm assumes 2.5pF of additional board level load capacitance. This range will be shifted down with more board capacitance or shifted up with less board capacitance.

AC Electrical Specifications ($V_{DD} = 3.3V$) [3]

Parameter ^[3]	Name	Description	Min.	Тур.	Max.	Unit
DC	Output Duty Cycle	Duty Cycle is defined in Figure 1, 50% of V _{DD}	45	50	55	%
ER _{OR}	Rising Edge Rate –01	Output Clock Edge Rate, Measured from 20% to 80% of V _{DD} , CLOAD = 15 pF See <i>Figure</i> 2.	0.8	1.4	-	V/ns
ER _{OF}	Falling Edge Rate –01	Output Clock Edge Rate, Measured from 80% to 20% of V _{DD} , CLOAD = 15 pF See <i>Figure</i> 2.	0.8	1.4	_	V/ns
ER _{OR}	Rising Edge Rate –04	Output Clock Edge Rate, Measured from 20% to 80% of V _{DD} , CLOAD = 15 pF See <i>Figure 2</i> .	0.7	1.1	-	V/ns
ER _{OF}	Falling Edge Rate –04	Output Clock Edge Rate, Measured from 80% to 20% of V _{DD} , CLOAD = 15 pF See <i>Figure 2</i> .	0.7	1.1	-	V/ns
t ₉	Clock Jitter	Peak-to-peak period jitter	_	_	100	ps
t ₁₀	PLL Lock Time		_	_	3	ms

Test and Measurement Set-up

Voltage and Timing Definitions

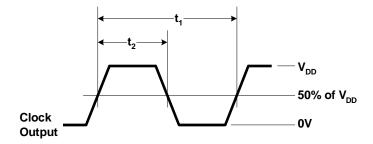


Figure 1. Duty Cycle Definition

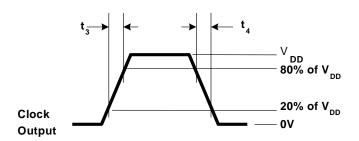
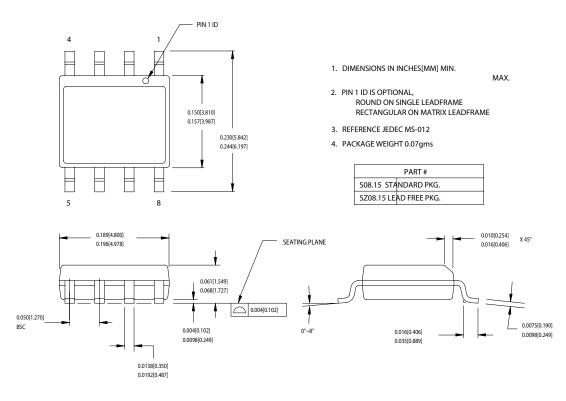


Figure 2. ER = $(0.6 \text{ x V}_{DD})/t_3$, EF = $(0.6 \text{ x V}_{DD})/t_4$

Note:

3. Not 100% tested.



Ordering Information

Ordering Code	Package Type	Operating Range	Operating Voltage	Features
CY241V08ASC-01	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY241V08ASC-01T	8-pin SOIC – Tape and Reel	Commercial	3.3V	Linear VCXO control curve
CY241V08ASC-04	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY241V08ASC-04T	8-pin SOIC – Tape and Reel	Commercial	3.3V	Linear VCXO control curve
Lead-free				
CY241V8ASXC-01	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY241V8ASXC-01T	8-pin SOIC - Tape and Reel	Commercial	3.3V	Linear VCXO control curve

Package Drawing and Dimensions

8-lead (150-Mil) SOIC S8

51-85066-*C

All product or company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	214069	See ECN	RGL	New Data Sheet
*A	220404	See ECN	RGL	Minor Change: To post on web
*B	393122	See ECN	RGL	Added Lead-free device for -01 Added the CY241V8A-01 in the title
*C	414184	See ECN	RGL	Minor Change: Deleted unneccesary text in the benefit section

Document #: 38-07656 Rev. *C