SEMICONDUCTOR

NC7S08 TinyLogic[™] HS 2-Input AND Gate

General Description

The NC7S08 is a single 2-Input high performance CMOS AND Gate. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation over a broad V_{CC} range. ESD protection diodes inherently guard both inputs and output with respect to the V_{CC} and GND rails. Three stages of gain between inputs and outputs assures high noise immunity and reduced sensitivity to input edge rate.

Features

■ Space saving SOT23 or SC70 5-lead package

October 1995

Revised June 2000

- High Speed; t_{PD} 3.5 ns typ
- E Low Quiescent Power; I_{CC} < 1 μ A
- Balanced Output Drive; 2 mA I_{OL}, -2 mA I_{OH}
- Broad V_{CC} Operating Range; 2V–6V
- Balanced Propagation Delays
- Specified for 3V operation

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7S08M5	MA05B	7S08	5-Lead SOT23, JEDEC MO-178, 1.6mm	250 Units on Tape and Reel
NC7S08M5X	MA05B	7S08	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7S08P5	MAA05A	S08	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	250 Units on Tape and Reel
NC7S08P5X	MAA05A	S08	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel

Logic Symbol **Connection Diagram** IEEE/IEC 5 V_{CC} & B GND 3 4 (Top View) **Pin Descriptions Function Table** Pin Names Description $\mathbf{Y} = \mathbf{A}\mathbf{B}$ A, B Inputs Inputs Output Output Υ Α в Υ L L L L н L н L L н н н H = HIGH Logic Level L = LOW Logic Level

TinyLogic™ is a trademark of Fairchild Semiconductor Corporation.

© 2000 Fairchild Semiconductor Corporation DS012141

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
@ V _{IN} ≤ −0.5V	–20 mA
@ $V_{IN} \ge V_{CC} + 0.5V$	+20 mA
DC Input Voltage (V _{IN})	–0.5V to V_{CC} + 0.5V
DC Output Diode Current (I _{OK})	
@ V _{OUT} < -0.5V	–20 mA
@ $V_{OUT} > V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _{OUT})	–0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _{OUT})	±12.5 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±25 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	150°C
Lead Temperature (T _L);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @+85°C	
SOT23-5	200 mW
SC70-5	150 mW

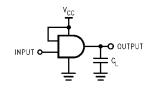
Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to 6.0V
Input Voltage (V _{IN})	0V to V_{CC}
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
V _{CC} @ 2.0V	0 to 1000 ns
V _{CC} @ 3.0V	0 to 750 ns
V _{CC} @ 4.5V	0 to 500 ns
V _{CC} @ 6.0V	0 to 400 ns
Thermal Resistance (θ_{JA})	
SOT23-5	300°C/W
SC70-5	425°C/W

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specifications.

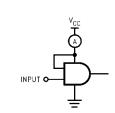
Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

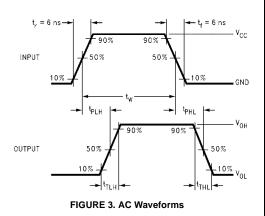

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Gymbol	Faidilletei	(V)	Min	Тур	Max	Min	Max	Units	conditions
V _{IH}	HIGH Level Input Voltage	2.0	1.50			1.50		V	
		3.0-6.0	0.7 V _{CC}			0.7 V _{CC}		v	
V _{IL}	LOW Level Input Voltage	2.0			0.50		0.50	V	
		3.0-6.0			0.3 V _{CC}		0.3 V _{CC}	v	
V _{ОН}	HIGH Level Output Voltage	2.0	1.90	2.0		1.90			
		3.0	2.90	3.0		2.90		v	$I_{OH} = -20 \ \mu A$ $V_{IN} = V_{IH}$
		4.5	4.40	4.5		4.40		v	$V_{IN}=V_{IH}$
		6.0	5.90	6.0		5.90			
									$V_{IN} = V_{IH}$
		3.0	2.68	2.85		2.63		v	$I_{OH} = -1.3 \text{ mA}$
		4.5	4.18	4.35		4.13		v	$I_{OH} = -2 \text{ mA}$
		6.0	5.68	5.85		5.63			$I_{OH} = -2.6 \text{ mA}$
V _{OL}	LOW Level Output Voltage	2.0		0.0	0.10		0.10		
		3.0		0.0	0.10		0.10	V	$I_{OL} = 20 \ \mu A$ $V_{IN} = V_{IL}$
		4.5		0.0	0.10		0.10	v	$V_{IN} = V_{IL}$
		6.0		0.0	0.10		0.10		
									$V_{IN} = V_{IH} \text{ or } V_{IL}$
		3.0		0.1	0.26		0.33	V	I _{OH} = 1.3 mA
		4.5		0.1	0.26		0.33	v	$I_{OL} = 2 \text{ mA}$
		6.0		0.1	0.26		0.33		$I_{OL} = 2.6 \text{ mA}$
I _{IN}	Input Leakage Current	6.0			±0.1		±1.0	μA	$V_{IN} = V_{CC}, \text{ GND}$
I _{CC}	Quiescent Supply Current	6.0			1.0		10.0	μΑ	$V_{IN} = V_{CC}, GND$

www.fairchildsemi.com

Symbol	Parameter	v _{cc}	T _A = +25°C			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Fig. No.
	Farameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	rig. No.
t _{PLH} ,	Propagation Delay	5.0		3.5	15			ns	$C_L = 15 \text{ pF}$	
t _{PHL}		2.0		20	100		125			1
		3.0		11	27		35	-	C ₁ = 50 pF	Figures 1, 3
		4.5		8	20		25	ns	$G_L = 50 \text{ pm}$., 0
		6.0		7	17		21			
t _{TLH} ,	Output Transition Time	5.0		3.0	10			ns	$C_L = 15 \text{ pF}$	
t _{THL}		2.0		25	125		155			1
		3.0		16	35		45	-	$C_1 = 50 pF$	Figures 1, 3
		4.5		11	25		31	ns	$G_L = 50 \text{ pm}$., 0
		6.0		9	21		26			
CIN	Input Capacitance	Open		2	10		10	pF		
C _{PD}	Power Dissipation Capacitance	5.0		6				pF	(Note 3)	Figure 2


Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC}static).

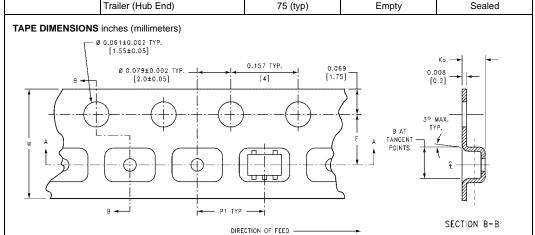
AC Loading and Waveforms

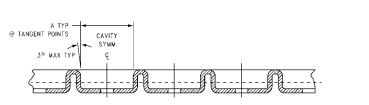


 C_{L} includes load and stray capacitance Input PRR = 1.0 MHz; t_{W} = 500 ns

FIGURE 1. AC Test Circuit

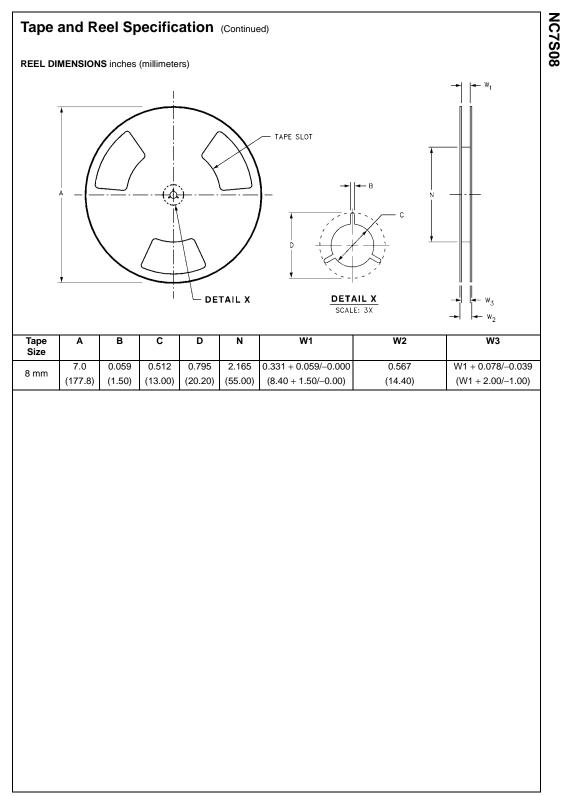
Input = AC Waveform; PRR = variable; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit


www.fairchildsemi.com


Downloaded from Elcodis.com electronic components distributor

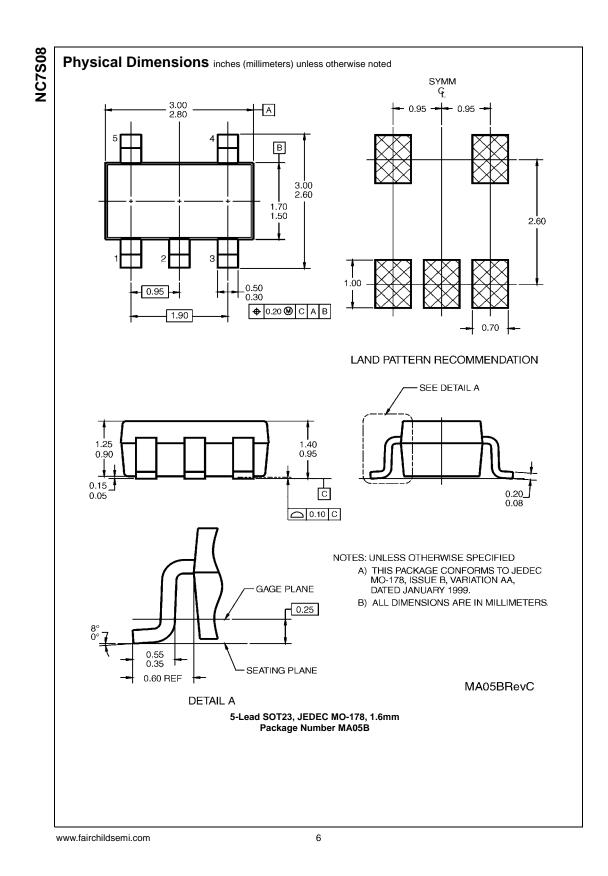
Tape and Reel Specification

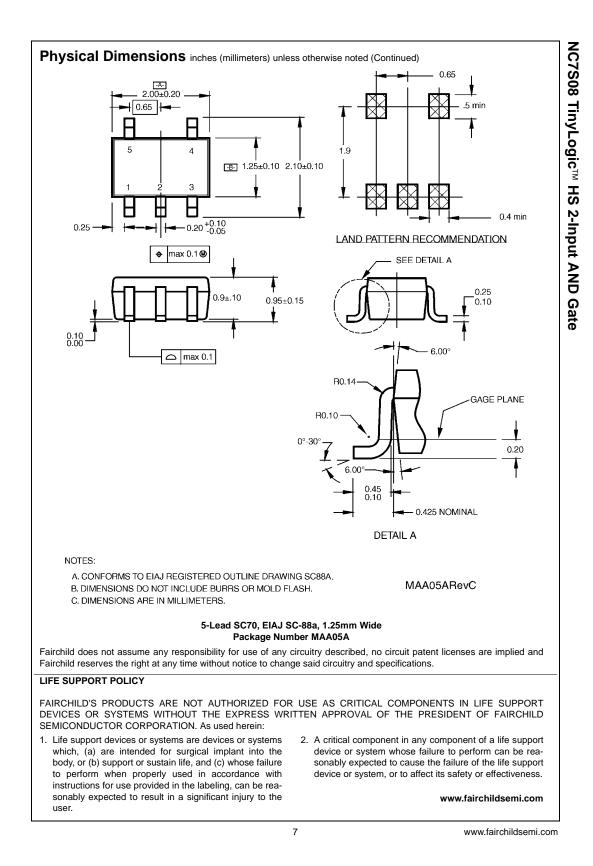
APE FORMAT				
Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
M5, P5	Carrier	250	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed
	Leader (Start End)	125 (typ)	Empty	Sealed
M5X, P5X	Carrier	3000	Filled	Sealed
		75 (4	Emate	0


SECTION A-A

<	TL
\square	R 1.181 MIN. [30]
1	_

BEND RADIUS NOT TO SCALE


Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-5	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
		(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)
SOT23-5	8 mm	0.130	0.130	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012
30123-5	0 11111	(3.3)	(3.3)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)
			•	•			


www.fairchildsemi.com

www.fairchildsemi.com

5

