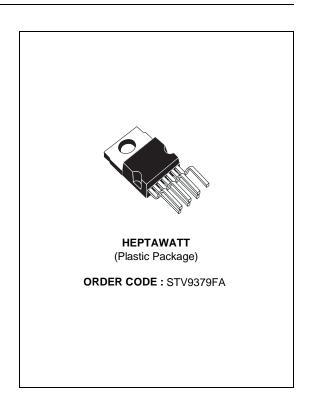
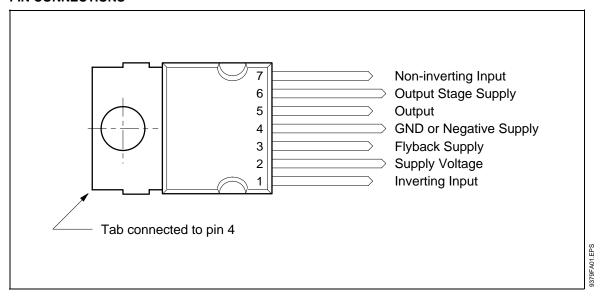


STV9379FA

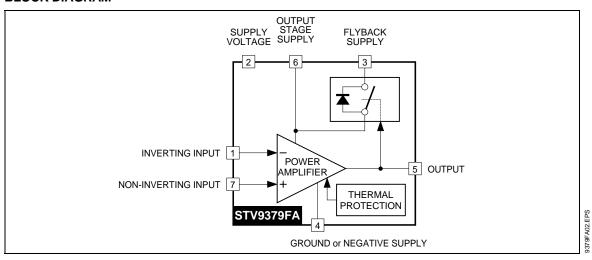
VERTICAL DEFLECTION BOOSTER


- POWER AMPLIFIER
- THERMAL PROTECTION
- OUTPUT CURRENT UP TO 2.6APP
- FLYBACK VOLTAGE UP TO 90V (on Pin 5)
- SUITABLE FOR DC COUPLING APPLICATION
- EXTERNAL FLYBACK SUPPLY


Designed for monitors and high performance TVs, the STV9379FA vertical deflection booster can handle flyback voltage up to 90V. Further to this, it is possible to have a flyback voltage which is more than the double of the supply (Pin 2). This allows to decrease the power consumption, or to decrease the flyback time for a given supply voltage.

The STV9379FA operates with supplies up to 42V and provides up to 2.6A_{PP} output current to drive the yoke.

The STV9379FA is offered in HEPTAWATT package.



PIN CONNECTIONS

June 1998 1/5

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage (Pin 2) (see note 1)	50	V
V ₆	Flyback Peak Voltage (Pin 6) (see note 1)	100	V
V_1 , V_7	Amplifier Input Voltage (Pins 1-7) (see note 1)	- 0.3, + V _S	V
Ιο	Maximum Output Peak Current (see notes 2 and 3)	1.8	Α
l ₃	Maximum Sink Current (t < 1ms)	1.8	Α
l ₃	Maximum Source Current (t < 1ms) (in the diode, see Block Diagram) (see note 2)	1.8	А
V _{ESD}	ESD susceptibility : EIAJ Norm (200pF discharged through 0Ω)	300	V
V ₃ - V ₂	Voltage Difference between Flyback Supply and Supply Voltage	50	V
T _{oper}	Operating Ambient Temperature	- 20, + 75	°C
T _{stg}	Storage Temperature	- 40, + 150	°C
Tj	Junction Temperature	+150	°C

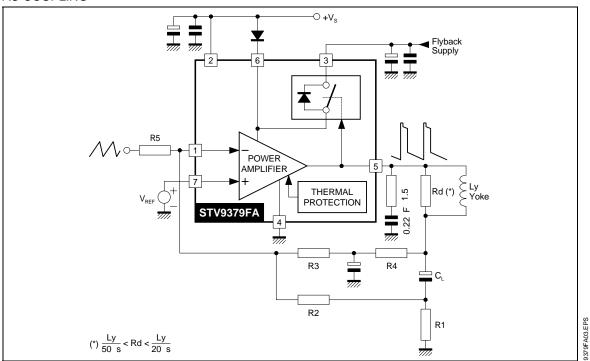
Notes:

- Versus Pin 4. 1.
- The output current can reach 5A peak for t \leq 10 μ s (up to 120Hz). Provided SOAR is respected (see Figures 1 and 2).

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th (j-c)}	Junction-case Thermal Resistance Max.	3	°C/W
Tt	Temperature for Thermal Shutdown	150	°C
ΔT_t	Hysteresis on T _t	10	°C
T _{jr}	Recommended Max. Junction Temperature	120	°C

*5*7


ELECTRICAL CHARACTERISTICS

 $(V_S = 42V, T_A = 25^{\circ}C, unless otherwise specified)$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Operating Supply Voltage Range	Versus Pin 4	10		42	V
V _{3M}	Operating Flyback Supply Voltage (V _{3M} ≤ V _S + 50V)	Versus Pin 4	Vs		90	V
l ₂	Pin 2 Quiescent Current	$I_3 = 0, I_5 = 0$		13	20	mA
I ₆	Pin 6 Quiescent Current	$I_3 = 0, I_5 = 0$	5	10	30	mA
Ιο	Max. Operating Peak Output Current				1.3	Α
I ₁	Amplifier Bias Current	$V_1 = 22V, V_7 = 23V$		- 0.15	- 1	μΑ
l ₇	Amplifier Bias Current	$V_1 = 23V, V_7 = 22V$		- 0.15	- 1	μΑ
V _{IO}	Offset Voltage				7	mV
$\Delta V_{IO}/dt$	Offset Drift versus Temperature			- 10		μV/°C
GV	Voltage Gain		80			dB
V_{5L}	Output Saturation Voltage to GND (Pin 4)	I ₅ = 1.3A		1	1.6	V
V_{5H}	Output Saturation Voltage to Supply (Pin 6)	I ₅ = - 1.3A		1.6	2.2	V
V _{D5 - 6}	Diode Forward Voltage between Pins 5-6	I ₅ = 1.3A		1.4	2.1	V
V _{D3 - 6}	Diode Forward Voltage between Pins 3-6	I ₃ = 1.3A		1.7	2.5	V
V ₃₋₆	Voltage Drop between Pins 3-6 (2nd part of flyback)	I ₃ = - 1.3A		2.9	3.6	V

APPLICATION CIRCUITS

AC COUPLING

3/5

APPLICATION CIRCUITS (continued)

DC COUPLING

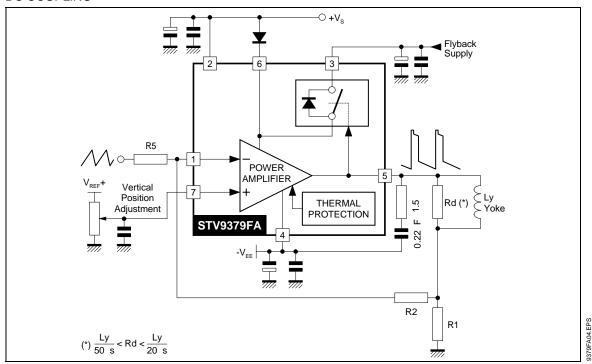


Figure 1: Output Transistors SOA (for secondary breakdown)

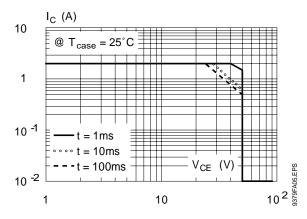
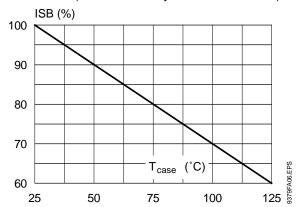
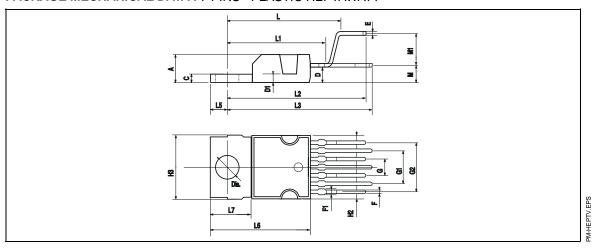




Figure 2: Secondary Breakdown Temperature
Derating Curve
(ISB = secondary breakdown current)

4/5

PACKAGE MECHANICAL DATA: 7 PINS - PLASTIC HEPTAWATT

Dimensions		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			4.8			0.189
С			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
E	0.35		0.55	0.014		0.022
F	0.6		08	0.024		0.031
F1			0.9			0.035
G	2.41	2.54	2.67	0.095	0.100	0.105
G1	4.91	5.08	5.21	0.193	0.200	0.205
G2	7.49	7.62	7.8	0.295	0.300	0.307
H2			10.4			0.409
H3	10.05		10.4	0.396		0.409
L		16.97			0.668	
L1		14.92			0.587	
L2		21.54			0.848	
L3		22.62			0.891	
L5	2.6		3	0.102		0.118
L6	15.1		15.8	0.594		0.622
L7	6		6.6	0.236		0.260
М		2.8			0.110	
M1		5.08			0.200	
Dia.	3.65		3.85	0.144		0.152

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1998 STMicroelectronics - All Rights Reserved

Purchase of I²C Components of STMicroelectronics, conveys a license under the Philips I²C Patent. Rights to use these components in a I²C system, is granted provided that the system conforms to the I²C Standard Specifications as defined by Philips.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco- The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.