

Features

- Support 2.125/4.25/8.5G fiber channel applications
- Up to 150m transmission on OM3 MMF
- 850nm VCSEL and PIN receiver
- SFI high speed electrical interface
- 2-wire interface with integrated Digital Diagnostic monitoring
- SFP+ MSA package with duplex LC connector
- Single +3.3V power supply
- Power consumption less than 0.85W
- Operating case temperature: -5~+85°C

Regulatory Compliance

Table 1 - Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge	MIL-STD-883E	Class 1(>1000V for SFI
(ESD) to the Electrical Pins	Method 3015.7	pins, >2000V for other pins.)
Electrostatic Discharge (ESD) to the	IEC 61000-4-2	Compatible with standards
Duplex LC Receptacle	GR-1089-CORE	Compatible with standards
Electromagnetic	FCC Part 15 Class B	
Electromagnetic	EN55022 Class B (CISPR 22B)	Compatible with standards
Interference (EMI)	VCCI Class B	
Immunity	IEC 61000-4-3	Compatible with standards
Lagar Fire Cofety	FDA 21CFR 1040.10 and 1040.11	Compatible with Class I laser
Laser Eye Safety	EN60950, EN (IEC) 60825-1,2	product.
RoHS	2002/95/EC 4.1&4.2	Compliant with standards note
KUNS	2005/747/EC	Compliant with standards

Note:

In light of item 5 in Annex of 2002/95/EC, "Pb in the glass of cathode ray tubes, electronic components and fluorescent tubes." and item 13 in Annex of 2005/747/EC, "Lead and cadmium in optical and filter glass.", the two exemptions are being concerned for Source Photonics transceivers, because Source Photonics transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.

Absolute Maximum Ratings

Table 2 - Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Storage Temperature	Ts	-40	-	+85	°C	
Supply Voltage	V _{CC}	-0.5	-	+4.0	V	
Operating Relative Humidity	RH	10	-	+90	%	

Recommended Operating Conditions

Table 3 - Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Operating Case Temperature	T _C	-5	-	+85	°C	
Power Supply Voltage	V _{cc}	3.14	3.3	3.46	V	
Power Supply Current	I _{CC}	-	-	240	mA	
Power Dissipation	P _D	-	-	0.85	W	
Bit Rate	BR	2.125		8.5	Gbps	
Transmission Distance (8.5 Gbps)	TD	0.5	-	50	m	1
Transmission Distance (4.25 Gbps)	TD	0.5	-	150	m	1
Transmission Distance (2.125 Gbps)	TD	0.5	-	300	m	1
Transmission Distance (8.5 Gbps)	TD	0.5	-	150	m	2
Transmission Distance (4.25 Gbps)	TD	0.5	-	380	m	2
Transmission Distance (2.125 Gbps)	TD	0.5	-	500	m	2

Notes:

- 1. Measured on OM2 MMF fiber
- 2. Measured on OM3 MMF fiber

Optical Characteristics

Table 4 – Optical Characteristics

Transmitter							
Parameter	Symbol	Min.	Typical	Max.	Unit	Notes	
Centre Wavelength	λ _C	840	-	860	nm		
Average Output Power	P _{out}	-8.2	-	-	dBm	1,2	
Optical Modulation Amplitude @ 2.125 Gb/s	P _{OMA@2.125G}	196	-	-	μW	3	
Optical Modulation Amplitude @ 4.25 Gb/s	P _{OMA@4.25G}	247	-	-	μW	3	
Optical Modulation Amplitude @ 8.5 Gb/s	P _{OMA@8.5G}	302	-	-	μW	3	
Spectral Width	Δλ	-	-	0.65	nm		
Transmitter Waveform and Dispersion Penalty	TWDP	-	-	4.2	dB	4	

T _R /T _F	-	-	150	ps	
T _R /T _F			90	ps	
RIN	-	-	-128	dB/Hz	
DJ	-	-	56.5	ps	
TJ	-	-	119.6	ps	
DJ	-	-	28.2	ps	
TJ	-	-	59.8	ps	
Compliant	with FC	C-PI-4 (RE	V 8.00)		
Receiver					
λc	840	-	860	nm	
Pin	-	-	0	dBm	
P _{IN-SENS(OMA)}	49	-	-	μW	
P _{IN-SENS(OMA)}	61	-	-	μW	
P _{IN-SENS(OMA)}	76	-	-	μW	
P _{IN-SENS_STRESS(OMA)}	83	-	-	μW	5
P _{IN-SENS_STRESS(OMA)}	126	-	-	μW	5
P _{IN-SENS_STRESS(OMA)}	148	-	-	μW	5
R _{LOSS}	12	-	-	dB	
LOS _A	-25	-	-	dBm	
LOS _D	-	-	-13	dBm	
LOS _H	0.5	-	_	dB	
	T _R /T _F RIN DJ TJ DJ TJ Compliant Receiver λ _C P _{in} P _{IN-SENS(OMA)} P _{IN-SENS(OMA)} P _{IN-SENS_STRESS(OMA)} P _{IN-SENS_STRESS(OMA)} P _{IN-SENS_STRESS(OMA)} R _{LOSS} LOS _A LOS _D	T _R /T _F RIN - DJ - TJ - DJ - TJ - DJ - TJ - Compliant with FC Receiver λ _C 840 P _{in} - P _{IN-SENS(OMA)} 49 P _{IN-SENS(OMA)} 61 P _{IN-SENS(OMA)} 76 P _{IN-SENS_STRESS(OMA)} 76 P _{IN-SENS_STRESS(OMA)} 126 P _{IN-SENS_STRESS(OMA)} 148 R _{LOSS} 12 LOS _A -25 LOS _D -	T _R /T _F RIN DJ TJ DJ TJ Compliant with FC-PI-4 (RE Receiver λ _C 840 P _{IN-SENS(OMA)} 49 - P _{IN-SENS(OMA)} 61 - P _{IN-SENS_STRESS(OMA)} 76 - P _{IN-SENS_STRESS(OMA)} 83 - P _{IN-SENS_STRESS(OMA)} 126 - P _{IN-SENS_STRESS(OMA)} 148 - R _{LOSS} 12 - LOS _A -25 - LOS _D	T _R /T _F 90 RIN - -128 DJ - - 56.5 TJ - 119.6 DJ - - 28.2 TJ - - 59.8 Compliant with FC-PI-4 (REV 8.00) Receiver λ _C 840 - 860 P _{in} - - 0 P _{IN-SENS(OMA)} 49 - - P _{IN-SENS(OMA)} 61 - - P _{IN-SENS_STRESS(OMA)} 83 - - P _{IN-SENS_STRESS(OMA)} 126 - - P _{IN-SENS_STRESS(OMA)} 148 - - R _{LOSS} 12 - - LOS _A -25 - - LOS _D - - -13	T _R /T _F 90 ps RIN 128 dB/Hz DJ 56.5 ps TJ 119.6 ps DJ 59.8 ps DJ 59.8 ps TJ 59.8 ps Compliant with FC-PI-4 (REV 8.00) Receiver

Notes:

- 1. Maximum Pout is the lesser of Class 1 safety limits (CDRH and EN 60825) or maximum receiver power
- 2. Into 50/125 µm multi-mode fiber
- 3. Enables smaller ER at higher average power
- 4. At 8.5 Gb/s
- 5. For 50/125 μm OM3 fiber

Electrical Characteristics

Table 5 - Electrical Characteristics

Transmitter							
Parameter	Symbol	Min.	Typical	Max.	Unit	Notes	
Differential Data Input Amplitude	$V_{IN,P-P}$	180	-	1200	mVpp		
Input Differential Impedance	Z _{IN}	85	100	115	Ω		
Transmit Enable Voltage	V _{IL}	GND	-	GND+0.8	V		
Transmit Disable Voltage	V _{IH}	2.0	-	V _{CC}	V		
Receiver							
Differential Data Output Amplitude	$V_{OUT,P-P}$	370	-	850	mVpp		
Total Jitter @ 2.125 Gb/s	TJ _{@2.125G}	-	-	123.5	ps		
Deterministic Jitter @ 2.125 Gb/s	DJ _{@2.125G}	-	-	47.1	ps		

Total Jitter @ 4.25 Gb/s	TJ _{@4.25G}	-	-	61.8	ps	
Deterministic Jitter @ 4.25 Gb/s	DJ _{@4.25G}	-	-	23.5	ps	
Total Jitter @ 8.5 Gb/s	TJ _{@8.5G}	-	-	83.5	ps	
Deterministic Jitter @ 8.5 Gb/s	DJ _{@8.5G}	-	-	49.4	ps	
Pulse Width Shrinkage @ 8.5 Gb/s	DDPWS	-	-	42.4	ps	
Rx_LOS Normal	V _{OL}	GND	-	GND+0.8	V	
Rx_LOS Fault	V _{OH}	2	-	V _{CC}	V	

Digital Diagnostic Monitoring

Table 6 - Digital Diagnostic Specifications

Accuracy							
Parameter	Symbol	Min.	Typical	Max.	Unit	Notes	
Transceiver Internal Temperature	T _{INT}	-	-	3	°C	1	
Input Internal Supply Voltage	V _{INT}	-	-	100	mV	2	
T _X Bias Current	I _{INT}	-	-	10	%		
T _X Output Power	P _T	-	-	3	dB	3	
R _X Output Power	P _R	-	-	3	dB	4	

Notes:

- 1. Valid from -5°C to 85°C
- 2. Valid from 3 V to 3.6 V
- 3. Into 50/125 μ m multi-mode fiber, valid from -9 dBm to -2 dBm P_{AVG}
- 4. Into 50/125 μm multi-mode fiber, valid from -18 dBm to -0 dBm P_{AVG}

Recommended Host Board Power Supply Circuit

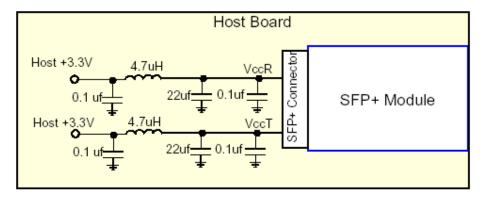


Figure 1, Recommended Host Board Power Supply Circuit

Recommended Interface Circuit

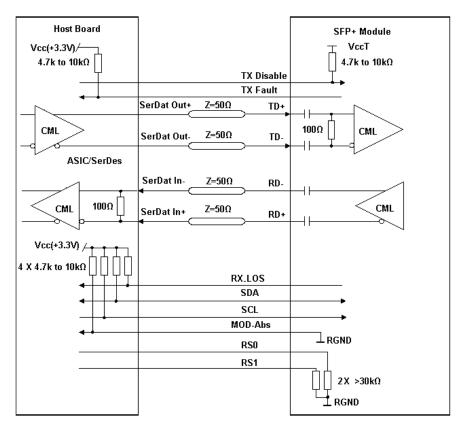


Figure 2, Recommended Interface Circuit

Pin Definitions

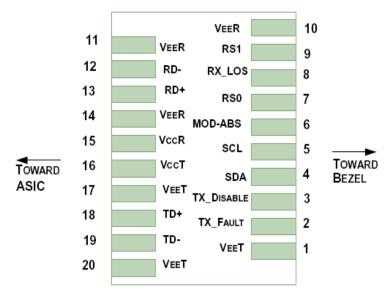
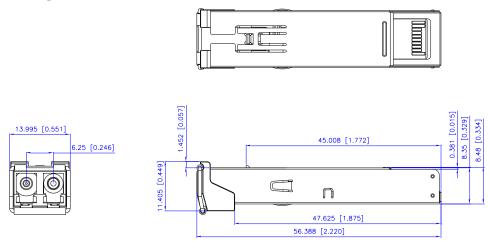


Figure 3, Pin View

Table 7-Pin Function Definitions

Pin	Symbol	Name/Description	Note
1	V _{EE} T	Module Transmitter Ground	1
2	TX_FAULT	Module Transmitter Fault	2
3	TX_DISABLE	Transmitter Disable; Turns off transmitter laser output	3
4	SDL	2-Wire Serial Interface Data Line (MOD-DEF2)	4
5	SCL	2-Wire Serial Interface Clock (MOD-DEF1)	4
6	MOD_ABS	Module Absent, connected to V _{EE} T or V _{EE} R in the module	4
7	RS0	Rate Select 0, NOT implement	5
8	RX_LOS	Receiver Loss of Signal Indication	4
9	RS1	Rate Select 1, NOT implement	5
10	V _{EE} R	Module Receiver Ground	1
11	V _{EE} R	Module Receiver Ground	1
12	RD-	Receiver Inverted Data Output	
13	RD+	Receiver Non-Inverted Data Output	
14	V _{EE} R	Module Receiver Ground	1
15	V _{CC} R	Module Receiver 3.3 V Supply	
16	V _{CC} T	Module Transmitter 3.3 V Supply	
17	V _{EE} T	Module Transmitter Ground	1
18	TD+	Transmitter Non-Inverted Data Input	
19	TD-	Transmitter Inverted Data Input	
20	V _{EE} T	Module Transmitter Ground	1


Notes:

1. The module ground pins are isolated from the module case.

- 2. TX_FAULT is an open collector/drain output. The pins must be pulled up with $4.7k\Omega-10k\Omega$ resistor. A high output indicates a transmitter fault. A low output indicates normal operation. In the low state, the output is pulled to < 0.8V.
- 3. The pin is pulled up to $V_{CC}T$ with a 4.7K-10K Ω resistor in the module. When TX_Disable is > 2.0V, laser output is disabled. When TX_Disable is < 0.8V, laser is enabled.
- 4. The pins must be pulled up with 4.7K-10Kohms to a voltage between 3.14V and 3.46V on host board.
- 5. The pins are pulled low to $V_{CC}T$ with a >30k Ω resistor in the module.

Mechanical Diagram

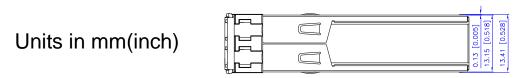


Figure 4, Mechanical Diagram of SFP+

Order Information

Table 8 - Order Information

Part No.	Application	Data Rate	Laser Source	Fiber Type
SPP-8F-SR-EDFM	8G Fiber Channel	2.125G~8.5G	850nm VCSEL	MMF

Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures. **Laser Safety:** Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

Legal Notice

IMPORTANT NOTICE!

All information contained in this document is subject to change without notice, at Source Photonics's sole and absolute discretion. Source Photonics warrants performance of its products to current specifications only in accordance with the company's standard one-year warranty; however, specifications designated as "preliminary" are given to describe components only, and Source Photonics expressly disclaims any and all warranties for said products, including express, implied, and statutory warranties, warranties of merchantability, fitness for a particular purpose, and non-infringement of proprietary rights. Please refer to the company's Terms and Conditions of Sale for further warranty information.

Source Photonics assumes no liability for applications assistance, customer product design, software performance, or infringement of patents, services, or intellectual property described herein. No license, either express or implied, is granted under any patent right, copyright, or intellectual property right, and Source Photonics makes no representations or warranties that the product(s) described herein are free from patent, copyright, or intellectual property rights. Products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. Source Photonics customers using or selling products for use in such applications do so at their own risk and agree to fully defend and indemnify Source Photonics for any damages resulting from such use or sale.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. Customer agrees that Source Photonics is not liable for any actual, consequential, exemplary, or other damages arising directly or indirectly from any use of the information contained in this document. Customer must contact Source Photonics to obtain the latest version of this publication to verify, before placing any order, that the information contained herein is current.

Contact

U.S.A. Headquarters	China	Taiwan
20550 Nordhoff Street	Building #2&5, West Export Processing Zone	9F, No 81, Shui Lee Rd.
Chatsworth, CA 91311	No. 8 Kexin Road, Hi-Tech Zone	Hsinchu, Taiwan, R.O.C.
USA	Chengdu, 611731, China	Tel: +886-3-5169222
Tel: +1-818-773-9044	Tel: +86-28-8795-8788	Fax: +886-3-5169213
Fax: +1-818-773-0261	Fax: +86-28-8795-8789	

© Copyright Source Photonics, Inc. 2007~2010

All rights reserved