
How Fast Do You Want to Go?

Downloaded from **Elcodis.com** electronic components distributor

Never stop thinking.

IRC 1802 IrDA Communications Controller for SIR, MIR, FIR and VFIR

Features

- IrDA 1.x, HP-SIR, and Sharp ASK compliant
- Supports all IrDA data rates up to Very Fast IR (VFIR), 16 Mb/s
- High performance hardware based IrDA SIR Link Access Protocol (IrLAP)
- Host Direct Memory Access (DMA) and Shared Memory modes
- Burst packet transmission and reception for all data rates
- Hardware transceiver Serial Interface (SIF) programming
- Direct interface connection to all vendors Infrared Transceiver modules
- Support for dual channel transceivers
- General purpose I/O pins for external device control
- ISA Plug and Play (PnP) and PCMCIA bus interface
- Single 48 or 96 MHz external clock input
- 3.3 V supply voltage
- Small 100-pin Thin Quad Flat Pack (TQFP) package

The grat (VFI cont infra SIR high all s spec The for driv Typi in n

in n ers, and envi

Ar

The Con mod IRC The

infra

divie FIR sub: moc The

pop a hi rece

Acce

haro

2 er R

ery

ΏA

nd

The IRC1802 is a low-cost, highly integrated SIR, MIR, FIR and Very Fast Infrared (VFIR) communications controller capable of supporting IrDA 1.x infrared modulation schemes including HP-SIR and Sharp ASK. The IrDA 1.x low and high-speed communication modes support all speeds up to 16 Mb/s (VFIR). All speeds can use Direct Memory Access. The same drivers are used for all speeds for receiving and transmitting, simplifying

Typical applications include data transfer in notebook computers, desktops computers, printers, access-points, digital cameras and peer-peer or client-server network environments.

driver programming and speed upgrades.

'S

al

Architecture

The IRC1802 Infrared Communications Controller consists of an Infrared Core module and a Host Interface module (see IRC 1802 Block Diagram).

The Infrared Core module controls all infrared communication functions. It is divided into four subsystems: SIR, MIR, FIR and Very Fast Infrared (VFIR). Each subsystem consists of a controller and a modem.

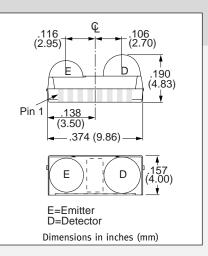
The SIR subsystem improves on the popular 16550 UART scheme by combining a high performance DMA asynchronous receiver-transmitter with the hardware Link Access Protocol (IrLAP) for a complete hardware SIR packet transfer. The Host Interface module connects to an ISA bus or PCMCIA bus. It contains the bus interface logic, system configuration registers, power management circuitry, and local DMA control functions. The IRC1802 supports two modes of block data transfer: Host DMA and Shared Memory Buffer. In Host DMA mode, data is transferred using the host system's DMA controller. In Shared Memory mode, data is first buffered in local RAM, then read by the host during receive-mode or shifted out to the infrared link during transmitmode.

Shared Memory and Host DMA modes Shared Memory mode is a Local DMA mode with 32 Kbytes SRAM locally.

In this mode, both the controller and host have access to a shared block of memory to which data can be read or written. During packet transmitting or receiving there is no data transfer on the system bus.

For packet sending, the host copies the packet to the Tx buffer of shared memory, initializes the Transmit Request and waits for the End of Transmit, EOTR, condition to generate an interrupt.

For packet receiving, the host waits for the End of Receive, EOR, interrupt condition and copies packets received from the Rx buffer of shared memory. The programming is simple and the operation is fast. Burst packet transmission and reception support for all data rates Burst data transfer consisting of multiple IrDA frames are accomplished by adding control headers to the desired outgoing data frames and arranging them sequentially in the transmit buffer of the host's or local shared memory.


The Tx and Rx Frame Control Modules control transmit and receive functions. The 32 Kbytes shared memory can keep seven IrDA frames with size of 2048 bytes.

Direct Interface to both Legacy and Digital Serial Interface (SIF) Transceivers

The Serial Interface (SIF) module allows the controller to interface directly to Infineon's IRM1600 transceiver.

This transceiver supports new features like speed mode select (VFIR), programmable modulation setting, LED power control, receiver sensitivity and power management.

IRMS1600 SIDE VIEW

Preliminary Product Description

16Mb/s Infrared Data Transceiver

Infineon Technologies transceiver for VFIR 16 Mb/sec is pin compatible with our Slimline series of IrDT transceivers. Available in side view only, it is part of the only complete VFIR solution available on the market. The device combines an LED, photodiode, and VFIR ASIC. The ASIC has been designed to support VFIR, FIR, MIR, SIR, and ASK modes. It is ideal for Notebook, Desktop, Printer and Digital Video applications.

IRMS1600 Pin Functions

PIN #	FUNCTION	PIN #	FUNCTION				
1	LED Anode	5	SD/SCLK				
2	LED Cathode	6	V _{cc}				
3	TxD	7	*Do Not Connect				
4	RxD	8	GND				
	*Pin 7 internally grounde						

Features

- Compliant with IrDA Specification
- Data Rates 9.6Kb/s to 16Mb/s
- Supply Voltage 2.5V to 5.5V
- Standby Current 3.omA(max)
- Shut Down Current 50 nA(max)
- Slimline Package
 H 4.omm x D 4.8mm x L 9.8mm
- Digital Serial Interface

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	MIN	TYPICAL	MAX	UNIT	CONDITIONS			
V _{CC}	Supply Voltage	-0.5		5.5	V				
PD	Power Dissipation Average			550	mW				
Ts	Storage Temperature	-40		100	°C				
ILED	LED Current (Peak)			450	mA				
TxD	Transmission Input Voltage	-0.5		V _{CC} +0.3	V				

RECOMMENDED OPERATING CONDITIONS							
SYMBOL	PARAMETER	MIN	TYPICAL	MAX	UNIT	CONDITIONS	
V _{CC}	Supply Voltage	3.0	3.3	3.6	V		
T _A	Ambient Operating Temperature	-25		75	°C		

DC ELECTRICAL CHARACTERISTICS								
SYMBOL	PARAMETER	MIN	TYPICAL	MAX	UNIT	CONDITIONS		
I _{cc}	Supply Current; Standby			3.0	mA	Standby VFIR receive		
I _{cc}	Supply Current; Receiving	3	7	25	mA	Interface and optical input power dependent		
I _{SD}	Supply Current, Shutdown			50	nA			
I _{LED}	LED Current			100	mA			

RECEIVER PARAMETER

SYMBOL	PARAMETER	MIN	TYPICAL	MAX	UNIT	CONDITIONS
E _{MIN}	Detection Irradiance SIR	3	-	-	µW/cm ²	
E _{MIN}	Detection Irradiance MIR	3	-	-	µW/cm ²	
E _{MIN}	Detection Irradiance FIR	4	-	-	µW/cm ²	
E _{MIN}	Detection Irradiance VFIR	5	-	-	µW/cm ²	
tr,tf	Receiver Rise/Fall Time			20	ns	VFIR Mode
tr,tf	Receiver Rise/Fall Time			50	ns	SIR, MIR, FIR Mode

TRANS	TRANSMITTER PARAMETER								
SYMBOL	PARAMETER	MIN	TYPICAL	MAX	UNIT	CONDITIONS			
λ _P	Input Capacitance	850	870	900	nm				
α	Radiant Angle at Half Intensity	-15	+15	0					
le	Output Radiant Intensity	85	170	275	MW/sr	TxD=High, SD=Low, V _{CC} =3.oV, α = 0° and 15°, TA=25 C, 25% duty			

For samples, www.infineon.com/irdt

© Infineon Technologies Corp. 2000 All Rights Reserved **USA (California)** Syed Naqvi 408-456-4092 syed.naqvi@infineon.com

Europe (Germany) Walter Rothmund 49-941-202-1703 walter.rothmund@osram-os.com Japan (Tokyo) Hiromichi Kamijima 81-3-5449-6715 hiromichi.kamijima@infineon.com

Asia Pacific (Singapore) King Soon Lim 65-8400-832 king-soon.lim@infineon.com