

8-bit MCU with 1k program EPROM, 64-byte SRAM, 5-bit I/O port, Intelligent Charger Management Controller

Innovator of the Single-Chip Measurement IC

Fortune Semiconductor Corporation 富晶電子股份有限公司

28F., No.27, Sec. 2, Zhongzheng E. Rd., Danshui Town, Taipei County 251, Taiwan Tel. : 886-2-28094742 Fax : 886-2-28094874 www.ic-fortune.com

This manual contains new product information. Fortune Semiconductor Corporation reserves the rights to modify the product specification without further notice. No liability is assumed by Fortune Semiconductor Corporation as a result of the use of this product. No rights under any patent accompany the sale of the product.

Contents

1.	GENE	RAL DESCRIPTION
2.	FEAT	JRES5
3.	APPL	ICATIONS
4.	ORDE	RING INFORMATION
5.	PIN C	ONFIGURATIONS
	5.1	FS3862 SSOP16 Package6
	5.2	Pin Description
6.	FUNC	TIONAL BLOCK DIAGRAM
7.	ELEC	TRICAL CHARACTERISTICS
	7.1	Absolute Maximum Ratings
	7.2	D.C. Characteristics (VDD= 5.0V, Ta=25°C, unless otherwise noted)
8.	FUNC	TIONAL DESCRIPTION
	8.1	Typical Charging Conditions and Phases9
	8.2	Charging Application Circuit11
	8.3	Operation Flow Chart of Charging Application13
	8.4	The Architecture of FS386213
9.	MEMO	DRY ORGANIZATION14
	9.1	Program Memory Organization14
	9.1 9.2	Program Memory Organization
	9.2	Data Memory Structure
	9.2 9.3	Data Memory Structure
	9.2 9.3 9.4	Data Memory Structure 14 System Special Registers 15 Peripheral Special Registers 15
	9.2 9.3 9.4 9.5	Data Memory Structure 14 System Special Registers 15 Peripheral Special Registers 15 Power System 16
	9.29.39.49.59.6	Data Memory Structure 14 System Special Registers 15 Peripheral Special Registers 15 Power System 16 CCCTL 16
	 9.2 9.3 9.4 9.5 9.6 9.7 	Data Memory Structure 14 System Special Registers 15 Peripheral Special Registers 15 Power System 16 CCCTL 16 CVCTL 17
	9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9	Data Memory Structure 14 System Special Registers 15 Peripheral Special Registers 15 Power System 16 CCCTL 16 CVCTL 17 Comparator 18
	9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9	Data Memory Structure 14 System Special Registers 15 Peripheral Special Registers 15 Power System 16 CCCTL 16 CVCTL 17 Comparator 18 8-bits Timer 19
10.	9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11	Data Memory Structure 14 System Special Registers 15 Peripheral Special Registers 15 Power System 16 CCCTL 16 CVCTL 17 Comparator 18 8-bits Timer 19 LED and General I/O 20
	 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 CALIE 	Data Memory Structure 14 System Special Registers 15 Peripheral Special Registers 15 Power System 16 CCCTL 16 CVCTL 17 Comparator 18 8-bits Timer 19 LED and General I/O 20 External Reset 20
	 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 CALIE 	Data Memory Structure 14 System Special Registers 15 Peripheral Special Registers 15 Power System 16 CCCTL 16 CVCTL 17 Comparator 18 8-bits Timer 19 LED and General I/O 20 External Reset 20 BRATION 21
	 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 CALIE HALT 	Data Memory Structure 14 System Special Registers 15 Peripheral Special Registers 15 Power System 16 CCCTL 16 CVCTL 17 Comparator 18 8-bits Timer 19 LED and General I/O 20 External Reset 20 SRATION 21 AND SLEEP MODES 21
11.	 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 CALIE HALT 11.1 11.2 	Data Memory Structure 14 System Special Registers 15 Peripheral Special Registers 15 Power System 16 CCCTL 16 CVCTL 17 Comparator 18 8-bits Timer 19 LED and General I/O 20 External Reset 20 3RATION 21 AND SLEEP MODES 21 Halt Mode 21

	12.2	Struction Description	23
13.	PACK	AGE INFORMATION	30
	13.1	Package Outline & Dimensions	30
14.	REVIS	ION HISTORY	32

1. General Description

The FS3862 is a low-cost high-performance Li+ single-cell 4.2v/4.1v battery charger control IC which includes all the required constant-current and constant-voltage regulations of charge functions addressed for linear charger mode operations in typical four phases: pre-charging conditioning, constant current, constant voltage, and charge terminations (usually based on the minimum current reached). The maintenance re-charge (or called post-charge stage) proceeds if the full-charged battery voltage is once again lower than the desired full-capacity voltage because of consumptions of its capacity which occurs either at the battery's internal voltage drop across its terminals, or at the use of the battery.

This chip with built-in 8-bit RISC-type MCU with 1K-word OTP PROM and 64-Byte data RAM employs a minimum numbers of external transistor and passive resistor & capacitor devices to fulfill complete charger implementations at cost-effective solutions.

The available 16-pin SSOP-16 package is offered for balanced area and cost effective requirements for size-sensitive applications.

The FS3862 is suitable for the control of charge sequences of a variety of portable battery-powered applications, such as cellular phone's travel and base charger devices, digital camera, digital-video camcorder (DV), MP3 player ,etc.

2. Features

Ideal for the Li-ion/polymer Single-Cell 4.2v/4.1v charge control.

Built-in 8-bit RISC-typed MCU with 1K-word OTP program ROM and 64-Byte data RAM.

Integrated voltage and current regulation with programmable charge current.

Supports typical Li+ battery's charge sequences such as pre-charge (trickle-mode charge), C-C (constant-current charge), C-V (constant-voltage charge), charge terminations, and re-charge operations.

Batter than 1% charge voltage regulation accuracy. Charge operation can be monitored by the external host through the general I/O data bus.

2 LED output for charge status.

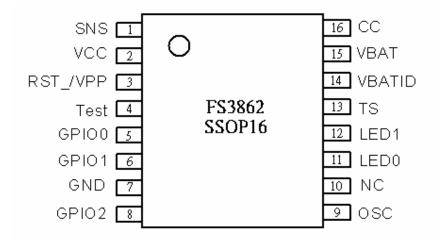
Optional Temp and battery ID input through voltage sense input.

Low-cost peripheral components of capacitor and resistor combinations for minimum BOM cost in manufacturing considerations.

Development kit of LQFP-64 ICE evaluation (EV) board and reference charge program available for prototype design and facilitating debug use. SSOP-16 Package.

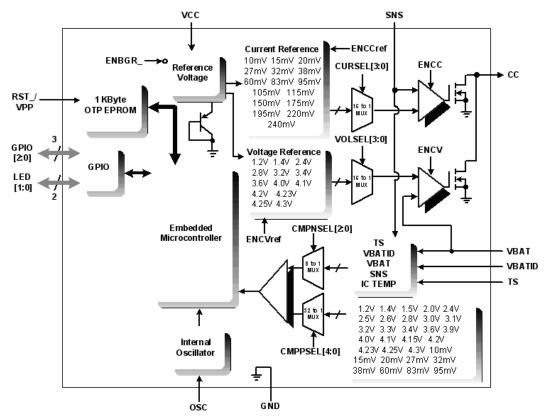
3. Applications

- Cellular phone external base or built-in charger
- MP3 player
- External charger through USB
- Digital still camera (DSC)
- Digital video camcorder (DV)


4. Ordering Information

Product Number	Description	Package Type							
FS3862-nnnV-POA	Customer's compiled hex code can be	SSOP-16							
	programmed by FSC or customer itself into								
	EPROM at factory before shipping.								

Note1: Code number (nnnV) is assigned for customer. Note2: Code number (nnn = 001~999); Version (V = A~Z).


5. Pin Configurations

5.1 FS3862 SSOP16 Package

5.2 Pin Description

Name	I/O	Pin No	Description
SNS	Ι	1	Current sensing using an external sensing resistor RSNS
VCC	I	2	Supply voltage
RST_/VPP	-	3	Active low reset or as active high OTP program write
TEST	-	4	Test mode input. Test=1 is the normal mode. Test Mode is initiated while Test=0 before reset. This pin is suggested pulled inactive high for regular operation without Test Mode.
GPIO[0]	I/O	5	General purpose bi-directional I/O pin 0
GPIO[1]	I/O	6	General purpose bi-directional I/O pin 1
GPIO[2]	I/O	8	General purpose bi-directional I/O pin 2
GND		7	Ground
OSC	I	9	Oscillator input. Connect to an external resistor R=200k Ω , the oscillator frequency is around 4.5MHz
NC	-	10	No connection.
LED0	0	11	Source or sink LED0 display
LED1	0	12	Source or sink LED1 display
TS	I	13	Battery temperature sensing input
VBATID I 14		14	Battery ID-type selected by the voltage drop across the series resistor. Battery ID is for identification of either thick, thin battery or other selected types
VBAT	Ι	15	Battery input voltage
CC	0	16	Charge control output to drive pass transistor

6. Functional Block Diagram

Note1:The Current Reference is referenced to VCC, not to GND.

7. Electrical Characteristics

7.1 Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage to Ground Potential	-0.3 to 6.0	V
Applied Input/Output Voltage	VSS-0.3 to VDD+0.3	V
Ambient Operating Temperature	-20 to +70	°C
Storage Temperature	-55 to +150	°C
Soldering Temperature, Time	260°C, 10 Sec	
ESD immunity, Human Body Mode / Machine Model	≥2kV / 200V	
Latch-up immunity	≥100mA	

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VCC	Recommend Operation Power Voltage		4.35	5.0	5.5	V
ICC1	Input VCC current on charge mode (regular operation)	VCC > VCC (min)		1	3	mA
ICC2	Input VCC current on sleep mode.	VCC > VCC (min)			25	uA
IBAT	Input VBAT current on sleep mode	VBAT>VCC; VCC is OFF VBAT=4.2V; VCC disconnect			100	uA
VIH	Digital I/O input high voltage	VCC Voltage applied 4.35v to 5.5v	2.5		5.5	V
VIL	Digital I/O input low voltage	VCC Voltage applied 4.35v to 5.5v	-0.3		0.8	V
lsink	Digital I/O output sink current	Output sink current of digital I/O pins set as output mode			20	mA
ISIIK	LED I/O output sink current	Output sink current of LED I/O pins set as output mode			20	mA
Isource	Digital I/O output source current	Output source current of digital I/O pins set as input mode			0.1	mA
Isource	LED I/O output source current	Output source current of LED I/O pins set as input mode	1		10	mA
Vref	Internal reference voltage	The oltage is defined by selected register	VREF (Target) -0.05	VREF (Target)	VREF (Target) +0.05	V
Vcref	Build in reference voltage temperature coefficient	TA=0~60°C		150		ppm/°C
FRC	Internal RC oscillator	External R=650kΩ		150		kHz

8. Functional Description

8.1 Typical Charging Conditions and Phases

The FS3862 uses flexible control schemes of charger's current and voltage regulations in conjunction with the built-in 8-bit RISC-type MCU core running at typical 100kHz for desired charge sequence controls during its operations. It is embedded with the constant-current and constant-voltage regulations as well as the additional facilities of PWM voltages for user-defined intermediate voltage levels used for various applications.

The external sensing resistors together with built-in parameters of the 8-bit MCU enable the device performing charge cycle operations through selections of small to larger charge current's amounts primarily for Li+ battery's linear mode charge applications, where the pulse-mode charging can be implemented using the internal hardware to control the charge sequences as implemented by the built-in MCU program code for various charger applications.

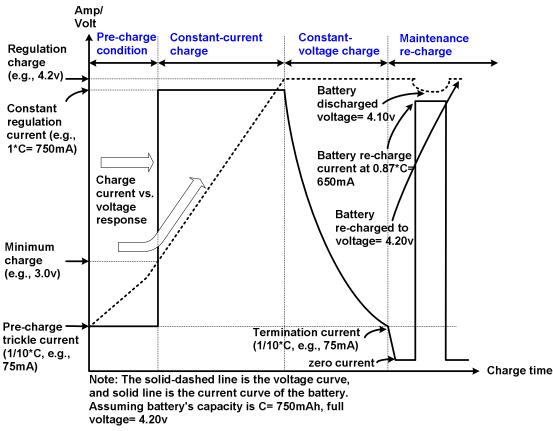


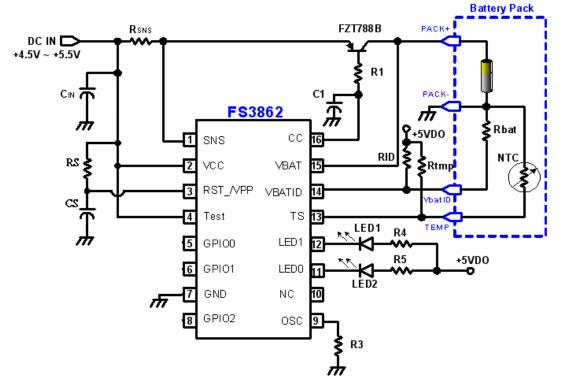
Fig.8-1 Typical Charge Profile

The typical Li+ charge steps are mainly four stages to conduct:

• **Pre-charge conditioning** (or called **trickle-mode charge**, as the Phase-0 stage): where the low-voltage discharged battery typical lower than 3.0v (or 2.8v, depending on how the battery's parameters are set) gets wake-up by applying typical 1/10 of full-rate charge current (a small amount of selectable charge current, also called trickle current, such as 85mA of 850mA charge current) until reaching the threshold voltage 3.0v. If the trickle current has been applied to the battery for more than 30 minutes by timer's measurement and not reaching the required 3.0v, it could be detected as bad battery without continuing to the next step of charge operations.

Rev. 1.3

• **Constant current charge** (as Phase-1, referred as **C-C stage**): where the programmable constant current ranging from typical 250mA to 1,050mA is applied to the battery, until the battery voltage reaches to the full-level at 4.2v or similar value such as 4.1v or even 4.0v. Some applications require the constant current charge at USB current of 500mA when its power line at 5v is applied, and such charge stage can be implemented with selection of the current regulation at 500mA by setting the corresponding C-C reference bit and current select values at the specified control registers, as explained in details descriptions in later section.


• **Constant voltage charge** (shown as Phase-2, referred as **C-V stage**): using the regulated voltage at 4.2v reached at the constant current charge stage until the termination condition is met at the final low termination top-off current at smaller amount (such as 100mA which can be programmable to select), and then charges to the full capacity when termination occurs. Selections of the C-V charge's voltage level can be made with corresponding C-V enable and voltage select values at the individual specified control registers.

• Maintenance re-charge (shown as Phase-3 stage): can be called Post-charge stage, which is to resume charges to the battery when the battery's voltage drops is more than 0.1v (i.e. The battery terminal voltage becomes 4.10v or less from its full voltage at 4.20v) as a result of the internal resistor during its idle state through some time. If the battery has been taken off for use on its portable device, there is no re-charge check to conduct since the state transitions to the initial state without the battery itself.

In some other cases, the preliminary charge stage which can be conducted as one step prior to the phase-0 to assure the battery to be through the charge sequences has working functions to perform. This stage would involve in applying constant-voltage charge pulses at defined level of 4.0v or so to the battery, which was examined to determine if it's at low voltage of 2.5v or less. The charge pulses applied to the battery for a short period of 15 intervals with 10 seconds high (at 4.0v voltage beats) and 5 seconds low (ground) each to examine if the battery voltage still remain low at 2.5v or less, which is then considered as defective and should be discarded.

Sometimes another additional check-up procedure follows the termination of the C-V stage to assure the battery in proper waiting stage for operation. That is to have the battery stay idle from its charge termination at full voltage of 4.20v (or 4.1v, depending on the battery's manufacturer's parameters). Then the battery stays in for additional 10 (or 15, also an adjustable parameter) minutes, and then its voltage is examined to assure the terminal voltage won't be decreased to lower than 4.05v (or 3.95v if the situation prevails), then the battery is also determined as a defective one without reliable performance since it could be losing more than 0.15v within a short period of just 10 (or 15) minutes. These check-up procedures are optional.

In brief summary, the typical Li+ battery charger's procedures could be summarized in the following few steps: pre-charge conditioning, constant-current (C-C), constant voltage (C-V) stage, charge termination and monitor to re-charge, etc. There might have some individual charge's current- or voltage-control schemes within the designated step to perform.

8.2 Charging Application Circuit

Fig.8-2 FS3862 Type Application Circuit

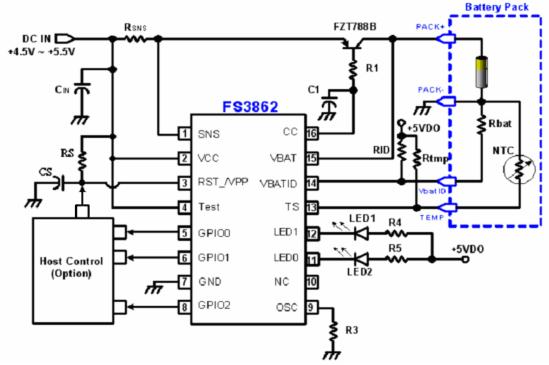


Fig.8-3 FS3862 Host Control Application Circuit

Rev. 1.3

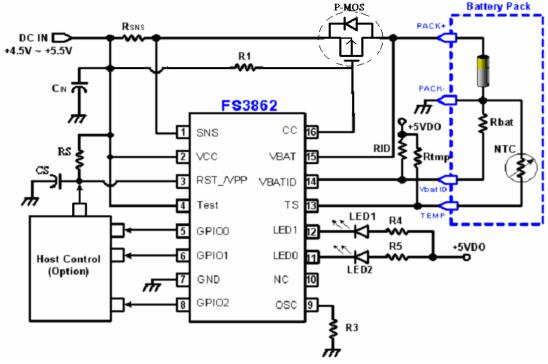
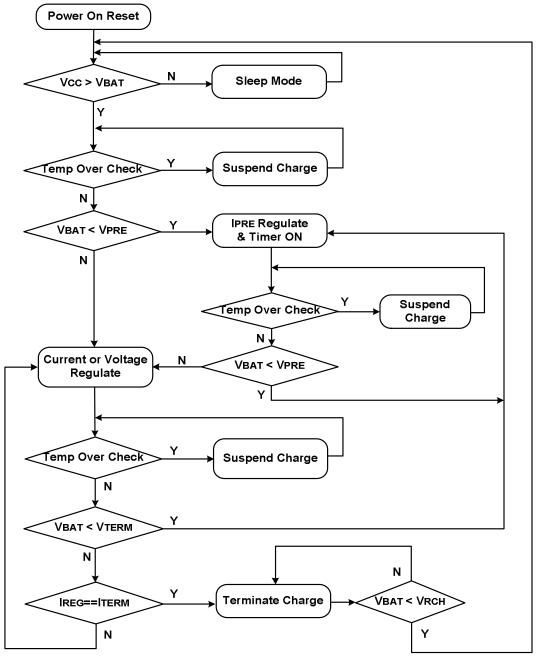



Fig.8-4 FS3862 P-MOS Application Circuit

The Fig.8-2 shows the typical FS3862 application circuit used at base or travel charger devices of a variety of cellular phone and other portable devices. The above application circuitry shows the chip connected with an one-cell Li+ 4.2v battery, which features battery ID (at the VBATID input pin) and temperature sense output (at TS pin) for relevant controls. Interface to external host is optional at the general I/O bus pins with connections to the host side which commands the base charger with monitor facilities to control the charger operations. The use of PNP or PMOS (Fig.8-4) as the pass transistor realizes the control of C-C and/or C-V mode current/voltage regulations.

8.3 Operation Flow Chart of Charging Application

Fig.8-5 Typical operation flow chart

8.4 The Architecture of FS3862

The detailed architecture diagram of the FS3862 has already shown on Fig.8-1 for illustrations of its operations by the functional blocks, where the major facilities are constant-voltage (C-V) and constant-current (C-C) reference look-up table and regulation units as controlled by the MCU to realize the Li+ battery charge schemes. The FS3862 charger controller functions with illustrations of the current and voltage regulations, MCU, OTP ROM, and comparator implementing the linear-mode charge control.


Rev. 1.3

9. Memory Organization

FS3862 has an 1k x 16bits program memory space and a 6 level depth 12bits Stack Register. The Start up/Reset Vector is at 0x0000H. When FS3862 is started or its program is reset, the Program Counter will point to Reset Vector. The Interrupt Vector is at 0x0004H. No matter what ISR is processed, the Program Counter will point to Interrupt Vector.

9.1 Program Memory Organization

CPU has a 10-bit program counter capable of address up to 1k x 16 program memory space. The reset vector is at 0000H and the interrupt vector is at 0004H.

9.2 Data Memory Structure

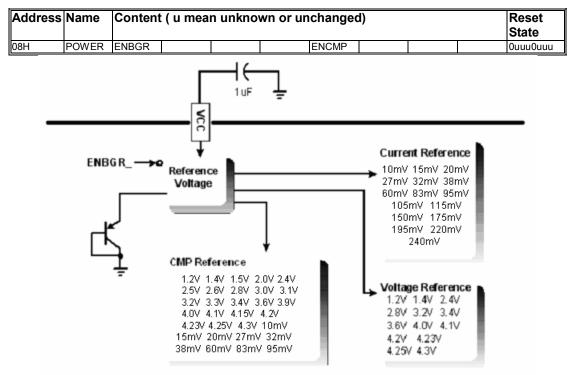
FS3862 has a 64 byte SRAM for Data Memory. The data memory is partitioned into three parts. The area with address 00h~07h is reserved for system special registers, such as indirect address, indirect address pointer, status register, working register, interrupt flag, interrupt control register. The address 08h~1Fh areas are peripheral special registers, such as I/O ports, timer, ADC, signal conditional network control register, LCD driver. The address 80h~BFh areas are general data memory.

Start Address	End Address	Data Memory
0Х00Н	0X07H	System Special Registers
0X08H	0X1FH	Peripheral Special Registers
0X80H	0XBFH	General Data Memory

9.3 System Special Registers

The System Special Registers are designed to complete CPU Core functions, and consists of indirect address, indirect address pointer, status register, work register, interrupt flag, and interrupt control register.

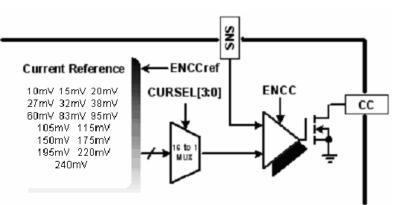
Address	Name	Conten	content (u mean unknown or unchanged)								
00H	IND0	Use conte	nts of FSR	0 to addre	ss data men	nory				սսսսսսս	
01H	IND1	Use conte	nts of FSR	1 to addre	ss data men	nory				սսսսսսս	
02H	FSR0	Indirect da	ata memory	y, address	point 0					սսսսսսս	
03H	FSR1	Indirect da	ata memory	y, address	point 1					սսսսսսս	
04H	STATUS						DC	С	Z	սսսսսսս	
05H	WORK	WORK re	gister							սսսսսսսս	
06H	INTF							VDDIF	TMIF	00000000	
07H	INTE	GIE						VDDIE	TMIE	00000000	
08h~1Fh	08h~1Fh Peripheral special registers										
80h~BFh											


• The IND[1:0] registers at data memory address are not physical registers. Any instruction using the IND[1:0] registers actually access the data pointed by the FSR[1:0] registers.

- Indirect addressing pointers FSR0 and FSR1 correspond to IND0 and IND1 respectively.
- Use contents of FSR0 (IND0: Address 00H) or FSR1 (IND1: Address 01H) to address data memory.
- The STATUS register contains the arithmetic status of the ALU.
- **DC**: Digit Carry Flag, for ADDWF(C) and SUBWF(C).
 - 1 = A carry-out from the 4th low order bit of the result occurred.
 - 0 = No carry-out from the 4th low order bit of the result.
- **C** : Carry Flag.(~Borrow)
- Z : Zero Flag.
 - 1 = The result of an arithmetic or logic operation is zero.
 - 0 = The result of an arithmetic or logic operation is not zero.
- WORK : Store temporary data.
- **GIE** : Global interrupt enable.
- VDDIF, VDDIE : VDD > VBAT Interrupt flag and enable. Used when there is only VBAT and VDD is off.VDDIF can wake up MCU if MCU is in sleep mode.
- TMIF, TMIE: 8-bit Timer Interrupt flag and enable.

Address	Name	Content (u mean unknown or unchanged)									
		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	State	
08H	POWER	ENBGR_	-	-	-	ENCMP	-	-	-	0uuu0uuu	
09H	RESULT	-	-	-	-	CMPOUT	-	-	VDDIN	uuuu0uu0	
0AH	CCCTL	ENCCref	ENCC	-	-		CURS	EL[3:0]		00uu0000	
	CVCTL	ENCVref	ENCV	-	-		VOLS	EL[3:0]		00uu0000	
0CH	CMPSEL	C	MPNSEL[2:0	D]		CMPPSEL[4:0]				00000000	
10H	TMOUT				ТМО	UT[7:0]				00000000	
11H	TMCON	TRST	-	-	-	TMEN		INS[2:0]		0uuu0000	
12H	LEDCTL	LED1EN	LED1	LED0EN	LED0	-	GPIO2OEN	GPIO2	GPIO2PU	000u000	
13H	GPIO	-	- GPI010EN GPI01 GPI01PU - GPI000EN GPI00 GPI00PU					GPIO0PU	u000u000		
14H		Unimplemented								นนนนนนน	
15H					For facto	ry use only	/			uuu00000	

9.4 Peripheral Special Registers


9.5 Power System

- ENBGR_=0 is enable,"1" is Disable; This bit is active LOW enable.
- **ENBGR**=0 is enable Voltage and Current and Comparator regulations.
- Before enabling ENCCref or ENCVref and ENCMP, ENBGR_ must be set.

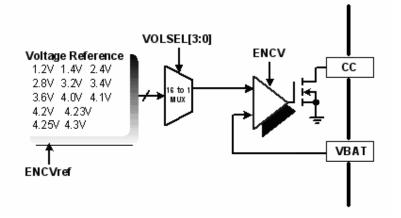
9.6 CCCTL

Address	Name	Content	Reset State					
0AH	CCCTL	ENCCref	CCref ENCC CURSEL[3:0]					

• The Current Reference is referenced to VCC, not to GND.

• Enable ENCCref can be constant current regulation reference current.

• ENCC=1 Enables the constant current regulation for constant current charge with desired current amount selected.

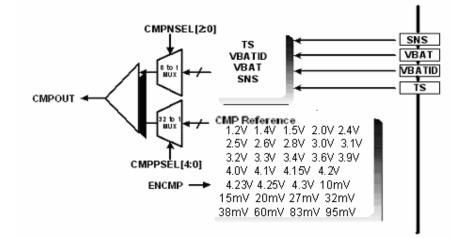

- Select CURSEL[3:0] set constant current regulation reference current.
- The regulation current accuracy is ±10% (unless otherwise noted).
- If Enables ENCC, ENCV must be Disables.
- Current sensing using an external sensing resistor RSNS=0.22ohm.

• Through selecting V_{RSNS}, you can decide the charge current. (V_{RSNS}/ RSNS=Charge Current) is the formula of V_{RSNS} converting to the current value.

CURSEL[3:0]	0000	0001	0010	0011	0100	0101	0110	0111
V _{RSNS} Select	10mV	15mV	20mV	27mV	32mV	38mV	60mV	83mV
	±4mV	±4mV	±4mV	±4mV	±4mV	±4mV	±6mV	±8mV
換算成電流値	27mA	50mA	73mA	105mA	127mA	155mA	245mA	341mA
	~64mA	~86mA	~109mA	~141mA	~164mA	~191mA	~300mA	~414mA
CURSEL[3:0]	1000	1001	1010	1011	1100	1101	1110	1111
V _{RSNS} Select	95mV	105mV	115mV	150mV	175mV	195mV	220mV	240mV
	±9mV	±10mV	±11mV	±15mV	±17mV	±20mV	±22mV	±24mV
換算成電流値	391mA	432mA	473mA	614mA	718mA	795mA	900mA	982mA
	~473mA	~523mA	~573mA	~750mA	∼873mA	∼977mA	~1100mA	~1200mA

9.7 CVCTL

Address	Name	Content	(u mea	n unknov	wn or un	changed)	Reset State
0BH	CVCTL	ENCVref	ENCV	-	-	VOLSEL[3:0]	00uu0000



- Enable ENCVref can be constant voltage regulation reference current.
- ENCV=1 enables the constant voltage regulation for constant voltage charge with desired voltage amount selected.
- select VOLSEL[3:0] set constant voltage regulation reference voltage.
- The regulation voltage accuracy is ±1%.
- If enables ENCV, ENCC must be Disables.

VOLSEL [3:0]	0000	0001	0010	0011	0100	0101	0110	0111
Select	1.2V	1.4V	2.4V	2.8V	3.2V	3.4V	3.6V	4.0V
VOLSEL [3:0]	1000	1001	1010	1011	1100	1101	1110	1111
Select	4.1V	4.2V	4.23V	4.25V	4.3V	Reserved	Reserved	Reserved

9.8 Comparator

Address	Name	Content	(u mea	n unknov	wn or unc	hanged	1)			Reset State
08H	POWER					ENCMP				0uuu0uuu
09H	RESULT				C	CMPOUT			VDDIN	uuuu0uu0
0CH	CMPSEL	CN	IPNSEL[2	2:0]		CN	1PPSEL [4	:0]		0000000

• The comparator enable bit enables the internal comparator for comparison between the measured input parameters (such as the battery voltage, sensed charged current, battery temperature, etc.) and the pre-set current or voltage values selected by the comparator select **CMPPSEL[4:0]** (ADDRESS OCH).

• Also refer to ENCMP (ADDRESS 08H) and CMPOUT (ADDRESS 09H) register bits.

• Enable **ENCMP** can be constant current and voltage regulation reference current.

• The bit **CMPOUT** is the compared output and would be set high on comparator's measured input value (like current across the sense resistor Rsns with selecting the desired measured item by setting the **CMPNSEL[2:0]**) match exactly with the positive input of the selected reference value.

• The **VDDIN** status indicator (Read Only) of supply voltage VCC greater than VBAT, i.e. VDDIN is set high when VCC > VBAT. If there is no VCC and only the VBAT of battery is connected, then the VDDIN is set inactive low.

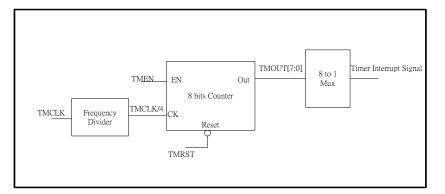
• CMPNSEL[2:0] select comparator negative input.

CMPNSEL [2:0]	000	001	010	011	100	101	110	111
Select	TS	VBATID	VBAT	SNS	ICTEMP	Reserved	Reserved	Reserved

TS The voltage of external thermistor, with either PTC (positive temperature) or NTC (negative temperature) coefficient, and is compared with VPWM for temperature measurements and subsequent control actions.

VBATID The voltage of external Battery ID, and is compared with VPWM for determining the battery's types before charges.

VBAT Battery voltage and will be compared with 2.5V, 2.6V, 3.0V, 3.9V,....4.25V, 4.3V, also shown on the voltage regulations.


SNS The current sensing voltage and will be compared with the 50mA, 100mA, 150mA to determine the termination current.

• CMPPSEL[4:0] select comparator positive input.

· · ·								
CMPPSEL [4:0]	00000	00001	00010	00011	00100	00101	00110	00111
Select	Reserved	1.2V	1.4V	1.5V	2.0V	2.4V	2.5V	2.6V
CMPPSEL [4:0]	01000	01001	01010	01011	01100	01101	01110	01111
Select	2.8V	3.0V	3.1V	3.2V	3.3V	3.4V	3.6V	3.9V
CMPPSEL [4:0]	10000	10001	10010	10011	10100	10101	10110	10111
Select	4.0V	4.10V	4.15V	4.20V	4.23V	4.25V	4.3V	10mV ±4mV
CMPPSEL [4:0]	11000	11001	11010	11011	11100	11101	11110	11111
Select	15mV	20mV	27mV	32mV	38mV	60mV	83mV	95mV
Gelect	±4mV	±4mV	±4mV	±4mV	±4mV	±6mV	±8mV	±9mV

9.9 8-bits Timer

Address	Name	Content	Content (u mean unknown or unchanged)							Reset State
06H	INTF								TMIF	uuuuuu00
07H	INTE	GIE							TMIE	0uuuuu00
10H	TMOUT	TMOUT [TMOUT [7:0]							
11H	TMCON	TRST				TMEN		INS[2:0]		0uuu0000

- TMOUT [7:0] is the output of the 8-bit counter, read-only register.
- If set TRST=0, the MCU will reset the 8-bit counter. Then read TRST bit will get "1".
- TMEN=1, the 8-bit counter will be enabled. TMEN=0, the 8-bit counter will stop.
 Timer Clock source = 150KHz/32.
- INS [2:0] selects timer interrupt source.

INS	interrupt source	Timer Clock source = 150KHz/32
000	TMOUT[0]	Timer Clock source
001	TMOUT[1]	Timer Clock source/2
010	TMOUT[2]	Timer Clock source/4
011	TMOUT[3]	Timer Clock source/8
100	TMOUT[4]	Timer Clock source/16
101	TMOUT[5]	Timer Clock source/32
110	TMOUT[6]	Timer Clock source/64
111	TMOUT[7]	Timer Clock source/128

9.10 LED and General I/O

Address	Name	Content								Reset State
12H	LEDCTL	LED1EN	LED1	LED0EN	LED0	-	GPIO2OEN	GPIO2	GPIO2PU	000u000
13H	GPIO	-	GPI010EN	GPI01	GPI01PU		GPIO00EN	GPIO0	GPIO0PU	u000u000

• GPIO[N] is the data register of I/O port.

•LED[N] is the data register LED Display. can be as Source or sink LED[N] display.(10mA)

• LED[N]EN ="0": LED[N] is as input port, "1": LED[N] is as output port.

• GPIO[N]OEN ="0": GPIO [N] is as input port, "1": GPIO [N] is as output port.

• **GPIO[N]PU** : I/O ports with pull-up resistor enable control. GPIO[N]PU="0": GPIO[N] without pull-up resistor, "1": GPIO[N] with pull-up resistor.

• GPIO[N] Internal pull up 10k Ω .

9.11 External Reset

The CPU has a "RST_" pin for external reset usage. When "RST_" is in logic "low" state, the CPU will go into external reset status. The external R/C circuit for reset is shown as following. When VDD changes from "low" to "high", the CPU external reset status will be released, and the CPU will be in normal operating condition.

The signal from the "RST_" pin to CPU should remain in logic "low" state for more than 2µs to reset the CPU. If the signal from the "RST_" pin to CPU is in "low" state less than 2µs, the CPU will not be reset.

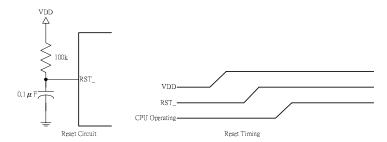
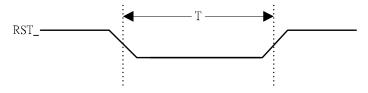



Fig.9-1: the Reset Circuit and the Reset Timing

T should > 2μ s to reset the CPU; or, the CPU will not be reset.

Fig.9-2: the Minimum Reset Period to Reset the CPU

10. Calibration

FS3862 provides a regular resource with 1% accuracy, which to put the calibrating vale into the Peripheral special registers (15H) of Data Memory Structure in IC. They would be burned into ICs during producing. In order to running the calibrating value before the program is running, the Start up /Reset Vector in Program Memory of FS3862 is set to 0000h. Therefore, please add up the following codes during programming:

ORG 0 MOVLW 0ffh MOVWF 15h

11. Halt and Sleep Modes

FS3862 supports low power working mode. When the user want FS3862 to do nothing and just stand by, FS3862 could be set to Halt mode or Sleep mode to reduce the power consumption by stopping the CPU core working. The two modes will be described below.

11.1 Halt Mode

After CPU executes a Halt command, CPU Program Counter (PC) stops counting until an interrupt command is issued. To avoid program errors caused by Interrupt Return, it is suggested to add a NOP command after Halt to guarantee the program's normal execution when turning back.

11.2 Sleep Mode

After CPU executes Sleep command, all oscillators stop working until an external interrupt command is issued or the CPU is reset. To avoid program errors caused by Interrupt return, it is suggested to add a NOP command after Sleep to guarantee the program's normal execution. The sleep mode power consumption is about 25uA.

To make sure that CPU consumes minimum power in Sleep mode, it is necessary to close all power blocks and analog circuits before issuing the Sleep command, and make sure that all I/O Ports are in VDD or VSS voltage levels.

It is recommended that users execute the following program before issuing the Sleep command:

MOVLW	080h	
MOVWF	POWER	; Power is off.
CLRF	GENIO	; Pull up resistor is disconnected and assigned to be input ports.
CLRF	LEDCTL	; Pull up resistor is disconnected and assigned to be input ports.
CLRF	CCCTL	; Current regulation reference current is off.
CLRF	CVCTL	; Voltage regulation reference current is off.
CLRF	INTF	; Clear the interrupt flags.
MOVLW	082h	
MOVWF	INTE	; Enable the external interrupt.
SLEEP		; Set the FS3862 into Sleep mode.
NOP		; Guarantee that the program works normally when CPU wakes up.

12. Instruction Set

The FS3862 instruction set consists of 37 instructions. Each instruction is a 16-bit word with an OPCODE and one or more operands. The detailed descriptions are shown as below.

Rev. 1.3

12.1 Instruction Set Summary

Table12-1: FS3862 Instruction Set

		Curele	Flog
Instruction	Operation	Cycle	Flag
	$[W] \leftarrow [W] + k$	1	C, DC, Z
ADDPCW	[PC] ← [PC] + 1 + [W]	2	None
	$[Destination] \leftarrow [f] + [W]$	1	C, DC, Z
ADDWFC f, d	$[Destination] \leftarrow [f] + [W] + C$	1	C, DC, Z
ANDLW k	$[W] \leftarrow [W] AND k$	1	Z
ANDWF f, d	$[Destination] \leftarrow [W] AND [f]$	1	Z
BCF f, b	[f] ← 0	1	None
BSF f, b	[f] ← 1	1	None
BTFSC f, b	Skip if [f] = 0	1, 2	None
BTFSS f, b	Skip if [f] = 1	1, 2	None
CALL k	Push PC + 1 and GOTO k	2	None
CLRF f	[f] ← 0	1	Z
CLRWDT	Clear watch dog timer	1	None
COMF f, d	$[f] \leftarrow NOT([f])$	1	Z
DECF f, d	[Destination] \leftarrow [f] -1	1	Z
DECFSZ f, d	[Destination] \leftarrow [f] -1, skip if the result is zero	1, 2	None
GOTO k	$PC \leftarrow k$	2	None
HALT	CPU Stop	1	None
INCF f, d	$[Destination] \leftarrow [f] +1$	1	Z
INCFSZ f, d	[Destination] \leftarrow [f] + 1, skip if the result is zero	1, 2	None
IORLW k	[W] ← [W] k	1	Z
IORWF f, d	$[Destination] \leftarrow [W] [f]$	1	Z
MOVFW f	[W] ← [f]	1	None
MOVLW k	[W] ← k	1	None
MOVWF f	$[f] \leftarrow [W]$	1	None
NOP	No operation	1	None
RETFIE	Pop PC and GIE = 1	2	None
RETLW k	RETURN and W = k	2	None
RETURN	Pop PC	2	None
RLF f, d	$[Destination < n+1>] \leftarrow [f < n>]$	1	C,Z
RRF f, d	$[Destination < n-1>] \leftarrow [f < n>]$	1	C, Z
SLEEP	Stop OSC	1	PD
SUBLW k	$[W] \leftarrow k - [W]$	1	C, DC, Z
SUBWF f, d	$[Destination] \leftarrow [f] - [W]$	1	C, DC, Z
SUBWFC f, d	$[Destination] \leftarrow [f] - [W] - \dot{C}$	1	C, DC, Z
XORLW k	[W] ← [W] XOR k	1	Z
	[Destination] ← [W] XOR [f]	1	Z

Note:

f: memory address (00h ~ 7Fh). W: work register.

W: work register.
k: literal field, constant data or label.
d: destination select: d=0 store result in W, d=1: store result in memory address f.
b: bit select (0~7).
[f]: the content of memory address f.
PC: program counter.
C: Carry flag
DC: Digit carry flag
7. Zero flag

Z: Zero flag

PD: power down flag

TO: watchdog time out flag (The watchdog function is removed in FS3862)

Rev. 1.3

12.2 Struction Description

ADDLW

Syntax

Operation Flag Affected Description

Cycle Example: ADDLW 08h Add Literal to W ADDLWk $0 \le k \le FFh$ [W] \leftarrow [W] + k C, DC, Z The content of Work register add literal "k" in Work register 1 Before instruction: W = 08h After instruction: W = 10h

ADDPCW	Add W to PC
Syntax	ADDPCW
Operation	$[PC] \leftarrow [PC] + 1 + [W], [W] < 79h$ $[PC] \leftarrow [PC] + 1 + ([W] - 100h),$ otherwise
Flag Affected	None
Description	The relative address PC + 1 + W are loaded into PC.
Cycle	2
Example 1:	Before instruction:
ADDPCW	W = 7Fh, PC = 0212h
	After instruction: PC = 0292h
Example 2:	Before instruction:
ADDPCW	W = 80h, PC = 0212h
	After instruction: PC = 0193h
Example 3:	Before instruction:
ADDPCW	W = FEh, PC = 0212h
	After instruction:
	PC = 0211h
ADDWFC	Add W, f and Carry

ADDWF	Add W to f	ADDWFC	Add W, f and Carry
Syntax	ADDWF f, d	Syntax	ADDWFCf, d
	$0 \le f \le FFh$		$0 \le f \le FFh$
	d ∈ [0,1]		d ∈ [0,1]
Operation	[Destination] \leftarrow [f] + [W]	Operation	[Destination] \leftarrow [f] + [W] + C
Flag Affected	C, CD, Z	Flag Affected	C, DC, Z
Description	Add the content of the W register	Description	Add the content of the W register,
	and [f]. If d is 0, the result is		[f] and Carry bit.
	stored in the W register. If d is 1,		If d is 0, the result is stored in the
	the result is stored back in f.		W register.
Cycle	1		If d is 1, the result is stored back
Example 1:	Before instruction:		in f.
ADDWF OPERAND, 0	OPERAND = C2h	Cycle	1
ADDITI OI LIVAND, V	W = 17h	Example	Before instruction:
	After instruction:	ADDWFC OPERAND,1	C = 1
	OPERAND = C2h	ADDINI C OI EINAND, I	OPERAND = 02h
	W = D9h		W = 4Dh
Example 2			VV - 4DN
Example 2:	Before instruction:		
ADDWF OPERAND, 1	OPERAND = C2h		After instruction:
	W = 17h		C = 0
	After instruction:		OPERAND = 50h
	OPERAND = D9h		W = 4Dh
	W = 17h		

Operation Flag Affected Description

Cycle Example: ANDLW 5Fh AND literal with W ANDLWk $0 \le k \le FFh$ $[W] \leftarrow [W] AND k$ Z AND the content of the W register with the eight-bit literal "k". The result is stored in the W register. 1 Before instruction: W = A3h After instruction: W = 03h

ANDWF	AND W and f
Syntax	ANDWF f, d
	$0 \le f \le FFh$
	d ∈ [0,1]
Operation	[Destination] \leftarrow [W] AND [f]
Flag Affected	Z
Description	AND the content of the W register with [f].
	If d is 0, the result is stored in the
	W register.
	If d is 1, the result is stored back
	in f.
Cycle	1
Example 1:	Before instruction:
ANDWF OPERAND,0	W = 0Fh, OPERAND = 88h
	After instruction:
	W = 08h, OPERAND = 88h
Example 2:	Before instruction:
ANDWF OPERAND,1	W = 0Fh, OPERAND = 88h
	After instruction:
	W = 88h, OPERAND = 08h

Syntax Operation Flag Affected Description Cycle Example: **BCF FLAG, 2**

BCF

Bit Clear f BCF f, b $0 \le f \le FFh$ $0 \le b \le 7$ [f] $\leftarrow 0$ None Bit b in [f] is reset to 0. 1 Before instruction: FLAG = 8Dh After instruction: FLAG = 89h

BSF	
Syntax	
-	
o "	
Operation	
Flag Affected	
Description	
Cycle	
Example:	
BSF FLAG, 2	

Bit Set f BSF f, b $0 \le f \le FFh$ $0 \le b \le 7$ [f] $\leftarrow 1$ None Bit b in [f] is set to 1. 1 Before instruction: FLAG = 89h After instruction: FLAG = 8Dh

BTFSC	Bit Test skip if Clear		
Syntax	BTFSCf, b	BTFSS	Bit Test skip if Set
-	$0 \le f \le FFh$	Syntax	BTFSSf, b
	$0 \le b \le 7$		$0 \le f \le FFh$
Operation	Skip if [f] = 0		$0 \le b \le 7$
Flag Affected	None	Operation	Skip if [f] = 1
Description	If bit 'b' in [f] is 0, the next fetched	Flag Affected	None
	instruction is discarded and a	Description	If bit 'b' in [f] is 1, the next fetched
	NOP is executed instead of		instruction is discarded and a
	making it a two-cycle instruction.		NOP is executed instead of
Cycle	1, 2		making it a two-cycle instruction.
Example:	Before instruction:	Cycle	1, 2
Node BTFSC FLAG, 2	PC = address (Node)	Example:	Before instruction:
OP1 :	After instruction:	Node BTFSS FLAG, 2	PC = address (Node)
OP2 :	If FLAG<2> = 0	OP1 :	After instruction:
	PC = address(OP2)	OP2 :	If FLAG<2> = 0
	If FLAG<2> = 1		PC = address(OP1)
	PC = address(OP1)		If FLAG<2> = 1
			PC = address(OP2)

CALL	Subroutine CALL	CLRF	Clear f
Syntax	CALL k	Syntax	CLRF f
-	$0 \le k \le 1FFFh$	-	$0 \le f \le 255$
Operation	Push Stack	Operation	[f] ← 0
	[Top Stack] \leftarrow PC + 1	Flag Affected	None
	PC ← k	Description	Reset the content of memory
Flag Affected	None		address f
Description	Subroutine Call. First, return	Cycle	1
	address PC + 1 is pushed onto	Example:	Before instruction:
	the stack. The immediate address	CLRF WORK	WORK = 5Ah
Cuelo	is loaded into PC. 2		After instruction: WORK = 00h
Cycle	2		WORK - OOH
CLRWDT	Clear watch dog timer	COMF	Complement f
Syntax	CLRWDT	Syntax	COMF f, d
Operation	Watch dog timer counter will be	2	$0 \le f \le 255$
	reset		d ∈ [0,1]
Flag Affected	None	Operation	$[f] \leftarrow NOT([f])$
Description	CLRWDT instruction will reset	Flag Affected	Z
a	watch dog timer counter.	Description	[f] is complemented. If d is 0, the
Cycle	1 A first in structions		result is stored in the W register
Example:	After instruction:		d is 1, the result is stored back
CLRWDT	WDT = 0		ព្រ
	TO = 1 PD = 1	Cycle	1
	PD = 1	Example 1:	Before instruction:
		COMF OPERAND,0	W = 88h, OPERAND = 23h
			After instruction: W = DCh, OPERAND = 23h
		Example 2:	Before instruction:
		COMF OPERAND,1	W = 88h, OPERAND = 23h
			After instruction:
			W = 88h, OPERAND = DCh
DECF	Decrement f	DECFSZ	Decrement f, skip if zero
Syntax	DECFf, d	Syntax	DECFSZ f, d
	$0 \le f \le 255$		$0 \le f \le FFh$
	d ∈ [0,1]		d ∈ [0,1]
Operation	[Destination] \leftarrow [f] -1	Operation	[Destination] \leftarrow [f] -1, skip if the
Flag Affected	Z		result is zero
Description	[f] is decremented. If d is 0, the	Flag Affected	None
	result is stored in the W register. If	Description	[f] is decremented. If d is 0, the
	d is 1, the result is stored back in		result is stored in the W register
Cycle	[f]. 1		d is 1, the result is stored back i
Example 1:	Before instruction:		[f]. If the result is 0, then the next
	W = 88h, OPERAND = 23h		fetched instruction is discarded
	After instruction:		and a NOP is executed instead
DECF OPERAND,0			making it a two-cycle instruction
DECF OPERAND,0			1, 2
DECF OPERAND,0	W = 22h, OPERAND = 23h Before instruction:	Cycle	1, 4
	W = 22h, OPERAND = 23h	Cycle Example:	Before instruction:
Example 2:	W = 22h, OPERAND = 23h Before instruction:	2	Before instruction:
Example 2:	W = 22h, OPERAND = 23h Before instruction: W = 88h, OPERAND = 23h	Example: Node DECFSZ FLAG, 1 OP1 :	Before instruction: PC = address (Node) After instruction:
Example 2:	W = 22h, OPERAND = 23h Before instruction: W = 88h, OPERAND = 23h After instruction:	Example: Node DECFSZ FLAG, 1	Before instruction: PC = address (Node) After instruction: [FLAG] = [FLAG] - 1
Example 2:	W = 22h, OPERAND = 23h Before instruction: W = 88h, OPERAND = 23h After instruction:	Example: Node DECFSZ FLAG, 1 OP1 :	Before instruction: PC = address (Node) After instruction: [FLAG] = [FLAG] - 1 If [FLAG] = 0
Example 2:	W = 22h, OPERAND = 23h Before instruction: W = 88h, OPERAND = 23h After instruction:	Example: Node DECFSZ FLAG, 1 OP1 :	Before instruction: PC = address (Node) After instruction: [FLAG] = [FLAG] - 1 If [FLAG] = 0 PC = address(OP1)
Example 2:	W = 22h, OPERAND = 23h Before instruction: W = 88h, OPERAND = 23h After instruction:	Example: Node DECFSZ FLAG, 1 OP1 :	Before instruction: PC = address (Node) After instruction: [FLAG] = [FLAG] - 1 If [FLAG] = 0

GOTO Syntax

Cycle

Operation Flag Affected Description

Unconditional Branch GOTO k $0 \le k \le 1$ FFFh $\mathsf{PC} \gets \mathsf{k}$ None The immediate address is loaded into PC. 2

HALT	Stop CPU Core Clock
Syntax	HALT
Operation	CPU Stop
Flag Affected	None
Description	CPU clock is stopped. Oscillator is running. CPU can be waked up by internal and external interrupt sources.
Cycle	1

INCF	Increment f	INCFSZ	Increment f, skip if zero
Syntax	INCF f, d	Syntax	INCFSZf, d
	$0 \le f \le FFh$		$0 \le f \le FFh$
	d ∈ [0,1]		d ∈ [0,1]
Operation	[Destination] \leftarrow [f] +1	Operation	[Destination] \leftarrow [f] + 1, skip if the
Flag Affected	Z [f] is incremented If d is 0, the	Flog Affected	result is zero None
Description	[f] is incremented. If d is 0, the result is stored in the W register. If	Flag Affected Description	[f] is incremented. If d is 0, the
	d is 1, the result is stored back in	Decemption	result is stored in the W register. If
	[f].		d is 1, the result is stored back in
Cycle	1		[f].
Example 1:	Before instruction:		If the result is 0, then the next
INCF OPERAND,0	W = 88h, OPERAND = 23h After instruction:		fetched instruction is discarded and a NOP is executed instead of
	W = 24h, OPERAND = 23h		making it a two-cycle instruction.
Example 2:	Before instruction:	Cycle	1, 2
INCF OPERAND,1	W = 88h, OPERAND = 23h	Example:	Before instruction:
	After instruction:	Node INCFSZ FLAG, 1	PC = address (Node)
	W = 88h, OPERAND = 24h	OP1 :	After instruction:
		OP2 :	[FLAG] = [FLAG] + 1
			If [FLAG] = 0 PC = address(OP2)
			If [FLAG] $\neq 0$
			PC = address(OP1)

IORLW	Inclusive OR literal with W	IORWF	Inclusive OR W with f
Syntax	IORLW k	Syntax	IORWFf, d
	$0 \le k \le FFh$		$0 \le f \le FFh$
Operation	[W] ← [W] k		d ∈ [0,1]
Flag Affected	Z	Operation	$[Destination] \leftarrow [W] [f]$
Description	Inclusive OR the content of the W	Flag Affected	Z
	register and the eight-bit literal	Description	Inclusive OR the content of the W
	"k". The result is stored in the W		register and [f]. If d is 0, the result
Quala	register.		is stored in the W register. If d is
Cycle	1 Defens instructions		1, the result is stored back in [f].
Example:	Before instruction:	Cycle	
IORLW85H	W = 69h	Example:	Before instruction:
	After instruction:	IORWF OPERAND,1	W = 88h, OPERAND = 23h
	W = EDh		After instruction:
			W = 88h, OPERAND = ABh

Fortiline

MOVFW Syntax

MOVWF

Syntax

Cycle

Operation Flag Affected Description

Cycle Example: MOVFWOPERAND Move f to W MOVFWf $0 \le f \le FFh$ $[W] \leftarrow [f]$ None Move data from [f] to the W register. Before instruction: W = 88h, OPERAND = 23h After instruction: W = 23h, OPERAND = 23h

MOVLW Syntax Operation Flag Affected Description

Cycle Example: MOVLW23H

Move literal to W MOVLW k $0 \le k \le FFh$ $[W] \leftarrow k$ None Move the eight-bit literal "k" to the content of the W register. Before instruction: W = 88h After instruction: W = 23h

Move W to f **MOVWFf** $0 \leq f \leq FFh$ Operation $[f] \leftarrow [W]$ Flag Affected None Description Move data from the W register to [f]. Example: Before instruction: MOVWFOPERAND W = 88h, OPERAND = 23h After instruction: W = 88h, OPERAND = 88h

NOP
Syntax
Operation
Flag Affected
Description

Cycle

No Operation NOP No Operation None No operation. NOP is used for one instruction cycle delay. 1

RETFIE	Return from Interrupt	RETLW	Return and move literal to W
Syntax	RETFIE	Syntax	RETLW k
Operation	[Top Stack] => PC	-	$0 \le k \le FFh$
	Pop Stack	Operation	[W] ← k
	1 => GIE		[Top Stack] => PC
Flag Affected	None		Pop Stack
Description	The program counter is loaded	Flag Affected	None
	from the top stack, then pop stack. Setting the GIE bit enables interrupts.	Description	Move the eight-bit literal "k" to the content of the W register. The program counter is loaded from
Cycle	2		the top stack, then pop stack.

Rev. 1.3

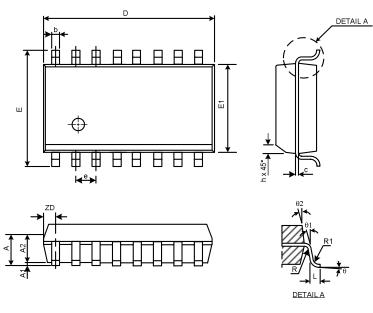
Return	Return from Subroutine	RLF	Rotate left [f] through Carry
Syntax Operation	RETURN [Top Stack] => PC	Syntax	RLF f, d $0 \le f \le FFh$
	Pop Stack		d ∈ [0,1]
Flag Affected Description	None The program counter is loaded from the top stack, then pop	Operation	[Destination <n+1>] \leftarrow [f<n>] [Destination<0>] \leftarrow C C \leftarrow [f<7>]</n></n+1>
	stack.	Flag Affected	C, Z
Cycle	2	Description	[f] is rotated one bit to the lef through the Carry bit. If d is (
		C Register f	the result is stored in the W register. If d is 1, the result is stored back in [f].
		Cycle	1
		Example:	Before instruction:
		RLF OPERAND, 1	C = 0
			W = 88h, OPERAND = E6 After instruction:
			C = 1 W = 88h, OPERAND = C0
RRF	Rotate right [f] through Carry		
Syntax	RRF f, d	SLEEP	Oscillator stop
	$0 \le f \le FFh$	Syntax Operation	SLEEP CPU oscillator is stopped
Operation	$d \in [0,1]$ [Destination <n-1>] \leftarrow [f<n>]</n></n-1>	Flag Affected	PD
operation	$[Destination <7>] \leftarrow C$ $C \leftarrow [f<7>]$	Description	CPU oscillator is stopped. CPU can be waked up by external
Flag Affected	C		interrupt sources.
Description	[f] is rotated one bit to the right through the Carry bit. If d is 0,	Cycle	1
	the result is stored in the W		
C Register f	register. If d is 1, the result is stored back in [f].		
Cycle	1 Defens instructions		
Example: RRF OPERAND, 0	Before instruction: C = 0 OPERAND = 95h		a that all interment flama and also
	After instruction:		e that all interrupt flags are clea LEEP; "NOP" command must fo
	C = 1	HALT and SLEEP	commands.

W = 4Ah, OPERAND = 95h

Rev. 1.3

28/32

SUBLW	Subtract W from literal	SUBWF	Subtract W from f
Syntax	SUBLWk	Syntax	SUBWFf, d
o "	$0 \le k \le FFh$		$0 \le f \le FFh$
Operation	$[W] \leftarrow k - [W]$	Oneration	d ∈ [0,1]
Flag Affected Description	C, DC, Z Subtract the content of the W	Operation	$[\text{Destination}] \leftarrow [f] - [W]$
Description	register from the eight-bit literal	Flag Affected Description	C, DC, Z Subtract the content of the W
	"k". The result is stored in the W	Decemption	register from [f]. If d is 0, the result
	register.		is stored in the W register. If d is
Cycle	1		1, the result is stored back in [f],
Example 1:	Before instruction:	Cycle	1
SUBLW 02H	W = 01h After instruction:	Example 1:	Before instruction: OPERAND = 32b W = 01b
	W = 01h	SUBWF OPERAND, 1	OPERAND = 33h, W = 01h After instruction:
	C = 1		OPERAND = 32h
	Z = 0		C = 1
Example 2:	Before instruction:		Z = 0
SUBLW 02H	W = 02h	Example 2:	Before instruction:
	After instruction:	SUBWF OPERAND, 1	
	W = 00h C = 1		After instruction: OPERAND = 00h
	7 = 1		C = 1
Example 3:	Before instruction:		Z = 1
SUBLW 02H	W = 03h	Example 3:	Before instruction:
	After instruction:	SUBWF OPERAND, 1	OPERAND = 04h, W = 05h
	W = FFh		After instruction:
	C = 0		OPERAND = FFh
	Z = 0		C = 0 Z = 0
			2 - 0


SUBWFC	Subtract W and Carry from f	XORWF	Exclusive OR W and f
Syntax	SUBWFCf, d	Syntax	XORWF f, d
	$0 \le f \le FFh$		$0 \le f \le FFh$
	d ∈ [0,1]		d ∈ [0,1]
Operation	$[Destination] \leftarrow [f] - [W] - \dot{C}$	Operation	[Destination] \leftarrow [W] XOR [f]
Flag Affected	C, DC, Z	Flag Affected	Z
Description	Subtract the content of the W	Description	Exclusive OR the content of the
	register from [f]. If d is 0, the result		W register and [f]. If d is 0, the
	is stored in the W register. If d is		result is stored in the W register. If d is 1, the result is stored back in
Circle	1, the result is stored back in [f].		[f].
Cycle Example 1:	Before instruction:	Cycle	1
SUBWFC OPERAND,		Example:	Before instruction:
	C = 1	XORWF OPERAND, 1	OPERAND = 5Fh, W = ACh
	After instruction:		After instruction:
	OPERAND = $32h, C = 1, Z = 0$		OPERAND = F3h
Example 2:	Before instruction:		
SUBWFC OPERAND,			
	C = 0		
	After instruction: OPERAND = 00h, C = 1, Z = 1		
Example 3:	Before instruction:		
SUBWFC OPERAND,			
	C = 0		
	After instruction:		
	OPERAND = FEh, C = 0, Z = 0		

FS3862

Exclusive OR literal with W
XORLWk $0 \le k \le FFh$
[W] ← [W] XOR k
Z
Exclusive OR the content of the W register and the eight-bit literal "k". The result is stored in the W register.
1
Before instruction: W = ACh After instruction: W = F3h

13. Package Information

13.1 Package Outline & Dimensions

SYMBOL	DII	MENSION	IN MM	DIMENSION IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
А	1.35	1.63	1.75	0.053	0.064	0.069
A1	0.10	0.15	0.25	0.004	0.006	0.010
A2			1.50			0.059
b	0.20		0.30	0.008		0.012
с	0.18		0.25	0.007		0.010

е	0.635 BASIC				0.025 BASIC	0
D	4.80	4.90	5.00	0.189	0.193	0.197
E	5.79	5.99	6.20	0.228	0.236	0.244
E1	3.81	3.91	3.99	0.150	0.154	0.157
L	0.41	0.635	1.27	0.016	0.025	0.050
h	0.25		0.50	0.010		0.020
L1	0.254 BASIC				0.010 BASIC	2
ZD	0.229 REF				0.009 REF	
R1	0.20		0.33	0.008		0.013
R	0.20			0.008		
θ	0 °		8 °	0 °		8 °
θ1	0 °		8 °	0 °		8°
θ2	5°	10 °	15 [°]	5°	10 °	15 [°]
JEDEC	MO-137(AB)					

Notes: Dimension D does not include mold protrusions or gate burrs.

Mold protrusions and gate burrs shall not exceed 0.06 inch per side.

14. Revision History

Version	Date	Page	Description
1.3	2007/05	3 ~ 32	Revise all chapters