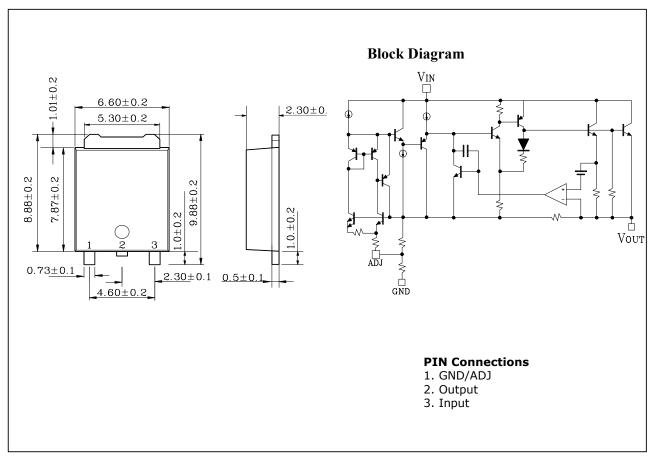


Adjustable and Fixed LDO Voltage Regulator

Descriptions

The S1117A and S1117 series of positive adjustable and fixed regulators are designed to provide 1A with higher efficiency than currently available devices. All internal circuitry is designed to operate down to 1.3V input to output differential. On-Chip trimming adjusts reference Voltage to 2%

Features


- Output Current of 1A
- 1.3V Maximum Dropout voltage at 1A Output Current
- 100% Thermal Limit Burn-In
- Fast Transient Response

Ordering Information

Type NO.	Marking	Package Code
S1117AD/S1117xxD	S1117□□D	D-PAK

□□:Voltage Code (Aj : 1.25V, 15:1.5V,:18: 1.8V, 25:2.5V, 285:2.85V, 33:3.3V, 50:5.0V) **sions unit : mm**

Outline Dimensions

KSI-2052-001

Absolute Maximum Ratings

Ta=25°C

Characteristic	Symbol	Ratings	Unit	
		$V_{out} = 1.25, 1.5, 1.8$	16	
Operating Input voltage	V_{IN}	V _{out} = 2.5 2.8 3.3 5.0		V
Power Dissipation (without Heatsink)	P_D	1.3	W	
Lead Temperature (Soldering, 10 sec)	T _{LEAD}	300	°C	
Operating Junction Temperature	T ₁ -			°C
Storage Temperature	T_{STG}	-55 ~ 150	°C	

Device Selection Guide (NOTE1)

Device	Output Voltage
S1117A	Adj
S1117-1.5	1.5V
S1117-1.8	1.8V
S1117-2.5	2.5V
S1117-2.85	2.85V
S1117-3.3	3.3V
S1117-5.0	5V

Note 1 : Other Fixed Versions are available Vout=1.5V to 5V

Electrical Characteristics

(Electrical Characteristics at $T_J = 25 \,^{\circ}\mathbb{C}$ and $I_{Load} = 10 \text{mA}$ unless otherwise specified.)

Characteristic	Symbol	Device	Test Condition		Min	Тур	Max	Unit
Output Voltage V		S1117A	$V_{IN} = (V_{out}+1.5V), I_{OUT} = 10mA$		1.238	1.25	1.262	V
			$V_{IN} = (V_{out}+1.5V)$ to 12V $I_{OUT} = 0$ to 1000mA	*	1.225		1.275	
		S1117-15	$V_{IN} = (V_{out}+1.5V), I_{OUT} = 10mA$		1.47	1.5	1.53	
			$V_{IN} = (V_{out} + 1.5V)$ to 12V $I_{OUT} = 0$ to 1000mA	*	1.44		1.56	
		S1117-18	$V_{IN} = (V_{out} + 1.5V), I_{OUT} = 10mA$		1.764	1.8	1.836	
	V _{OUT}		$V_{IN} = (V_{out}+1.5V)$ to 12V $I_{OUT} = 0$ to 1000mA	*	1.728		1.872	
		S1117-25	$V_{IN} = (V_{out}+1.5V), I_{OUT} = 10mA$		2.45	2.5	2.55	
			$V_{IN} = (V_{out} + 1.5V)$ to 12V $I_{OUT} = 0$ to 1000mA	*	2.4		2.6	
		S1117-285	$V_{IN} = (V_{out} + 1.5V), I_{OUT} = 10mA$		2.793	2.85	2.907	
			$V_{IN} = (V_{out} + 1.5V)$ to 12V $I_{OUT} = 0$ to 1000mA	*	2.736		2.964	

Electrical Characteristics (Continued)

(Electrical Characteristics at T_J = 25 $^{\circ}$ C and I_{LOAD} =10mA unless otherwise specified.)

Characteristic	Symbol	Device	Test Condition		Min	Тур	Max	Unit
Output Voltage	V_{out}	S1117-33	$V_{IN} = (V_{out} + 1.5V), I_{OUT} = 10mA$		3.234	2.2	3.366	. V
			$V_{IN} = (V_{out}+1.5V)$ to 12V $I_{OUT} = 0$ to 1000mA	*	3.168	3.3	3.432	
Output Voltage	• 001	S1117-50	$V_{IN} = (V_{out} + 1.5V), I_{OUT} = 10mA$		4.9	5.0	5.1	
			$V_{IN} = (V_{out} + 1.5V)$ to 12V $I_{OUT} = 0$ to 1000mA	*	4.8		5.2	
Line Regulation Note1	$\triangle V_{OUT}$	All	$(V_{out}+1.5V) \le V_{In} \le 12V$ $I_{OUT}=10$ mA	*	-	10	30	mV
Load Regulation Note1	$\triangle V_{OUT}$	All	$(V_{IN} - V_{out}) = 2V$, $10mA \le I_{OUT} \le 1A$	*	-	10	30	mV
Quiescent Current	I_Q	All Fixed Versions	V _{IN} = 11.5V, I _{OUT} =0mA	*	-	3.6	10	mA
Minimum Load Current	I_{LMIN}	S1117A	V_{IN} =(V_{OUT} +1.5), V_{OUT} =0 V	*		3	7	mA
Adjust Pin Current	I _{ADJ}	S1117A	$V_{IN} = (V_{out}+1.5V)$ to 12V $I_{OUT} = 10$ mA	*		55	90	uA
Dropout Voltage Note3	V_D	All	I _{OUT} =1000mA	*	-	1.2	1.3	٧
Ripple Rejection Note2	RR	All	V_{IN} - V_{OUT} =1.5V, f=120Hz I_{OUT} =1000mA, V_{RIPPLE} =1 V_{P-P}		60	72	-	dB
Output Noise Voltage	eN	All	f=10 to 10KHz		-	100	-	uV
Output Current	I_{OUT}	All	$(V_{IN}-V_{OUT})=1.5V$	*	1	1.5		Α

The * denotes the specifications which apply over the full temperature range.

Note 1: Low duty pulse testing with Kelvin connections required.

Note 2: 120Hz input ripple (C_{ADJ} for ADJ=25uF)

Note 3: \triangle V_{OUT} = 1%

■ Typical Applications

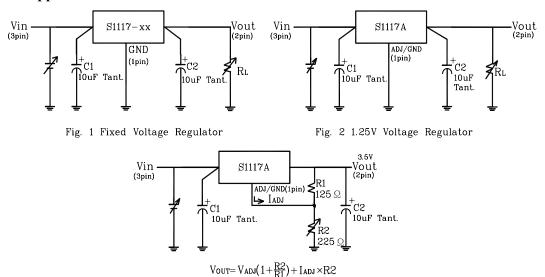


Fig. 3 Adjustable Voltage Regulator

Electrical Characteristic Curves

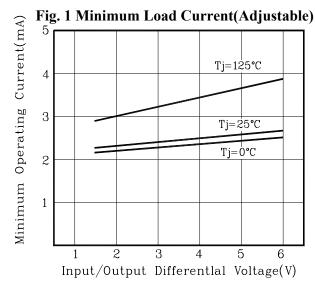


Fig. 3 Temperature Stability

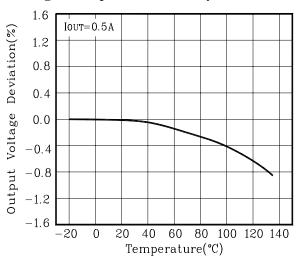


Fig. 5 Dropout Voltage

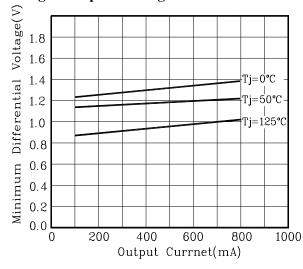


Fig. 2 Adjust Pin Current

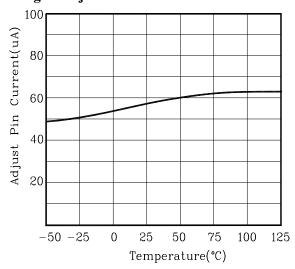


Fig. 4 Load Regulation

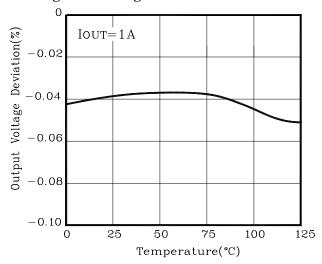
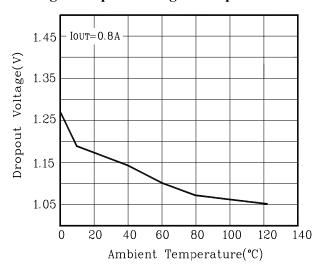
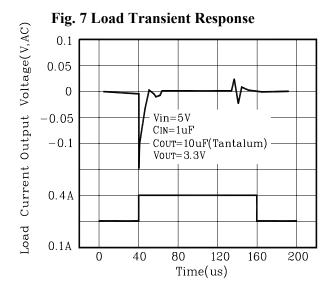




Fig. 6 Dropout Voltage - Temperature

Electrical Characteristic Curves

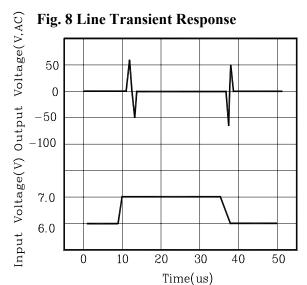
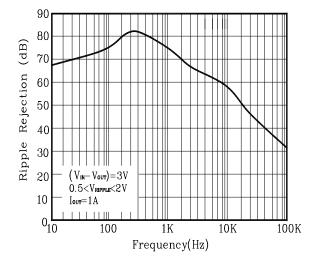



Fig. 9 Ripple Rejection

These AUK products are intended for usage in general electronic equipments (Office and communication equipment, measuring equipment, domestic electrification, etc.).

Please make sure that you consult with us before you use these AUK products in equipments which require high quality and/or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, traffic signal, combustion central, all types of safety device, etc.).

AUK cannot accept liability to any damage which may occur in case these AUK products were used in the mentioned equipments without prior consultation with AUK.

KSI-2052-001