SPANSION ${ }^{T M}$ Flash Memory

Data Sheet

September 2003

This document specifies SPANSION ${ }^{\top M}$ memory products that are now offered by both Advanced Micro Devices and Fujitsu. Although the document is marked with the name of the company that originally developed the specification, these products will be offered to customers of both AMD and Fujitsu.

Continuity of Specifications

There is no change to this datasheet as a result of offering the device as a SPANSION ${ }^{\text {TM }}$ product. Future routine revisions will occur when appropriate, and changes will be noted in a revision summary.

Continuity of Ordering Part Numbers

AMD and Fujitsu continue to support existing part numbers beginning with "Am" and "MBM". To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local AMD or Fujitsu sales office for additional information about SPANSION ${ }^{\top M}$ memory solutions.

FLASH MEMORY

CMOS

$32 \mathrm{M}(4 \mathrm{M} \times 8 / 2 \mathrm{M} \times 16)$ BIT Dual Operation MBM29DL32TF/BF-70

- DESCRIPTION

The MBM29DL32TF/BF are a 32 M-bit, 3.0 V-only Flash memory organized as 4 M bytes of 8 bits each or 2 M words of 16 bits each. These devices are designed to be programmed in-system with the standard system 3.0 V V_{cc} supply. $12.0 \mathrm{~V} \mathrm{~V}_{\text {PP }}$ and 5.0 V Vcc are not required for write or erase operations. The devices can also be reprogrammed in standard EPROM programmers.
(Continued)
PRODUCT LINE UP

Part No.	MBM29DL32TF/BF
	70
Power Supply Voltage (V)	${\text { Vcc }=3.0 \mathrm{~V}_{-0.3 \mathrm{~V}}^{+0.6 \mathrm{~V}}}^{2}$
Max Access Time (ns)	70
Max $\overline{\mathrm{CE}}$ Access Time (ns)	70
Max $\overline{\text { OE Access Time (ns) }}$	30

PACKAGES

48-pin plastic TSOP (1)	
(FPT-48P-M19)	Marking side
(BGA-48P-M12)	

MBM29DL32TF/BF-70

'(Continued)
MBM29DL32TF/BF are organized into four physical banks; Bank A, Bank B, Bank C and Bank D, which are considered to be four separate memory arrays operations. It is the Fujitsu's standard 3.0 V only Flash memories, with the additional capability of allowing a normal non-delayed read access from a non-busy bank of the array while an embedded write (either a program or an erase) operation is simultaneously taking place on the other bank.
In the device, a new design concept called FlexBank ${ }^{\text {TM }}{ }^{* 1}$ Architecture is implemented. Using this concept the device can execute simultaneous operation between Bank 1, a bank chosen from among the four banks, and Bank 2, a bank consisting of the three remaining banks. This means that any bank can be chosen as Bank 1. (Refer to "1. Simultaneous Operation" in "■FUNCTIONAL DESCRIPTION".)

The standard device offers access time 70 ns , allowing operation of high-speed microprocessors without the wait. To eliminate bus contention the device has separate chip enable ($\overline{\mathrm{CE}})$, write enable ($\overline{\mathrm{WE}}$) and output enable ($\overline{\mathrm{OE}}$) controls.
This device consists of pin and command set compatible with JEDEC standard E2PROMs. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine which controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the device is similar to reading from 5.0 V and 12.0 V Flash or EPROM devices.

The device is programmed by executing the program command sequence. This will invoke the Embedded Program Algorithm ${ }^{\text {TM }}$ which is an internal algorithm that automatically times the program pulse widths and verifies proper cell margin. Typically each sector can be programmed and verified in about 0.5 seconds. Erase is accomplished by executing the erase command sequence. This will invoke the Embedded Erase Algorithm ${ }^{\top \mathrm{M}}$ which is an internal algorithm that automatically preprograms the array if it is not already programmed before executing the erase operation. During erase, the device automatically times the erase pulse widths and verifies the proper cell margin.

Each sector is typically erased and verified in 0.5 second (if already completely preprogrammed) .
The device also features a sector erase architecture. The sector mode allows each sector to be erased and reprogrammed without affecting other sectors. The device is erased when shipped from the factory.
The device features single 3.0 V power supply operation for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations. A low V_{cc} detector automatically inhibits write operations on the loss of power. The end of program or erase is detected by Data Polling of DQ7, by the Toggle Bit feature on DQ6, or the RY/BY output pin. Once the end of a program or erase cycle has been completed, the device internally returns to the read mode.
The device also has a hardware RESET pin. When this pin is driven low, execution of any Embedded Program Algorithm or Embedded Erase Algorithm is terminated. The internal state machine is then reset to the read mode. The RESET pin may be tied to the system reset circuitry. Therefore if a system reset occurs during the Embedded Program ${ }^{\text {TM }}{ }^{* 2}$ Algorithm or Embedded Erase ${ }^{\mathrm{TM} * 2}$ Algorithm, the device is automatically reset to the read mode and have erroneous data stored in the address locations being programmed or erased. These locations need rewriting after the Reset. Resetting the device enables the system's microprocessor to read the boot-up firmware from the Flash memory.
Fujitsu's Flash technology combines years of Flash memory manufacturing experience to produce the highest levels of quality, reliability, and cost effectiveness. The device memory electrically erases the entire chip or all bits within a sector simultaneously via Fowler-Nordhiem tunneling. The bytes/words are programmed one byte/ word at a time using the EPROM programming mechanism of hot electron injection.
*1: FlexBank ${ }^{T M}$ is a trademark of Fujitsu Limited.
*2: Embedded Erase ${ }^{\top \mathrm{M}}$ and Embedded Program ${ }^{\top \mathrm{M}}$ are trademarks of Advanced Micro Devices, Inc.

MBM29DL32TF/BF-70

FEATURES

- $0.17 \mu \mathrm{~m}$ Process Technology
- Two-bank Architecture for Simultaneous Read/Program and Read/Erase
- FlexBank ${ }^{\text {TM }}$

Bank A : 4 Mbit ($8 \mathrm{~KB} \times 8$ and $64 \mathrm{~KB} \times 7$)
Bank B : 12 Mbit ($64 \mathrm{~KB} \times 24$)
Bank C : 12 Mbit $(64 \mathrm{~KB} \times 24)$
Bank D : 4 Mbit ($64 \mathrm{~KB} \times 8$)
Two virtual Banks are chosen from the combination of four physical banks (Refer to "FlexBank ${ }^{\top \mathrm{M}}$ Architecture Table" and "Example of Virtual Banks Combination Table" in ■FUNCTIONAL DESCRIPTION)
Host system can program or erase in one bank, and then read immediately and simultaneously from the other bank with zero latency between read and write operations.
Read-while-erase
Read-while-program

- Single 3.0 V Read, Program, and Erase

Minimizes system level power requirements

- Compatible with JEDEC-standard Commands

Uses same software commands as E²PROMs

- Compatible with JEDEC-standard World-wide Pinouts

48-pin TSOP (1) (Package suffix : TN - Normal Bend Type)
48-ball FBGA (Package suffix : PBT)

- Minimum 100,000 Program/Erase Cycles
- High Performance

70 ns maximum access time

- Sector Erase Architecture

Eight 4 K word and sixty-three 32 K word sectors in word mode
Eight 8 K byte and sixty-three 64 K byte sectors in byte mode
Any combination of sectors can be concurrently erased. Also supports full chip erase.

- Boot Code Sector Architecture

T = Top sector
B = Bottom sector

- HiddenROM Region

256 byte of HiddenROM, accessible through a new "HiddenROM Enable" command sequence
Factory serialized and protected to provide a secure electronic serial number (ESN)

- $\overline{W P} / A C C$ Input Pin

At VIL, allows protection of "outermost" 2×8 bytes on boot sectors, regardless of sector group protection/ unprotection status.
At Vacc, increases program performance

- Embedded Erase ${ }^{\text {TM* }}$ Algorithms

Automatically pre-programs and erases the chip or any sector

- Embedded Program ${ }^{\text {TM* }}$ Algorithms

Automatically writes and verifies data at specified address

- $\overline{\text { Data }}$ Polling and Toggle Bit feature for detection of program or erase cycle completion
- Ready/Busy Output (RY/BY)

Hardware method for detection of program or erase cycle completion

- Automatic Sleep Mode

When addresses remain stable, automatically switch themselves to low power mode.
(Continued)

MBM29DL32TF/BF-70

(Continued)

- Low Vcc write inhibit $\leq 2.5 \mathrm{~V}$
- Erase Suspend/Resume

Suspends the erase operation to allow a read data and/or program in another sector within the same device

- Sector Group Protection

Hardware method disables any combination of sector groups from program or erase operations

- Sector Group Protection Set function by Extended sector group protection command
- Fast Programming Function by Extended Command
- Temporary Sector Group Unprotection

Temporary sector group unprotection via the RESET pin.

- In accordance with CFI (Common Flash Memory Interface)
*: Embedded Erase ${ }^{T M}$ and Embedded Program ${ }^{\text {TM }}$ are trademarks of Advanced Micro Devices, Inc.

PIN ASSIGNMENTS

FPT-48P-M19
(Continued)

MBM29DL32TF／BF－70

（Continued）

FBGA
（TOP VIEW）
Marking side

＇Áa＇，	（ B $^{\prime}$	＇Co＇	（DG）	（ÉE）	（＇F6）	＇（G6）＇，	（＇H6）＇
${ }^{\text {A }} 13$	A_{12}	A_{14}	A_{15}	A_{16}	BYTE	DQ15／A－1	Vss
＇Ā＇，	（ ${ }^{\text {B }}$ ）	（＇cs，	（＇DS＇）	（＇E5）	（FF），	＇GGs）	＇＇－15）
A9	A8	A_{10}	A_{11}	DQ ${ }^{\text {7 }}$	DQ14	DQ13	DQ6
＇ÁA）：	（ $\overline{B 4} 4)$	＇Cis）	（＇D4）	（E）	（Fi）；	（＇G4）	（＇H4）
$\overline{\text { WE }}$	RESET	N．C．	A ${ }^{19}$	DQ ${ }^{\text {a }}$	DQ12	Vcc	DQ ${ }_{4}$
＇（Ȧ＇，	（＇B3）	（＇3）	（D3）	（倞）	（F3）	（＇G3），	（＇H3）
RY／雨Y	WP／ACC	A_{18}	A_{20}	DQ ${ }^{\text {2 }}$	DQ10	DQ11	DQ3
＇Áà；	（倍）	＇CO＇；	（D2）	（E2）	（F2）；	＇－G2＇，	（＇H2）
A7	A ${ }^{-1}$	A6	A5	DQ0	DQ8	DQ9	DQ1
＇ÁA］：	（B1）	（cio＇	（101）	伯1：	䍊；	（GG1），	＇（131）
A ${ }^{\prime}$	A_{4}	A^{\prime}	A_{1}	A_{0}	$\overline{\text { CE }}$	$\overline{\text { OE }}$	Vss

（BGA－48P－M12）

MBM29DL32TF/BF-70

■ PIN DESCRIPTION

Pin	
A_{20} to $\mathrm{A}_{0}, \mathrm{~A}_{-1}$	Address Input
DQ_{15} to DQ_{0}	Data Input/Output
$\overline{\mathrm{CE}}$	Chip Enable
$\overline{\mathrm{OE}}$	Output Enable
$\overline{\mathrm{WE}}$	Write Enable
$\overline{\mathrm{RESET}}$	Hardware Reset Pin/Temporary Sector Group Unprotection
RY/BY	Ready/Busy Output
$\overline{\mathrm{BYTE}}$	Selects 8-bit or 16-bit mode
$\overline{\mathrm{WP} / \mathrm{ACC}}$	Hardware Write Protection/Program Acceleration
V_{cc}	Device Power Supply
Vss	Device Ground
N.C.	No Internal Connection

MBM29DL32TF/BF-70

BLOCK DIAGRAM

LOGIC SYMBOL

- DEVICE BUS OPERATION

MBM29DL32TF/BF User Bus Operations Table (Word mode : $\overline{\text { BYTE }}=\mathrm{V}_{\mathbf{H}}$)

Operation	CE	OE	WE	A0	A_{1}	A_{2}	A $_{3}$	A_{6}	A9	$\begin{gathered} \mathrm{DQ}_{15} \text { to } \\ \mathrm{DQ}_{0} \end{gathered}$	RESET	$\begin{aligned} & \overline{\mathrm{WP}} / \\ & \mathrm{ACC} \end{aligned}$
Standby	H	X	X	X	X	X	X	X	X	High-Z	H	X
Auto-Select Manufacturer Code*1	L	L	H	L	L	L	L	L	VID	Code	H	X
Auto-Select Device Code *1	L	L	H	H	L	L	L	L	VID	Code	H	X
Extended Auto-Select Device Code *1	L	L	H	L	H	H	H	L	VID	Code	H	X
	L	L	H	H	H	H	H	L	VID	Code	H	X
Read *3	L	L	H	Ao	A_{1}	A_{2}	A	A_{6}	A9	Dout	H	X
Output Disable	L	H	H	X	X	X	X	X	X	High-Z	H	X
Write (Program/Erase)	L	H	L	A_{0}	A_{1}	A_{2}	A_{3}	A_{6}	A_{9}	Din	H	X
Enable Sector Group Protection *2,*4	L	VID	ப	L	H	L	L	L	VIo	X	H	X
Verify Sector Group Protection ${ }^{2}$, , 4	L	L	H	L	H	L	L	L	VID	Code	H	X
Temporary Sector Group Unprotection *5	X	X	X	X	X	X	X	X	X	X	VID	X
Reset (Hardware) /Standby	X	X	X	X	X	X	X	X	X	High-Z	L	X
Boot Block Sector Write Protection	X	X	X	X	X	X	X	X	X	X	X	L

Legend : $\mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{H}=\mathrm{V}_{\mathrm{H}}, \mathrm{X}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\mathrm{I}}, ~ Ч$ = Pulse input. See "国DC CHARACTERISTICS" for voltage levels.
*1: Manufacturer and device codes may also be accessed via a command register write sequence. See "MBM29DL32TF/BF Command Definitions Table".
*2: Refer to section on "8. Sector Group Protection" in ■FUNCTIONAL DESCRIPTION.
*3: $\overline{\mathrm{WE}}$ can be V_{IL} if $\overline{\mathrm{OE}}$ is $\mathrm{V}_{\mathrm{L}}, \overline{\mathrm{OE}}$ at V_{IH} initiates the write operations.
*4: $\mathrm{Vcc}=+2.7 \mathrm{~V}$ to +3.6 V
*5: Also used for the extended sector group protection.

MBM29DL32TF/BF-70

MBM29DL32TF/BF User Bus Operations Table (Byte mode : $\overline{\text { BYTE }}=\mathrm{V}_{\mathrm{IL}}$)

Operation	$\overline{\text { CE }}$	$\overline{\mathrm{OE}}$	WE	DQ_{15}	A0	A_{1}	A_{2}	A $_{3}$	A_{6}	A9	DQ_{7} to DQ_{0}	RESET	$\begin{aligned} & \overline{W P /} / \\ & \text { ACC } \end{aligned}$
Standby	H	X	X	X	X	X	X	X	X	X	High-Z	H	X
Auto-Select Manufacturer Code *1	L	L	H	L	L	L	L	L	L	VID	Code	H	X
Auto-Select Device Code *1	L	L	H	L	H	L	L	L	L	VID	Code	H	X
Extended Auto-Select Device Code *1	L	L	H	L	L	H	H	H	L	VID	Code	H	X
	L	L	H	L	H	H	H	H	L	VID	Code	H	X
Read *3	L	L	H	A-1	A_{0}	A_{1}	A_{2}	A_{3}	A_{6}	A_{9}	Dout	H	X
Output Disable	L	H	H	X	X	X	X	X	X	X	High-Z	H	X
Write (Program/Erase)	L	H	L	A-1	A_{0}	A_{1}	A_{2}	A_{3}	A_{6}	A_{9}	Din	H	X
Enable Sector Group Protection *2,*4	L	VID	Ч	L	L	H	L	L	L	VID	X	H	X
Verify Sector Group Protection *2, *4	L	L	H	L	L	H	L	L	L	VID	Code	H	X
Temporary Sector Group Unprotection *5	X	X	X	X	X	X	X	X	X	X	X	VID	X
Reset (Hardware) / Standby	X	X	X	X	X	X	X	X	X	X	High-Z	L	X
Boot Block Sector Write Protection	X	X	X	X	X	X	X	X	X	X	X	X	L

*1: Manufacturer and device codes may also be accessed via a command register write sequence. See "MBM29DL32TF/BF Command Definitions Table".
*2: Refer to section on "8. Sector Group Protection" in ■FUNCTIONAL DESCRIPTION.
*3: $\overline{\mathrm{WE}}$ can be V_{IL} if $\overline{\mathrm{OE}}$ is V_{L}, $\overline{\mathrm{OE}}$ at V_{IH} initiates the write operations.
*4: Vcc = +2.7 V to +3.6 V
*5: Also used for extended sector group protection.

MBM29DL32TF/BF-70

MBM29DL32TF/BF Command Definitions Table*1

Command sequence		Bus cycles req'd	First bus write cycle		Second bus write cycle		Third bus write cycle		Fourth bus read/write cycle		Fifth bus write cycle		Sixth bus write cycle		
		Addr.	Data												
Read/Reset*2	$\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$		1	XXXh	FOh	-	-	-	-	-	-	-	-	-	-
Read/Reset*2	Word	3	555h	AAh	2AAh	55h	555h	FOh	$R A^{* 12}$	$R D^{* 12}$	-	-	-	-	
	Byte		AAAh		555h		AAAh								
Autoselect	Word	3	555h	AAh	2AAh	55h	$\begin{gathered} (\mathrm{BA}) \\ 555 \mathrm{~h} \end{gathered}$	90h	$1 A^{* 12}$	ID*12	-	-	-	-	
	Byte		AAAh		555h		(BA) AAAh								
Program		4	555h	AAh	2AAh	55h	555h	A0h	PA	PD	-	-	-	-	
	Byte		AAAh		555h		AAAh								
Program Suspend		1	BA	B0h	-	-	-	-	-	-	-	-	-	-	
Program Resume		1	BA	30h	-	-	-	-	-	-	-	-	-	-	
Chip Erase	Word	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	555h	10h	
	Byte		AAAh		555h		AAAh		AAAh		555h		AAAh		
Sector Erase	Word	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	SA	30h	
	Byte		AAAh		555h		AAAh		AAAh		555h				
Erase Suspend ${ }^{* 3}$		1	BA	B0h	-	-	-	-	-	-	-	-	-	-	
Erase Resume ${ }^{* 3}$		1	BA	30h	-	-	-	-	-	-	-	-	-	-	
Set to	Word	3	555h	AAh	2AAh	55h	555h	20h	-	-	-	-	-	-	
Fast Mode	Byte		AAAh		555h		AAAh								
Fast Program *4	Word	2	XXXh	A0h	PA	PD	-	-	-	-	-	-	-	-	
	Byte														
Reset from Fast Mode *5	Word	2	BA	90h	XXXh	00h*11	-	-	-	-	-	-	-	-	
	Byte														
Extended Sector Group Protection *6,*7	Word	3	XXXh	60h	SPA	60h	SPA	40h	$\underset{* 12}{ }$	SD*12	-	-	-	-	
	Byte														
Query *8	Word	1	$\begin{aligned} & \hline(\mathrm{BA}) \\ & 55 \mathrm{~h} \end{aligned}$	98h	-	-	-	-	-	-	-	-	-	-	
	Byte		(BA) AAh												
HiddenROM Entry*9	Word	3	555h	AAh	2AAh	55h	555h	88h	-	-	-	-	-	-	
	Byte		AAAh		555h		AAAh								
HiddenROM Program *9,*10	Word	4	555h	AAh	2AAh	55h	555h	AOh	$\begin{gathered} \text { (HRA) } \\ \text { PA } \end{gathered}$	PD	-	-	-	-	
	Byte		AAAh		555h		AAAh								
HiddenROM Exit *10	Word	4	555h	AAh	2AAh	55h	$\begin{aligned} & \hline \text { (HR- } \\ & \text { BA) } \end{aligned}$	90h	XXXh	00h	-	-			
	Byte		AAAh		555h		$\begin{aligned} & \text { (HR- } \\ & \text { BA) } \end{aligned}$						-	-	

MBM29DL32TF/BF-70

(Continued)
*1 : Command combinations not described in "MBM29DL32TF/BF Command Definitions Table" are illegal.
*2 : Both of these reset commands are equivalent.
*3 : Erase Suspend and Erase Resume command are valid only during a sector erase operation.
*4 : This command is valid during Fast Mode.
*5 : The Reset from Fast mode command is required to return to the Read mode when the device is in Fast mode.
*6 : This command is valid while $\overline{\text { RESET }}=\mathrm{V}_{\text {ID }}$ (except during HiddenROM mode).
${ }^{* 7}$: Sector Group Address (SGA) with ($\left.A_{6}, A_{3}, A_{2}, A_{1}, A_{0}\right)=(0,0,0,1,0)$
*8 : The valid address are A_{6} to A_{0}.
*9 : The HiddenROM Entry command is required prior to the HiddenROM programming.
*10 : This command is valid during HiddenROM mode.
*11 : The date "FOh" is also acceptable.
*12 : Fourth bus cycle becomes read cycle.
Notes: • Address bits A_{20} to $\mathrm{A}_{11}=\mathrm{X}=$ " H " or " " " for all address commands except or Program Address (PA), Sector Address (SA), Bank Address (BA) .

- Bus operations are defined in "MBM29DL32TF/BF User Bus Operations Tables ($\overline{\mathrm{BYTE}}=\mathrm{V}_{\mathrm{H}}$ and $\overline{\mathrm{BYTE}}$ = VIL)" (■DEVICE BUS OPERATION).
- RA = Address of the memory location to be read

IA = Autoselect read address that sets both the bank address specified at ($\mathrm{A}_{20}, \mathrm{~A}_{19}, \mathrm{~A}_{18}$) and all the other $A_{6}, A_{3}, A_{2}, A_{1}, A_{0},\left(A_{-1}\right)$.
PA = Address of the memory location to be programmed
Addresses are latched on the falling edge of the write pulse.
$S A=$ Address of the sector to be erased. The combination of $\mathrm{A}_{20}, \mathrm{~A}_{19}, \mathrm{~A}_{18}, \mathrm{~A}_{17}, \mathrm{~A}_{16}, \mathrm{~A}_{15}, \mathrm{~A}_{14}, \mathrm{~A}_{13}$, and A_{12} will uniquely select any sector.
BA = Bank Address (A_{20} to A_{18})

- RD = Data read from location RA during read operation.

ID = Device code/manufacture code for the address located by IA.
PD = Data to be programmed at location PA. Data is latched on the rising edge of write pulse.

- SPA $=$ Sector group address to be protected. Set sector group address and $\left(A_{6}, A_{3}, A_{2}, A_{1}, A_{0}\right)=(0,0,0$, $1,0)$.
SGA = Sector Group Address. The combination of A_{20} to A_{12} will uniquely select any sector group.
SD = Sector group protection verify data. Output 01h at protected sector group addresses and output 00h at unprotected sector group addresses.
- HRA = Address of the HiddenROM area

MBM29DL32TF (Top Boot Type) Word Mode: 1FF000h to 1FF07Fh
Byte Mode : 3FE000h to 3FEOFFh
MBM29DL32BF (Bottom Boot Type) Word Mode : 000000h to 00007Fh
Byte Mode : 00000h to 0000FFh

- HRBA = Bank Address of the HiddenROM area

MBM29DL32TF (Top Boot Type) : $\mathrm{A}_{20}=\mathrm{A}_{19}=\mathrm{A}_{18}=\mathrm{V}_{\mathrm{L}}$
MBM29DL32BF (Bottom Boot Type) : $\mathrm{A}_{20}=\mathrm{A}_{19}=\mathrm{A}_{18}=\mathrm{V}_{1 \mathrm{H}}$

- The system should generate the following address patterns :

Word Mode : 555h or 2AAh to addresses A_{10} to A_{0}
Byte Mode : AAAh or 555h to addresses A_{10} to A_{0}, and A_{-1}

- Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.

MBM29DL32TF Sector Group Protection Verify Autoselect Codes Table

Type		A_{20} to A_{12}	A6	A_{3}	A_{2}	A_{1}	A0	A-1*1	Code(HEX)
Manufacture's Code	Byte	$B A^{* 3}$	VIL	VIL	VIL	VIL	VIL	VIL	04h
	Word							X	0004h
Device Code	Byte	$B A^{* 3}$	VIL	VIL	VIL	VIL	$\mathrm{V}_{\text {IH }}$	VIL	7Eh
	Word							X	227Eh
Extended Device Code*4	Byte	$B A^{* 3}$	VIL	VIH	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	VIL	VIL	OAh
	Word							X	220Ah
	Byte	$B A^{* 3}$	VIL	VIH	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\mathbf{H}}$	$\mathrm{V}_{\text {IH }}$	VIL	01h
	Word							X	2201h
Sector Group Protection	Byte	Sector Group Addresses	VIL	VIL	VIL	$\mathrm{V}_{\text {IH }}$	VIL	VIL	01h*2
	Word							X	0001h*2

${ }^{* 1}$: A-1 is for Byte mode. At Byte mode, DQ_{14} to DQ_{8} are High-Z and DQ15 is A_{-1}, the lowest address.
*2 : Outputs 01h at protected sector group addresses and outputs 00h at unprotected sector group addresses.
*3 : When VID is applied to $A 9$, both Bank 1 and Bank 2 are put into Autoselect mode, which makes simultaneous operation unable to be executed. Consequently, specifying the bank address is not required. However, the bank address needs to be indicated when Autoselect mode is read out at command mode, because then it enables to activate simultaneous operation.
*4 : At WORD mode, a read cycle at address (BA) 01h (at BYTE mode, (BA) 02h) outputs device code. When 227Eh (at BYTE mode, 7Eh) is output, it indicates that two additional codes, called Extended Device Codes, will be required. Therefore the system may continue reading out these Extended Device Codes at the address of (BA) 0Eh (at BYTE mode, (BA) 1Ch), as well as at (BA) OFh (at BYTE mode, (BA) 1Eh).

MBM29DL32TF Extended Autoselect Code Table

Type		Code	DQ ${ }_{15}$	DQ ${ }_{14}$	DQ_{13}	DQ ${ }_{12}$	DQ ${ }_{11}$	DQ ${ }_{10}$	DQ	DQ	DQ	DQ ${ }_{6}$	DQ	DQ_{4}	DQ_{3}	DQ_{2}	DQ ${ }_{1}$	DQ 0
Manufacture's Code	Byte*	04h	A-1	HZ	0	0	0	0	0	1	0	0						
	Word	0004h	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Device Code		7Eh	A-1	HZ	0	1	1	1	1	1	1	0						
	Word	227Eh	0	0	1	0	0	0	1	0	0	1	1	1	1	1	1	0
Extended Device Code	By	OAh	A-1	HZ	0	0	0	0	1	0	1	0						
	Word	220Ah	0	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0
	Byte*	01h	A-1	HZ	0	0	0	0	0	0	0	1						
	Word	2201h	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1
Sector Group Protection	Byte*	01h	A-1	HZ	0	0	0	0	0	0	0	1						
	Word	0001h	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

HZ: High-Z

* : At Byte mode, DQ_{14} to DQ_{8} are High-Z and DQ_{15} is A_{-1}, the lowest address.

MBM29DL32TF/BF-70

MBM29DL32BF Sector Group Protection Verify Autoselect Codes Table

Type		A_{20} to A_{12}	A_{6}	A_{3}	A_{2}	A_{1}	A_{0}	A- ${ }^{* 1}$	Code (HEX)
Manufacture's Code	Byte	$B A^{* 3}$	VIL	VIL	VIL	VIL	VIL	VIL	04h
	Word							X	0004h
Device Code	Byte	$B A^{* 3}$	VIL	VIL	VIL	VIL	$\mathrm{V}_{\text {IH }}$	VIL	7Eh
	Word							X	227Eh
	Byte	$B A^{* 3}$	VIL	$\mathrm{V}_{\text {IH }}$	V_{H}	V_{H}	VIL	VIL	0Ah
Extended Device	Word							X	220Ah
Code*4	Byte	$B A^{* 3}$	VIL	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	V ${ }_{\text {H }}$	$\mathrm{V}_{\text {IH }}$	VIL	00h
	Word							X	2200h
Sector Group Protection	Byte	Sector Group Addresses	VII	VIL	VIL	V ${ }_{\text {H }}$	VIL	VIL	01h*2
	Word							X	0001h*2

*1 : A-1 is for Byte mode. At Byte mode, DQ_{14} to DQ_{8} are High-Z and DQ15 is A_{-1}, the lowest address.
*2 : Outputs 01h at protected sector group addresses and outputs 00h at unprotected sector group addresses.
*3 : When VID is applied to $A 9$, both Bank 1 and Bank 2 are put into Autoselect mode, which makes simultaneous operation unable to be executed. Consequently, specifying the bank address is not required. However, the bank address needs to be indicated when Autoselect mode is read out at command mode, because then it enables to activate simultaneous operation.
*4 : At WORD mode, a read cycle at address (BA) 01h (at BYTE mode, (BA) 02h) outputs device code. When 227Eh (at BYTE mode, 7Eh) is output, it indicates that two additional codes, called Extended Device Codes, will be required. Therefore the system may continue reading out these Extended Device Codes at the address of (BA) 0 Eh (at BYTE mode, (BA) 1Ch), as well as at (BA) 0Fh (at BYTE mode, (BA) 1Eh).

MBM29DL32BF Extended Autoselect Code Table

Type		Code	DQ_{15}	DQ14	DQ ${ }_{13}$	DQ ${ }_{12}$	DQ_{11}	DQ10	DQs	DQ	DQ_{7}	DQ ${ }_{6}$	DQ5	DQ4	DQ_{3}	DQ ${ }_{2}$	DQ ${ }_{1}$	DQ 0
Manufacture's Code	Byte*	04h	A-1	HZ	0	0	0	0	0	1	0	0						
	Word	0004h	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Device Code	By	7Eh	A-1	HZ	0	1	1	1	1	1	1	0						
	Word	227Eh	0	0	1	0	0	0	1	0	0	1	1	1	1	1	1	0
Extended Device Code	By	0Ah	A-1	HZ	0	0	0	0	1	0	1	0						
	Word	220Ah	0	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0
	Byte*	00h	A-1	HZ	0	0	0	0	0	0	0	0						
	Word	2200h	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
Sector Group Protection	Byte*	01h	A-1	HZ	0	0	0	0	0	0	0	1						
	Word	0001h	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

HZ: High-Z

* : At Byte mode, DQ_{14} to DQ_{8} are High-Z and DQ_{15} is A_{-1}, the lowest address.

MBM29DL32TF/BF-70

FLEXIBLE SECTOR-ERASE ARCHITECTURE

Sector Address Table (MBM29DL32TF)

$\begin{aligned} & \mathrm{b} \\ & \mathrm{a} \\ & \mathrm{n} \\ & \mathrm{k} \end{aligned}$	Sector	Sector address										Sector size (Kbytes/ Kwords)	($\times 8$) Address range	(×16) Address range
		A_{20}	\mathbf{A}_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}			
	SA0	0	0	0	0	0	0	X	X	X	X	64/32	000000h to 00FFFFh	000000h to 007FFFh
	SA1	0	0	0	0	0	1	X	X	X	X	64/32	010000h to 01FFFFh	008000h to 00FFFFh
B	SA2	0	0	0	0	1	0	X	X	X	X	64/32	000h to 02FFFFFh	0000h to 017FFFh
a	SA3	0	0	0	0	1	1	X	X	X	X	64/32	030000h to 03FFFFh	018000h to 01FFFFh
	SA4	0	0	0	1	0	0	X	X	X	X	64/32	040000h to 04FFFFh	020000h to 027FFFh
D	SA5	0	0	0	1	0	1	X	X	X	X	64/32	050000h to 05FFFFh	Fh
	SA6	0	0	0	1	1	0	X	X	X	X	64/32	060000h to 06FFFFh	030000h to 037FFFh
	SA7	0	0	0	1	1	1	X	X	X	X	64/32	070000h to 07FFFFh	038000h to 03FFFFh
	SA8	0	0	1	0	0	0	X	X	X	X	64/32	080000h to 08FFFFh	000
	SA9	0	0	1	0	0	1	X	X	X	X	64/32	090000h to 09FFFFh	048000h to 04FFFFh
	SA10	0	0	1	0	1	0	X	X	X	X	64/32	OA0000h to OAFFFFh	050000h to 057FFFh
	SA11	0	0	1	0	1	1	X	X	X	X	64/32	OB0000h to OBFFFFh	058000h to 05FFFFh
	SA12	0	0	1	1	0	0	X	X	X	X	64/32	OC0000h to OCFFFFh	060000h to 067
	SA13	0	0	1	1	0	1	X	X	X	X	64/32	OD0000h to ODFFFFh	068000h to 06FFFFh
	SA14	0	0	1	1	1	0	X	X	X	X	64/32	0E0000h to OEFFFFh	070000h to 077FFFh
	SA15	0	0	1	1	1	1	X	X	X	X	64/32	0F0000h to OFFFFFh	078000h to
	SA16	0	1	0	0	0	0	X	X	X	X	64/32	100000h to 10FFFFh	080000h to 087FFFh
	SA17	0	1	0	0	0	1	X	X	X	X	64/32	110000h to 11FFFFh	088000h to 08FFFFh
B	SA18	0	1	0	0	1	0	X	X	X	X	64/32	120000h to 12FFFFh	090000h to
	SA19	0	1	0	0	1	1	X	X	X	X	64/32	130000h to 13FFFFh	098000h to 09FFFFh
k	SA20	0	1	0	1	0	0	X	X	X	X	64/32	140000h to 14FFFFh	0A0000h to 0A7FFFh
C	SA21	0	1	0	1	0	1	X	X	X	X	64/32	150000h to 15FFFFh	0A8000h to OAFFFFh
	SA22	0	1	0	1	1	0	X	X	X	X	64/32	160000h to 16FFFFh	OB0000h to 0B7FFFh
	SA23	0	1	0	1	1	1	X	X	X	X	64/32	170000h to 17FFFFh	0B8000h to 0BFFFFh
	SA24	0	1	1	0	0	0	X	X	X	X	64/32	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA25	0	1	1	0	0	1	X	X	X	X	64/32	190000h to 19FFFFh	0C8000h to 0CFFFFh
	SA26	0	1	1	0	1	0	X	X	X	X	64/32	1A0000h to 1AFFFFh	0D0000h to 0D7FFFh
	SA27	0	1	1	0	1	1	X	X	X	X	64/32	1B0000h to 1BFFFFh	0D8000h to 0DFFFFh
	SA28	0	1	1	1	0	0	X	X	X	X	64/32	1C0000h to 1CFFFFh	0E0000h to 0E7FFFh
	SA29	0	1	1	1	0	1	X	X	X	X	64/32	1D0000h to 1DFFFFh	0E8000h to 0EFFFFh
	SA30	0	1	1	1	1	0	X	X	X	X	64/32	1E0000h to 1EFFFFh	0F0000h to 0F7FFFh
	SA31	0	1	1	1	1	1	X	X	X	X	64/32	1F0000h to 1FFFFFh	0F8000h to OFFFFFh

(Continued)

MBM29DL32TF/BF-70

$\begin{aligned} & \mathrm{a} \\ & \mathrm{n} \\ & \mathrm{k} \end{aligned}$	Sector	Sector address										Sector size (Kbytes/ Kwords)	($\times 8$) Address range	($\times 16$) Address range
		Bank address												
		A20	A_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}			
	SA32	1	0	0	0	0	0	X	X	X	X	64/32	200000h to 20FFFFh	100000h to 107FFFh
	SA33	1	0	0	0	0	1	X	X	X	X	64/32	210000h to 21FFFFh	108000
	SA34	1	0	0	0	1	0	X	X	X	X	64/32	220000h to 22FFFFh	110000h to 117FFFh
	SA35	1	0	0	0	1	1	X	X	X	X	64/32	h	h
	SA36	1	0	0	1	0	0	X	X	X	X	4/32	240000h to 24FFFFh	120000h to 127FFFh
	SA37	1	0	0	1	0	1	X	X	X	X	64/32	250000h to 25FFFFh	128000h to 12FFFFh
	SA38	1	0	0	1	1	0	X	X	X	X	64/32	260000h to 26FFFFh	13000
	SA39	1	0	0	1	1	1	X	X	X	X	4/32	270000h to 27FFFFh	138000h to 13FFFFh
	SA40	1	0	1	0	0	0	X	X	X	X	4/32	280000h to 28FFFFFh	140000h to 147FFFh
	SA41	1	0	1	0	0	1	X	X	X	X	64/32	290000h to 29FFFFh	148000h to
B	SA42	1	0	1	0	1	0	X	X	X	X	64/32	2A0000h to 2AFFFFh	150000h to 157FFFh
	SA43	1	0	1	0	1	1	X	X	X	X	4/32	2B0000h to 2BFFFFh	158000h
k	SA44	1	0	1	1	0	0	X	X	X	X	64/32	2C0000h to 2CFFFFh	160000h to 167FFFh
B	SA45	1	0	1	1	0	1	X	X	X	X	64/32	2D0000h to 2DFFFFh	168000h
	SA46	1	0	1	1	1	0	X	X	X	X	/32	2E0000h to 2EFFFFh	170000h to 1
	SA47	1	0	1	1	1	1	X	X	X	X	/32	2F0000h to 2FFFFFh	178000h to 17FFFFh
	SA48	1	1	0	0	0	0	X	X	X	X	4/32	300000h to 30FFFFh	180000h to 187FFFh
	SA49	1	1	0	0	0	1	X	X	X	X	64/32	310000h to 31FFFFh	188000h to 18FFFFh
	SA50	1	1	0	0	1	0	X	X	X	X	64/32	320000h to 32FFFFh	190000h to 197FFFh
	SA51	1	1	0	0	1	1	X	X	X	X	64/32	330000h to 33FFFFh	198000h to 19FFFFh
	SA52	1	1	0	1	0	0	X	X	X	X	64/32	340000h to 34FFFFh	1A0000h to 1A7FFFh
	SA53	1	1	0	1	0	1	X	X	X	X	64/32	350000h to 35FFFFh	1A8000h to 1AFFFFh
	SA54	1	1	0	1	1	0	X	X	X	X	64/32	360000h to 36FFFFh	1B0000h to 1B7FFFh
	SA55	1	1	0	1	1	1	X	X	X	X	64/32	370000h to 37FFFFh	1B8000h to 1BFFFFh

(Continued)
(Continued)

Bank	Sector	Bank address										Sector size (Kbytes/ Kwords)	$(\times 8)$ Address range	($\times 16$) Address range
		A_{20}	A_{19}	A_{18}	A_{17}	\mathbf{A}_{16}	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}			
	SA56	1	1	1	0	0	0	X	X	X	X	64/32	380000h to 38FFFFh	1C0000h to 1C7FFFh
	SA57	1	1	1	0	0	1	X	X	X	X	64/32	390000h to 39FFFFh	1C8000h to 1CFFFFh
	SA58	1	1	1	0	1	0	X	X	X	X	64/32	3A0000h to 3AFFFFh	1D0000h to 1D7FFFh
	SA59	1	1	1	0	1	1	X	X	X	X	64/32	3B0000h to 3BFFFFh	1D8000h to 1D
	SA60	1	1	1	1	0	0	X	X	X	X	64/32	3C0000h to 3CFFFFh	1E0000h to 1E7FFFh
	SA61	1	1	1	1	0	1	X	X	X	X	64/32	3D0000h to 3DFFFFh	1E8000h to 1EF
	SA62	1	1	1	1	1	0	X	X	X	X	64/32	3E0000h to 3EFFFFh	1F0000h to 1F7FFFh
	SA63	1	1	1	1	1	1	0	0	0	X	8/4	3F0000h to 3F1FFFh	1F8000h to 1F8FFFh
	SA64	1	1	1	1	1	1	0	0	1	X	8/4	3F2000h to 3F3FFFh	1F9000h to 1F9FFFh
	SA65	1	1	1	1	1	1	0	1	0	X	8/4	3F4000h to 3F5FFFh	1FA000h to 1FAFFFh
	SA66	1	1	1	1	1	1	0	1	1	X	8/4	3F6000h to 3F7FFFh	1FB000h to 1FBFFFh
	SA67	1	1	1	1	1	1	1	0	0	X	8/4	3F8000h to 3F9FFFh	1FC000h to 1FCFFFh
	SA68	1	1	1	1	1	1	1	0	1	X	8/4	3FA000h to 3FBFFFh	1FD000h to 1FDFFFh
	SA69	1	1	1	1	1	1	1	1	0	X	8/4	3FC000h to 3FDFFFh	1FE000h to 1FEFFFh
	SA70	1	1	1	1	1	1	1	1	1	X	8/4	3FE000h to 3FFFFFh	1FF000h to 1FFFFFh

Notes : • The address range is $\mathrm{A}_{20}: \mathrm{A}_{-1}$ if in byte mode ($\overline{\mathrm{BYTE}}=\mathrm{V}_{\mathrm{LL}}$) .

- The address range is $\mathrm{A}_{20}: \mathrm{A}_{0}$ if in word mode ($\overline{\mathrm{BYTE}}=\mathrm{V}_{1+}$).

MBM29DL32TF/BF-70

Sector Address Table (MBM29DL32BF)

$\begin{aligned} & \mathrm{B} \\ & \mathrm{a} \\ & \mathrm{n} \\ & \mathrm{k} \end{aligned}$	Sector	Sector address										Sector size (Kbytes/ Kwords)	Address range	(×16) Address range
		Bank address												
		A_{20}	A_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}			
	SA70	1	1	1	1	1	1	X	X	X	X	64/32	3F0000h to 3FFFFFh	8000
	SA69	1	1	1	1	1	0	X	X	X	X	64/32	3E0000h to 3EFFFFh	1F0000h to 1F7FFFh
B	SA68	1	1	1	1	0	1	X	X	X	X	64/32	3D0000h to 3DFFFFh	1 E 80
a	SA67	1	1	1	1	0	0	X	X	X	X	64/32	3C0000h to 3CFFFFh	1E0000
k	SA66	1	1	1	0	1	1	X	X	X	X	64/32	3B0000h to 3BFFFFh	1D8000h to 1DFFFFh
D	SA65	1	1	1	0	1	0	X	X	X	X	64/32	3A0000h to 3AFFFFh	1D0000h to 1D7FFFh
	SA64	1	1	1	0	0	1	X	X	X	X	64/32	390000h to 39FFFFh	800
	SA63	1	1	1	0	0	0	X	X	X	X	64/32	380000h to 38FFFFh	1C0000h to 1C7FFFh
	SA62	1	1	0	1	1	1	X	X	X	X	64/32	370000h to 37FFFFh	1B8000h to
	SA61	1	1	0	1	1	0	X	X	X	X	64/32	360000h to 36FFFFF	1B0000h
	SA60	1	1	0	1	0	1	X	X	X	X	64/32	350000h to 35FFFFh	1A8000h to 1AFFFFh
	SA59	1	1	0	1	0	0	X	X	X	X	64/32	340000h to 34FFFFh	1A0000h to 1A7FFFh
	SA	1	1	0	0	1	1	X	X	X	X	64/32	330000h to 33FFFFh	800
	SA	1	1	0	0	1	0	X	X	X	X	64/32	320000h to 32FFFFF	190000h
	SA56	1	1	0	0	0	1	X	X	X	X	64/32	310000h to 31FFFFh	188000h to 18FFFFh
	SA55	1	1	0	0	0	0	X	X	X	X	64/32	300000h to 30FFFFh	80000h to 18
	SA54	1	0	1	1	1	1	X	X	X	X	64/32	2F0000h to 2FFFFFh	178000h to 17FFFFh
	SA53	1	0	1	1	1	0	X	X	X	X	64/32	2E0000	170000h
B	SA52	1	0	1	1	0	1	X	X	X	X	64/32	2D0000h to 2DFFFFh	168000h to 16FFFFh
a	SA51	1	0	1	1	0	0	X	X	X	X	64/32	2C0000h to 2CFFFFh	160000h
$\left\|\begin{array}{l} n \\ k \end{array}\right\|$	SA50	1	0	1	0	1	1	X	X	X	X	64/32	2B0000h to 2BFFFFh	158000h to 15FFFFh
C	SA49	1	0	1	0	1	0	X	X	X	X	64/32	2A0000h to 2AFFFFh	150000h to 157FFFh
	SA48	1	0	1	0	0	1	X	X	X	X	4/32	290000h to 29FFFFh	148000h to 14FFFFh
	SA47	1	0	1	0	0	0	X	X	X	X	64/32	280000h to 28FFFFh	140000h to 147FFFh
	SA46	1	0	0	1	1	1	X	X	X	X	64/32	270000h to 27FFFFh	138000h to 13
	SA45	1	0	0	1	1	0	X	X	X	X	4/32	260000h to 26FFFFh	130000h to 137FFFh
	SA44	1	0	0	1	0	1	X	X	X	X	64/32	250000h to 25FFFFh	128000h to 12FFFFh
	SA43	1	0	0	1	0	0	X	X	X	X	64/32	240000h to 24FFFFh	120000h to 127FFFh
	SA42	1	0	0	0	1	1	X	X	X	X	64/32	230000h to 23FFFFh	118000h to 11FFFFh
	SA41	1	0	0	0	1	0	X	X	X	X	64/32	220000h to 22FFFFh	110000h to 117FFFh
	SA40	1	0	0	0	0	1	X	X	X	X	64/32	210000h to 21FFFFh	108000h to 10FFFFh
	SA39	1	0	0	0	0	0	X	X	X	X	64/32	200000h to 20FFFFh	100000h to 107FFFh

(Continued)

MBM29DL32TF/BF-70

$\begin{array}{\|l} \text { B } \\ \text { a } \\ \text { n } \\ k \end{array}$	$\begin{aligned} & \text { Sec- } \\ & \text { tor } \end{aligned}$	Sector address										Sector size (Kbytes/ Kwords)	($\times 8$) Address range	(×16) Address range
		A 20	A_{19}	A_{18}	A_{17}	\mathbf{A}_{16}	A_{15}	A_{14}	A_{13}	A_{12}	A ${ }_{11}$			
	SA38	0	1	1	1	1	1	X	X	X	X	64/32	1F0000h to 1FFFFFh	800
	SA37	0	1	1	1	1	0	X	X	X	X	64/32	1E0000h to 1EFFFFh	000
	SA	0	1	1	1	0	1	X	X	X	X	64/32	1D0000h to 1DFFFFh	0E8000h to 0EFFFFh
	SA35	0	1	1	1	0	0	X	X	X	X	4/32	1C0000h to 1CFFFFh	0E0000h to 0E7FFFh
	S	0	1	1	0	1	1	X	X	X	X	64/32	0000h to 1BFFFFh	0D800
	SA33	0	1	1	0	1	0	X	X	X	X	/32	1A0000h to 1AFFFFFh	0D0000h to 0
	SA32	0	1	1	0	0	1	X	X	X	X	64/32	190000h to 19FFFFh	0C8000h to
	SA31	0	1	1	0	0	0	X	X	X	X	64/32	180000h to 18FFFFh	0C0000h to
	SA30	0	1	0	1	1	1	X	X	X	X	64/32	170000h to 17FFFFh	0B8000h to 0BFFFFh
	SA29	0	1	0	1	1	0	X	X	X	X	32	160000h to 16FFFFh	OB0000h
B	SA28	0	1	0	1	0	1	X	X	X	X	64/32	150000h to 15FFFFh	0A8000h to 0AFFFFh
	SA27	0	1	0	1	0	0	X	X	X	X	64/32	140000h to 14FFFFh	OA0000h
k	SA26	0	1	0	0	1	1	X	X	X	X	64/32	130000h to 13FFFFh	098000h to 09FFFFh
B	SA25	0	1	0	0	1	0	X	X	X	X	64/32	120000h to 12FFFFh	090000h to 097FFFh
	SA24	0	1	0	0	0	1	X	X	X	X	/32	110000h to 11FFFFh	088000h to 08
	SA23	0	1	0	0	0	0	X	X	X	X	64/32	100000h to 10FFFFh	080000h to 087FFFh
	SA22	0	0	1	1	1	1	X	X	X	X	64/32	0F0000h to OFFFFFh	078000h to 0
	SA21	0	0	1	1	1	0	X	X	X	X	64/32	OE0000h to OEFFFFh	070000h to 077FFFh
	SA20	0	0	1	1	0	1	X	X	X	X	4/32	0D0000h to 0DFFFFh	068000h to 06FFFFh
	SA19	0	0	1	1	0	0	X	X	X	X	64/32	OC0000h to 0CFFFFh	060000h to 067FFFh
	SA18	0	0	1	0	1	1	X	X	X	X	64/32	OB0000h to OBFFFFh	058000h to 05FFFFh
	SA17	0	0	1	0	1	0	X	X	X	X	64/32	OA0000h to OAFFFFh	050000h to 057FFFh
	SA16	0	0	1	0	0	1	X	X	X	X	64/32	090000h to 09FFFFh	048000h to 04FFFFh
	SA15	0	0	1	0	0	0	X	X	X	X	64/32	080000h to 08FFFFh	040000h to 047FFFh

(Continued)

MBM29DL32TF/BF-70

(Continued)

$\begin{aligned} & \mathrm{B} \\ & \mathrm{a} \\ & \mathrm{n} \\ & \mathrm{k} \end{aligned}$	Sector	Sector address										Sector Size(Kbytes/ Kwords)	($\times 8$) Address range	(×16) Address range
		Bank address												
		A_{20}	\mathbf{A}_{19}	A_{18}	A_{17}	\mathbf{A}_{16}	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}			
	SA14	0	0	0	1	1	1	X	X	X	X	64/32	070000h to 07FFFFh	038000h to 03FFFFh
	SA13	0	0	0	1	1	0	X	X	X	X	64/32	060000h to 06FFFFh	030000h to 037FFFh
	SA12	0	0	0	1	0	1	X	X	X	X	64/32	050000h to 05FFFFh	028000h to 02FFFFh
	SA11	0	0	0	1	0	0	X	X	X	X	64/32	040000h to 04FFFFh	020000h to 027FFFh
	SA10	0	0	0	0	1	1	X	X	X	X	64/32	030000h to 03FFFFh	018000h to 01FFFFh
	SA9	0	0	0	0	1	0	X	X	X	X	64/32	020000h to 02FFFFh	010000h to 017FFFh
	SA8	0	0	0	0	0	1	X	X	X	X	64/32	010000h to 01FFFFh	008000h to 00FFFFh
	SA7	0	0	0	0	0	0	1	1	1	X	8/4	00E000h to 00FFFFh	007000h to 007FFFh
	SA6	0	0	0	0	0	0	1	1	0	X	8/4	00C000h to 00DFFFh	006000h to 006FFFh
	SA5	0	0	0	0	0	0	1	0	1	X	8/4	00A000h to 00BFFFh	005000h to 005FFFh
	SA4	0	0	0	0	0	0	1	0	0	X	8/4	008000h to 009FFFh	004000h to 004FFFh
	SA3	0	0	0	0	0	0	0	1	1	X	8/4	006000h to 007FFFh	003000h to 003FFFh
	SA2	0	0	0	0	0	0	0	1	0	X	8/4	004000h to 005FFFh	002000h to 002FFFh
	SA1	0	0	0	0	0	0	0	0	1	X	8/4	002000h to 003FFFh	001000h to 001FFFh
	SAO	0	0	0	0	0	0	0	0	0	X	8/4	000000h to 001FFFh	000000h to 000FFFh

Notes : • The address range is $A_{20}: A_{-1}$ if in byte mode ($\overline{\mathrm{BYTE}}=\mathrm{V}_{\mathrm{LL}}$) .

- The address range is A_{20} : A_{0} if in word mode ($\overline{\mathrm{BYTE}}=\mathrm{V}_{1+}$).

Sector Group Addresses Table (MBM29DL32TF)

Sector group	A_{20}	A_{19}	A_{18}	A 17	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	Sectors
SGA0	0	0	0	0	0	0	X	X	X	SA0
SGA1	0	0	0	0	0	1	X	X	X	SA1 to SA3
					1	0				
					1	1				
SGA2	0	0	0	1	X	X	X	X	X	SA4 to SA7
SGA3	0	0	1	0	X	X	X	X	X	SA8 to SA11
SGA4	0	0	1	1	X	X	X	X	X	SA12 to SA15
SGA5	0	1	0	0	X	X	X	X	X	SA16 to SA19
SGA6	0	1	0	1	X	X	X	X	X	SA20 to SA23
SGA7	0	1	1	0	X	X	X	X	X	SA24 to SA27
SGA8	0	1	1	1	X	X	X	X	X	SA28 to SA31
SGA9	1	0	0	0	X	X	X	X	X	SA32 to SA35
SGA10	1	0	0	1	X	X	X	X	X	SA36 to SA39
SGA11	1	0	1	0	X	X	X	X	X	SA40 to SA43
SGA12	1	0	1	1	X	X	X	X	X	SA44 to SA47
SGA13	1	1	0	0	X	X	X	X	X	SA48 to SA51
SGA14	1	1	0	1	X	X	X	X	X	SA52 to SA55
SGA15	1	1	1	0	X	X	X	X	X	SA56 to SA59
					0	0				
SGA16	1	1	1	1	0	1	X	X	X	SA60 to SA62
					1	0				
SGA17	1	1	1	1	1	1	0	0	0	SA63
SGA18	1	1	1	1	1	1	0	0	1	SA64
SGA19	1	1	1	1	1	1	0	1	0	SA65
SGA20	1	1	1	1	1	1	0	1	1	SA66
SGA21	1	1	1	1	1	1	1	0	0	SA67
SGA22	1	1	1	1	1	1	1	0	1	SA68
SGA23	1	1	1	1	1	1	1	1	0	SA69
SGA24	1	1	1	1	1	1	1	1	1	SA70

MBM29DL32TF/BF-70

Sector Group Addresses Table (MBM29DL32BF)

Sector group	A 20	A19	A 18	A 17	A_{16}	A15	A_{14}	A13	A_{12}	Sectors
SGAO	0	0	0	0	0	0	0	0	0	SAO
SGA1	0	0	0	0	0	0	0	0	1	SA1
SGA2	0	0	0	0	0	0	0	1	0	SA2
SGA3	0	0	0	0	0	0	0	1	1	SA3
SGA4	0	0	0	0	0	0	1	0	0	SA4
SGA5	0	0	0	0	0	0	1	0	1	SA5
SGA6	0	0	0	0	0	0	1	1	0	SA6
SGA7	0	0	0	0	0	0	1	1	1	SA7
					0	1				
SGA8	0	0	0	0	1	0	X	X	X	SA8 to SA10
					1	1				
SGA9	0	0	0	1	X	X	X	X	X	SA11 to SA14
SGA10	0	0	1	0	X	X	X	X	X	SA15 to SA18
SGA11	0	0	1	1	X	X	X	X	X	SA19 to SA22
SGA12	0	1	0	0	X	X	X	X	X	SA23 to SA26
SGA13	0	1	0	1	X	X	X	X	X	SA27 to SA30
SGA14	0	1	1	0	X	X	X	X	X	SA31 to SA34
SGA15	0	1	1	1	X	X	X	X	X	SA35 to SA38
SGA16	1	0	0	0	X	X	X	X	X	SA39 to SA42
SGA17	1	0	0	1	X	X	X	X	X	SA43 to SA46
SGA18	1	0	1	0	X	X	X	X	X	SA47 to SA50
SGA19	1	0	1	1	X	X	X	X	X	SA51 to SA54
SGA20	1	1	0	0	X	X	X	X	X	SA55 to SA58
SGA21	1	1	0	1	X	X	X	X	X	SA59 to SA62
SGA22	1	1	1	0	X	X	X	X	X	SA63 to SA66
SGA23	1	1	1	1	0	0	X	X	X	SA67 to SA69
					0	1				
					1	0				
SGA24	1	1	1	1	1	1	X	X	X	SA70

Common Flash Memory Interface Code Table

DQ ${ }_{15}$ to DQ_{0}	A_{6} to A_{0}	Description
0051h 0052h 0059h	$\begin{aligned} & \text { 10h } \\ & 11 \mathrm{~h} \\ & 12 \mathrm{~h} \end{aligned}$	Query-unique ASCII string "QRY"
$\begin{aligned} & \text { 0002h } \\ & 0000 \mathrm{~h} \end{aligned}$	$\begin{aligned} & \text { 13h } \\ & 14 \mathrm{~h} \end{aligned}$	Primary OEM Command Set 02h : AMD/FJ standard type
$\begin{aligned} & \text { 0040h } \\ & \text { 0000h } \end{aligned}$	$\begin{aligned} & \text { 15h } \\ & 16 \mathrm{~h} \end{aligned}$	Address for Primary Extended Table
$\begin{aligned} & \text { 0000h } \\ & 0000 \mathrm{~h} \end{aligned}$	$\begin{aligned} & \text { 17h } \\ & \text { 18h } \end{aligned}$	Alternate OEM Command Set ($00 \mathrm{~h}=$ not applicable)
$\begin{aligned} & \text { 0000h } \\ & \text { 0000h } \end{aligned}$	$\begin{aligned} & \text { 19h } \\ & \text { 1Ah } \end{aligned}$	Address for Alternate OEM Extended Table
0027h	1Bh	V_{cc} Min voltage (write/erase) DQ_{7} to DQ_{4} : 1 V , DQ_{3} to $\mathrm{DQ}_{0}: 100 \mathrm{mV}$
0036h	1Ch	Vcc Max voltage (write/erase) DQ_{7} to $\mathrm{DQ}_{4}: 1 \mathrm{~V}, \mathrm{DQ}_{3}$ to DQ_{0} : 100 mV
0000h	1Dh	VPP Min voltage
0000h	1Eh	VPP Max voltage
0004h	1Fh	Typical timeout per word write $2^{\mathrm{N}} \mu \mathrm{s}$
0000h	20h	Typical timeout for buffer write $2^{\mathrm{N}} \mu \mathrm{s}$
000Ah	21h	Typical timeout per individual sector erase $2^{\mathrm{N}} \mathrm{ms}$
0000h	22h	Typical timeout for full chip erase $2^{\mathrm{N}} \mathrm{ms}$
0005h	23h	Max timeout for byte/word write 2^{N} times typical
0000h	24h	Max timeout for buffer write 2^{N} times typical
0004h	25h	Max timeout per individual sector erase 2^{N} times typical
0000h	26h	Max timeout for full chip erase 2^{N} times typical
0016h	27h	Device Size $=2^{N}$ byte
$\begin{aligned} & \text { 0002h } \\ & 0000 \mathrm{~h} \end{aligned}$	$\begin{aligned} & \text { 28h } \\ & 29 \mathrm{~h} \end{aligned}$	I/O information Flash Device Interface description 02h : $\times 8 / \times 16$
$\begin{aligned} & \text { 0000h } \\ & 0000 \mathrm{~h} \end{aligned}$	$\begin{aligned} & \text { 2Ah } \\ & 2 B h \end{aligned}$	Max number of bytes in multi-byte write $=2^{\text {N }}$
0002h	2Ch	Number of Erase Block Regions within device
$\begin{aligned} & \text { 0007h } \\ & 0000 \mathrm{~h} \\ & 0020 \mathrm{~h} \\ & 0000 \mathrm{~h} \end{aligned}$	$\begin{aligned} & \text { 2Dh } \\ & 2 \mathrm{Eh} \\ & 2 \mathrm{Fh} \\ & 30 \mathrm{~h} \end{aligned}$	Erase Block Region 1 Information bit 15 to bit $0: y=$ number of sectors bit 31 to bit $16: z=$ size ($\mathrm{z} \times 256$ bytes)
$\begin{aligned} & \text { 003Eh } \\ & \text { 0000h } \\ & 0000 \mathrm{~h} \\ & 0001 \mathrm{~h} \end{aligned}$	$\begin{aligned} & 31 \mathrm{~h} \\ & 32 \mathrm{~h} \\ & 33 \mathrm{~h} \\ & 34 \mathrm{~h} \end{aligned}$	Erase Block Region 2 Information bit 15 to bit $0: y=$ number of sectors bit 31 to bit $16: z=$ size ($z \times 256$ bytes)
0050h 0052h 0049h	$\begin{aligned} & 40 \mathrm{~h} \\ & 41 \mathrm{~h} \\ & 42 \mathrm{~h} \end{aligned}$	Query-unique ASCII string "PRI"
0031h	43h	Major version number, ASCII

(Continued)

MBM29DL32TF/BF-70

(Continued)

DQ_{15} to DQ_{0}	A_{6} to A_{0}	Description
0033h	44h	Minor version number, ASCII
0004h	45h	Address Sensitive and Silicon Version $04 \mathrm{~h}=$ Required and $0.17 \mu \mathrm{~m}$ process technology $05 \mathrm{~h}=$ Not required and $0.17 \mu \mathrm{~m}$ process technology
0002h	46h	Erase Suspend 02h = To Read \& Write
0001h	47h	Sector Protection 00h = Not Supported X = Number of sectors per group
0001h	48h	Sector Temporary Unprotection 01h = Supported
0004h	49h	Sector Protection Algorithm
0038h	4Ah	Dual Operation 00h = Not Supported X = Total number of sectors in all banks except Bank 1
0000h	4Bh	Burst Mode Type 00h = Not Supported
0000h	4Ch	Page Mode Type 00h = Not Supported
0085h	4Dh	$V_{\text {Acc }}$ (Acceleration) Supply Minimum DQ_{7} to $\mathrm{DQ}_{4}: 1 \mathrm{~V}$, DQ_{3} to $\mathrm{DQ}_{0}: 100 \mathrm{mV}$
0095h	4Eh	$\mathrm{V}_{\mathrm{AcC}}$ (Acceleration) Supply Maximum DQ_{7} to $\mathrm{DQ}_{4}: 1 \mathrm{~V}$, DQ_{3} to $\mathrm{DQ}_{0}: 100 \mathrm{mV}$
00XXh	4Fh	$\begin{aligned} & \text { Boot Type } \\ & \text { 02h = MBM29DL32BF } \\ & \text { 03h = MBM29DL32TF } \end{aligned}$
0001h	50h	Program Suspend 01h = Supported
0004h	57h	Bank Organization X = Total Number of Banks
000Fh	58h	Bank A Region Information X = Number of sectors in Bank A
0018h	59h	Bank B Region Information X = Number of sectors in Bank B
0018h	5Ah	Bank C Region Information X = Number of sectors in Bank C
0008h	5Bh	Bank D Region Information X = Number of sectors in Bank D

MBM29DL32TF/BF-70

FUNCTIONAL DESCRIPTION

1. Simultaneous Operation

The device features functions that enable reading of data from one memory bank while a program or erase operation is in progress in the other memory bank (simultaneous operation), in addition to conventional features (read, program, erase, erase-suspend read, and erase-suspend program). The bank can be selected by bank address $\left(A_{20}, A_{19}, A_{18}\right)$ with zero latency. The device consists of the following four banks :
Bank A : $8 \times 8 \mathrm{~KB}$ and $7 \times 64 \mathrm{~KB}$; Bank B : $24 \times 64 \mathrm{~KB}$; Bank C : $24 \times 64 \mathrm{~KB}$; Bank D : $8 \times 64 \mathrm{~KB}$.
The device can execute simultaneous operations between Bank 1, a bank chosen from among the four banks, and Bank 2, a bank consisting of the three remaining banks. (See "FlexBank ${ }^{T M}$ Architecture Table".) This is what we call a "FlexBank", for example, the rest of banks B, C and D to let the system read while Bank A is in the process of program (or erase) operation. However, the different types of operations for the three banks are impossible, e.g. Bank A writing, Bank B erasing, and Bank C reading out. With this "FlexBank", as described in "Example of Virtual Banks Combination Table", the system gets to select from four combinations of data volume for Bank 1 and Bank 2, which works well to meet the system requirement. The simultaneous operation cannot execute multi-function mode in the same bank. "Simultaneous Operation Table" shows the possible combinations for simultaneous operation.Refer to "8. Bank-to-Bank Read/Write Timing Diagram" in $\begin{aligned} \text { TIMING DIAGRAM. }\end{aligned}$

FlexBank ${ }^{\text {TM }}$ Architecture Table

Bank Splits	Bank 1			Bank 2
	Volume	Combination	Volume	Combination
1	4 Mbit	Bank A	28 Mbit	Bank B, C, D
2	12 Mbit	Bank B	20 Mbit	Bank A, C, D
3	12 Mbit	Bank C	20 Mbit	Bank A, B, D
4	4 Mbit	Bank D	28 Mbit	Bank A, B, C

Example of Virtual Banks Combination Table

Bank Splits	Bank 1			Bank 2		
	Volume	Combination	Sector Size	Volume	Combination	Sector Size
1	4 Mbit	Bank A	$\begin{gathered} 8 \times 8 \text { Kbyte/4 Kword } \\ + \\ 7 \times 64 \text { Kbyte } / 32 \text { Kword } \end{gathered}$	28 Mbit	Bank B Bank C Bank D	56×64 Kbyte/32 Kword
2	8 Mbit	Bank A Bank D	$\begin{gathered} 8 \times 8 \text { Kbyte/4 Kword } \\ + \\ + \\ 15 \times 64 \text { Kbyte } / 32 \text { Kword } \end{gathered}$	24 Mbit	Bank B Bank C	48×64 Kbyte/32 Kword
3	16 Mbit	Bank A Bank B	$\begin{gathered} 8 \times 8 \text { Kbyte/4 Kword } \\ + \\ 31 \times 64 \text { Kbyte } / 32 \text { Kword } \end{gathered}$	16 Mbit	Bank C Bank D	32×64 Kbyte/32 Kword

Note : When multiple sector erase over several banks is operated, the system cannot read out of the bank to which a sector being erased belongs. For example, suppose that erasing is taking place at both Bank A and Bank B, neither Bank A nor Bank B is read out (they would output the sequence flag once they were selected.) Meanwhile the system would get to read from either Bank C or Bank D.

MBM29DL32TF/BF-70

Simultaneous Operation Table

Case	Bank 1 status	Bank 2 status
1	Read Mode	Read Mode
2	Read Mode	Autoselect Mode
3	Read Mode	Program Mode
4	Read Mode	Erase Mode ${ }^{*}$
5	Autoselect Mode	Read Mode
6	Program Mode	Read Mode
7	Erase Mode *	Read Mode

*: By writing erase-suspend command on the bank address of sector being erased, the erase operation gets suspended so that it enables reading from or programming the remaining sectors.

Note: Bank 1 and Bank 2 are divided for the sake of convenience at Simultaneous Operation. The Bank consists of 4 banks, Bank A, Bank B, Bank C and Bank D. Bank Address (BA) means to specify each of the Banks.

2. Standby Mode

There are two ways to implement the standby mode on the MBM29DL32TF/BF devices, one using both the $\overline{C E}$ and RESET pins; the other via the RESET pin only.
When using both pins, CMOS standby mode is achieved with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{RESET}}$ inputs both held at $\mathrm{V} \mathrm{cc} \pm 0.3 \mathrm{~V}$. Under this condition the current consumed is less than $5 \mu \mathrm{~A}$ Max. During Embedded Algorithm operation, Vcc active current (lccz) is required even when $\overline{\mathrm{CE}}=$ " H ". The device can be read with standard access time (tcE) from either of these standby modes.
When using the $\overline{\text { RESET }}$ pin only, CMOS standby mode is achieved with $\overline{R E S E T}$ input held at $\mathrm{V}_{\mathrm{ss}} \pm 0.3 \mathrm{~V}$ ($\overline{\mathrm{CE}}$ $=$ " H " or " L "). Under this condition the current consumed is less than $5 \mu \mathrm{~A}$ Max. Once the RESET pin is taken high, the device requires tre of wake up time before outputs are valid for read access.
In the standby mode the outputs are in the high impedance state, independent of the $\overline{O E}$ input.

3. Automatic Sleep Mode

Automatic sleep mode works to restrain power consumption during read-out of MBM29DL32TF/BF data. This mode can be used effectively with an application requested low power consumption such as handy terminals. To activate this mode, MBM29DL32TF/BF automatically switch themselves to low power mode when MBM29DL32TF/BF addresses remain stable during access fine of 150 ns . It is not necessary to control $\overline{\mathrm{CE}}$, $\overline{W E}$, and $\overline{\mathrm{OE}}$ on the mode. Under the mode, the current consumed is typically $1 \mu \mathrm{~A}$ (CMOS Level) . During simultaneous operation, Vcc active current (Iccz) is required.
Since the data are latched during this mode, the data are continuously read-out. If the addresses are changed, the mode is automatically canceled and MBM29DL32TF/BF read-out the data for changed addresses.

4. Autoselect

The autoselect mode allows the reading out of a binary code from the devices and will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the devices to be programmed with its corresponding programming algorithm. This mode is functional over the entire temperature range of the devices.
To activate this mode, the programming equipment must force $\mathrm{V}_{I D}$ on address pin A_{9}. Two identifier bytes may then be sequenced from the devices outputs by toggling address A_{0} from $\mathrm{V}_{\mathbb{L}}$ to V_{I}. All addresses are DON'T CARES except $\mathrm{A}_{6}, \mathrm{~A}_{3}, \mathrm{~A}_{2}, \mathrm{~A}_{1}, \mathrm{~A}_{0}$ and (A_{-1}). (See "MBM29DL32TF/BF User Bus Operations Tables ($\overline{\mathrm{BY} T E}=\mathrm{V}_{1+}$ and BYTE $=V_{L L}$ " in ©DEVICE BUS OPERATION.)
The manufacturer and device codes may also be read via the command register, for instances when the MBM29DL32TF/BF are erased or programmed in a system without access to high voltage on the As pin. The

MBM29DL32TF/BF-70

command sequence is illustrated in "MBM29DL32TF/BF Command Definitions Table" (DDEVICE BUS OPERATION). (Refer to "2. Autoselect Command" in ■COMMAND DIFINITIONS.)
In WORD mode, a read cycle from address 00h returns the manufacturer's code (Fujitsu $=04 \mathrm{~h}$) . A read cycle at address 01h outputs device code. When 227Eh is output, it indicates that two additional codes, called Extended Device Codes will be required. Therefore the system may continue reading out these Extended Device Codes at addresses of OEh and OFh. Notice that the above applies to WORD mode; the addresses and codes differ from those of BYTE mode. (Refer to "MBM29DL32TF/BF Sector Group Protection Verify Autoselect Codes Tables" and "MBM29DL32TF/BF Extended Autoselect Code Tables" in ■DEVICE BUS OPERATION.)
In the case of applying $V_{I D}$ on A_{9}, since both Bank 1 and Bank 2 enter Autoselect mode, simultanous operation cannot be executed.

5. Read Mode

The MBM29DL32TF/BF have two control functions required to obtain data at the outputs. $\overline{C E}$ is the power control and used for a device selection. $\overline{\mathrm{OE}}$ is the output control and used to gate data to the output pins if a device is selected.
Address access time ($\mathrm{t}_{\mathrm{Acc}}$) is equal to the delay from stable addresses to valid output data. The chip enable access time (tce) is the delay from stable addresses and stable $\overline{\mathrm{CE}}$ to valid data at the output pins. The output enable access time (toE) is the delay from the falling edge of $\overline{\mathrm{OE}}$ to valid data at the output pins. (Assuming the addresses have been stable for at least tacc-toe time.) When reading out a data without changing addresses after power-up, input hardware reset or to change $\overline{\mathrm{CE}}$ pin from " H " to " L "

6. Output Disable

With the $\overline{\mathrm{OE}}$ input at a logic high level $\left(\mathrm{V}_{\boldsymbol{H}}\right)$, output from the devices are disabled. This will cause the output pins to be in a high impedance state.

7. Write

Device erasure and programming are accomplished via the command register. The contents of the register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device.
The command register itself does not occupy any addressable memory location. The register is a latch used to store the commands, along with the address and data information needed to execute the command. The command register is written by bringing $\overline{\mathrm{WE}}$ to V_{L}, while $\overline{\mathrm{CE}}$ is at V_{IL} and $\overline{\mathrm{OE}}$ is at V_{H}. Addresses are latched on the falling edge of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CE}}$, whichever happens later; while data is latched on the rising edge of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CE}}$, whichever happens first. Standard microprocessor write timings are used.
Refer to "■ AC WRITE CHARACTERISTICS" and Erase/Programming Waveforms for specific timing parameters.

8. Sector Group Protection

The MBM29DL32TF/BF feature hardware sector group protection. This feature will disable both program and erase operations in any combination of twenty five sector groups of memory. (See "Sector Group Addresses Tables (MBM29DL32TF/BF)" in \quad FLEXIBLE SECTOR-ERASE ARCHITECTURE). The sector group protection feature is enabled using programming equipment at the user's site. The device is shipped with all sector groups unprotected.
To activate this mode, the programming equipment must force V_{ID} on address pin A 9 and control pin $\overline{\mathrm{OE}}$, (suggest $\mathrm{V}_{10}=11.5 \mathrm{~V}$) , $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}$ and $\mathrm{A}_{6}=\mathrm{A}_{3}=\mathrm{A}_{2}=\mathrm{A}_{0}=\mathrm{V}_{\mathrm{L}}, \mathrm{A}_{1}=\mathrm{V}_{14}$. The sector group addresses ($\mathrm{A}_{20}, \mathrm{~A}_{19}, \mathrm{~A}_{18}, \mathrm{~A}_{17}, \mathrm{~A}_{16}$, A_{15}, A_{14}, A_{13}, and A_{12}) should be set to the sector to be protected. "Sector Address Tables (MBM29DL32TF/BF)" in ■FLEXIBLE SECTOR-ERASE ARCHITECTURE define the sector address for each of the seventy one (71) individual sectors, and "Sector Group Addresses Tables (MBM29DL32TF/BF)" in \quad FLEXIBLE SECTOR-ERASE ARCHITECTURE define the sector group address for each of the twenty five (25) individual group sectors. Programming of the protection circuitry begins on the falling edge of the WE pulse and is terminated with the rising edge of the same. Sector group addresses must be held constant during the WE pulse. See "15. Sector Group Protection Timing Diagram" in ■TIMING DIAGRAM and " 5 . Sector Group Protection Algorithm" in $\begin{aligned} & \text { FLOW }\end{aligned}$

MBM29DL32TF/BF-70

CHART for sector group protection waveforms and algorithm.
To verify programming of the protection circuitry, the programming equipment must force $\mathrm{V}_{\text {ID }}$ on address pin A_{9} with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ at V_{12} and $\overline{\mathrm{WE}}$ at V_{14}. Scanning the sector group addresses ($\mathrm{A}_{20}, \mathrm{~A}_{19}, \mathrm{~A}_{18}, \mathrm{~A}_{17}, \mathrm{~A}_{16}, \mathrm{~A}_{15}, \mathrm{~A}_{14}, \mathrm{~A}_{13}$, and A_{12}) while ($\left.A_{6}, A_{3}, A_{2}, A_{1}, A_{0}\right)=(0,0,0,1,0)$ will produce a logic " 1 " code at device output $D Q_{0}$ for a protected sector. Otherwise the device will produce " 0 " for unprotected sector. In this mode, the lower order addresses, except for A_{6}, A_{1}, and A_{0} are DON'T CARES. Address locations with $A_{1}=V_{I L}$ are reserved for Autoselect manufacturer and device codes. A-1 requires to apply to VIL on byte mode.
It is also possible to determine if a sector group is protected in the system by writing an Autoselect command. Performing a read operation at the address location XX02h, where the higher order addresses ($\mathrm{A}_{20}, \mathrm{~A}_{19}, \mathrm{~A}_{18}$, $A_{17}, A_{16}, A_{15}, A_{14}, A_{13}$, and A_{12}) are the desired sector group address will produce a logic " 1 " at D_{0} for a protected sector group. See "MBM29DL32TF/BF Sector Group Protection Verify Autoselect Codes Tables" and "MBM29DL32TF/BF Extended Autoselect Code Tables" in ■DEVICE BUS OPERATION for Autoselect codes.

9. Temporary Sector Group Unprotection

This feature allows temporary unprotection of previously protected sector groups of the MBM29DL32TF/BF devices in order to change data. The Sector Group Unprotection mode is activated by setting the RESET pin to high voltage (V_{10}) . During this mode, formerly protected sector groups can be programmed or erased by selecting the sector group addresses. Once the VIo is taken away from the RESET pin, all the previously protected sector groups will be protected again. Refer to "16. Temporary Sector Group Unprotection Timing Diagram" in $\begin{aligned} & \text { TIMING }\end{aligned}$ DIAGRAM and "6. Temporary Sector Group Unprotection Algorithm" in ■FLOW CHART.

10. RESET

Hardware Reset
The MBM29DL32TF/BF devices may be reset by driving the $\overline{\text { RESET }}$ pin to $\mathrm{V}_{\text {IL }}$. The $\overline{\text { RESET }}$ pin has a pulse requirement and has to be kept low ($\mathrm{V}_{\text {L }}$) for at least "trp" in order to properly reset the internal state machine. Any operation in the process of being executed will be terminated and the internal state machine will be reset to the read mode "tready" after the RESET pin is driven low. Furthermore, once the RESET pin goes high, the devices require an additional "trk" before it will allow read access. When the RESET pin is low, the devices will be in the standby mode for the duration of the pulse and all the data output pins will be tri-stated. If a hardware reset occurs during a program or erase operation, the data at that particular location will be corrupted. Please note that the RY/BY output signal should be ignored during the RESET pulse. See "11. RESET, RY/BY Timing Diagram" in ■TIMING DIAGRAM for the timing diagram. Refer to "9. Temporary Sector Group Unprotection" for additional functionality.

11. Byte/Word Configuration

The BYTE pin selects the byte (8-bit) mode or word (16-bit) mode for the MBM29DL32TF/BF devices. When this pin is driven high, the devices operate in the word (16-bit) mode. The data is read and programmed at DQ0 to DQ_{15}. When this pin is driven low, the devices operate in byte (8-bit) mode. Under this mode, the $\mathrm{DQ}_{15} / \mathrm{A}_{-1}$ pin becomes the lowest address bit and DQ_{14} to DQ_{8} bits are tri-stated. However, the command bus cycle is always an 8-bit operation and hence commands are written at DQ_{7} to DQ_{0} and the DQ_{15} to DQ_{8} bits are ignored. Refer to "12. Timing Diagram for Word Mode Configuration", "13. Timing Diagram for Byte Mode Configuration" and "14. BYTE Timing Diagram for Write Operations" in ■TIMING DIAGRAM for the timing diagram.

12. Boot Block Sector Protection

The Write Protection function provides a hardware method of protecting certain boot sectors without using Vio. This function is one of two provided by the WP/ACC pin.
If the system asserts $V_{ı}$ on the WP/ACC pin, the device disables program and erase functions in the two "outermost" 8 K byte boot sectors (MBM29DL32TF : SA69 and SA70, MBM29DL32BF : SA0 and SA1) independently of whether those sectors were protected or unprotected using the method described in "Sector Group Protection". The two outermost 8 K byte boot sectors are the two sectors containing the lowest addresses in a

MBM29DL32TF/BF-70

bottom-boot-configured device, or the two sectors containing the highest addresses in a top-boot-configured device.

If the system asserts $\mathrm{V}_{\text {IH }}$ on the WP/ACC pin, the device reverts to whether the two outermost 8 K byte boot sectors were last set to be protected or unprotected. That is, sector group protection or unprotection for these two sectors depends on whether they were last protected or unprotected using the method described in "Sector Group Protection".

13. Accelerated Program Operation

MBM29DL32TF/BF offers accelerated program operation which enables the programming in high speed. If the system asserts VAcc to the WP/ACC pin, the device automatically enters the acceleration mode and the time required for program operation will reduce to about 60%. This function is primarily intended to allow high speed program, so caution is needed as the sector group will temporarily be unprotected.
The system would use a fact program command sequence when programming during acceleration mode.
Set command to fast mode and reset command from fast mode are not necessary. When the device enters the acceleration mode, the device automatically set to fast mode. Therefore, the present sequence could be used for programming and detection of completion during acceleration mode.
Removing VAcc from the $\overline{W P} / A C C$ pin returns the device to normal operation. Do not remove VAcc from $\overline{W P} /$ ACC pin while programming. See "18. Accelerated Program Timing Diagram" in ■TIMING DIAGRAM. Erase operation at Acceleration mode is strictly prohibited.

MBM29DL32TF/BF-70

■ COMMAND DEFINITIONS

Device operations are selected by writing specific address and data sequences into the command register. Some commands are required Bank Address (BA) input. When command sequences are inputted to bank being read, the commands have priority than reading. "MBM29DL32TF/BF Command Definitions Table" in ■DEVICE BUS OPERATION defines the valid register command sequences. Note that the Erase Suspend (BOh) and Erase Resume (30h) commands are valid only while the Sector Erase operation is in progress. Also the Program Suspend (BOh) and Program Resume (30h) commands are valid only while the Program operation is in progress. Moreover both Read/Reset commands are functionally equivalent, resetting the device to the read mode. Please note that commands are always written at DQ_{7} to DQ_{0} and DQ_{15} to DQ_{8} bits are ignored.

1. Read/Reset Command

In order to return from Autoselect mode or Exceeded Timing Limits ($\mathrm{DQ}_{5}=1$) to Read/Reset mode, the Read/ Reset operation is initiated by writing the Read/Reset command sequence into the command register. Microprocessor read cycles retrieve array data from the memory. The devices remain enabled for reads until the command register contents are altered.
The devices will automatically power-up in the Read/Reset state. In this case, a command sequence is not required to read data. Standard microprocessor read cycles will retrieve array data. This default value ensures that no spurious alteration of the memory content occurs during the power transition. Refer to the AC Characteristics and waveforms for the specific timing parameters.

2. Autoselect Command

Flash memories are intended for use in applications where the local CPU alters memory contents. As such, manufacture and device codes must be accessible while the devices reside in the target system. PROM programmers typically access the signature codes by raising As to a high voltage. However, multiplexing high voltage onto the address lines is not generally desired system design practice.
The device contains an Autoselect command operation to supplement traditional PROM programming methodology. The operation is initiated by writing the Autoselect command sequence into the command register.
The Autoselect command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle that contains the bank address (BA) and the Autoselect command. Then the manufacture and device codes can be read from the bank, and an actual data of memory cell can be read from the another bank.
Following the command write, in WORD mode, a read cycle from address (BA) 00h returns the manufacturer's code (Fujitsu $=04 \mathrm{~h}$). And a read cycle at address $(B A) 01$ h outputs device code. When 227Eh was output, this indicates that two additional codes, called Extended Device Codes will be required. Therefore the system may continue reading out these Extended Device Codes at the address of (BA) OEh, as well as at (BA) OFh. Notice that the above applies to WORD mode. The addresses and codes differ from those of BYTE mode. (Refer to "MBM29DL32TF/BF Sector Group Protection Verify Autoselect Codes Tables" and "MBM29DL32TF/BF Extended Autoselect Code Tables" in ■DEVICE BUS OPERATION.)
All manufacturer and device codes will exhibit odd parity with DQ7 defined as the parity bit. Sector state (protection or unprotection) will be informed by address (BA) 02 h for $\times 16$ ((BA) 04 h for $\times 8$). Scanning the sector group addresses ($\mathrm{A}_{20}, \mathrm{~A}_{19}, \mathrm{~A}_{18}, \mathrm{~A}_{17}, \mathrm{~A}_{16}, \mathrm{~A}_{15}, \mathrm{~A}_{14}, \mathrm{~A}_{13}$, and A_{12}) while ($\left.\mathrm{A}_{6}, \mathrm{~A}_{3}, \mathrm{~A}_{2}, \mathrm{~A}_{1}, \mathrm{~A}_{0}\right)=(0,0,0,1,0)$ will produce a logic "1" at device output DQ_{0} for a protected sector group. The programming verification should be performed by verify sector group protection on the protected sector. (See "MBM29DL32TF/BF Sector Group Protection Verify Autoselect Codes Tables" and "MBM29DL32TF/BF Extended Autoselect Code Tables" in ■DEVICE BUS OPERATION.)
The manufacture and device codes can be allowed reading from selected bank. To read the manufacture and device codes and sector group protection status from non-selected bank, it is necessary to write Read/Reset command sequence into the register and then Autoselect command should be written into the bank to be read. If the software (program code) for Autoselect command is stored into the Flash memory, the device and manufacture codes should be read from the other bank where is not contain the software.
To terminate the operation, it is necessary to write the Read/Reset command sequence into the register, and also to write the Autoselect command during the operation, execute it after writing Read/Reset command sequence.

3. Byte/Word Programming

The devices are programmed on a byte-by-byte (or word-by-word) basis. Programming is a four bus cycle operation. There are two "unlock" write cycles. These are followed by the program set-up command and data

MBM29DL32TF/BF-70

write cycles. Addresses are latched on the falling edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever happens later and the data is latched on the rising edge of $\overline{C E}$ or WE , whichever happens first. The rising edge of $\overline{C E}$ or WE (whichever happens first) begins programming. Upon executing the Embedded Program Algorithm command sequence, the system is not required to provide further controls or timings. The device will automatically provide adequate internally generated program pulses and verify the programmed cell margin.
The system can determine the status of the program operation by using DQ7 (Data Polling), DQ6 (Toggle Bit), or RY/BY. The $\overline{\text { Data }}$ Polling and Toggle Bit must be performed at the memory location which is being programmed. The automatic programming operation is completed when the data on DQ_{7} is equivalent to data written to this bit at which time the devices return to the read mode and addresses are no longer latched. (See "Hardware Sequence Flags Table".) Therefore, the devices require that a valid address to the devices be supplied by the system at this particular instance. Hence, Data Polling must be performed at the memory location which is being programmed.
If hardware reset occurs during the programming operation, it is impossible to guarantee the data being written. Programming is allowed in any sequence and across sector boundaries. Beware that a data "0" cannot be programmed back to a " 1 ". Attempting to do so may either hang up the device or result in an apparent success according to the data polling algorithm but a read from Read/Reset mode will show that the data is still " 0 ". Only erase operations can convert " 0 "s to " 1 "s.
"1. Embedded Program ${ }^{\text {TM }}$ Algorithm" in ■FLOW CHART illustrates the Embedded Program ${ }^{\text {TM }}$ Algorithm using typical command strings and bus operations.

4. Program Suspend/Resume

The Program Suspend command allows the system to interrupt a program operation so that data can be read from any address. Writing the Program Suspend command (BOh) during the embedded Program operation immediately suspends the programming. The Program Suspend command may also be issued during a programming operation while an erase is suspended. The bank addresses of sector being programmed should be set when writing the Program Suspend command.
When the Program Suspend command is written during a programming process, the device halts the program operation within $1 \mu \mathrm{~s}$ and updates the status bits.
After the program operation has been suspended, the system can read data from any address. The data at program-suspended address is not valid. Normal read timing and command definitions apply.
After the Program Resume command (30h) is written, the device reverts to programming. The bank addresses of sectors being suspended should be set when writing the Program Resume command. The system can determine the program operation status using the DQ_{7} or DQ_{6} status bits, just as in the standard program operation. See "Write Operation Status" for more information.
The system also writes Autoselect command sequence in the Program Suspend mode. The device allows reading autoselect codes at the addresses within programming sectors, since the codes are not stored in the mamory. When the device exits from the Autoselect mode, the device reverts to the Program Suspend mode, and is ready for another valid operation. See "Autoselect Command Sequence" for more information.
The system must write the Program Resume command (address bits are "Bank Address") to exit from the Program Suspend mode and continue programming operation. Further writes of the Resume command are ignored. Another Program Suspend command can be written after the device resumes programming.

5. Chip Erase

Chip erase is a six bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the chip erase command.
Chip erase does not require the user to program the device prior to erase. Upon executing the Embedded Erase Algorithm command sequence the devices will automatically program and verify the entire memory for an all zero data pattern prior to electrical erase (Preprogram function). The system is not required to provide any controls or timings during these operations.
The system can determine the status of the erase operation by using DQ7 (Data Polling), DQ6 (Toggle Bit), or $\mathrm{RY} / \mathrm{BY}$. The chip erase begins on the rising edge of the last CE or WE, whichever happens first in the command sequence and terminates when the data on DQ_{7} is " 1 " (See Write Operation Status section.) at which time the device returns to read the mode.

MBM29DL32TF/BF-70

Chip Erase Time $=$ Sector Erase Time \times All sectors + Chip Program Time (Preprogramming)
"2. Embedded Erase ${ }^{T M}$ Algorithm" in ■FLOW CHART illustrates the Embedded Erase ${ }^{T M}$ Algorithm using typical command strings and bus operations.

6. Sector Erase

Sector erase is a six bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the Sector Erase command. The sector address (any address location within the desired sector) is latched on the falling edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ whichever happens later, while the command (Data $=30 \mathrm{~h}$) is latched on the rising edge of $\overline{C E}$ or $\overline{W E}$ which happens first. After time-out of "tтow" from the rising edge of the last sector erase command, the sector erase operation will begin. Multiple sectors may be erased concurrently by writing the six bus cycle operations on "MBM29DL32TF/BF Command Definitions Table" in ■DEVICE BUS OPERATION. This sequence is followed with writes of the Sector Erase command to addresses in other sectors desired to be concurrently erased. The time between writes must be less than "ttow" otherwise that command will not be accepted and erasure will start. It is recommended that processor interrupts be disabled during this time to guarantee this condition. The interrupts can be re-enabled after the last Sector Erase command is written. A time-out of "tow" from the rising edge of last $\overline{C E}$ or $\bar{W} E$ whichever happens first will initiate the execution of the Sector Erase command (s). If another falling edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever happens first occurs within the "trow" time-out window the timer is reset. (Monitor DQ ${ }_{3}$ to determine if the sector erase timer window is still open, see "16. DQ 3 Sector Erase Timer".) Resetting the devices once execution has begun will corrupt the data in the sector. In that case, restart the erase on those sectors and allow them to complete. (Refer to "12. Write Operation Status" for Sector Erase Timer operation.) Loading the sector erase buffer may be done in any sequence and with any number of sectors (0 to 38) .
Sector erase does not require the user to program the devices prior to erase. The devices automatically program all memory locations in the sector (s) to be erased prior to electrical erase (Preprogram function). When erasing a sector or sectors the remaining unselected sectors are not affected. The system is not required to provide any controls or timings during these operations.
The system can determine the status of the erase operation by using DQ7 ($\overline{\mathrm{Data}}$ Polling), DQ6 (Toggle Bit), or RY/BY.
The sector erase begins after the "tтow" time out from the rising edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ whichever happens first for the last sector erase command pulse and terminates when the data on DQ ${ }_{7}$ is "1" (See "12. Write Operation Status".) at which time the devices return to the read mode. $\overline{\text { Data }}$ polling and Toggle Bit must be performed at an address within any of the sectors being erased.

Multiple Sector Erase Time $=$ [Sector Erase Time + Sector Program Time (Preprogramming) $] \times$ Number of Sector Erase

In case of multiple sector erase across bank boundaries, a read from bank (read-while-erase) can not perform.
"2. Embedded Erase ${ }^{T M}$ Algorithm" in ■FLOW CHART illustrates the Embedded Erase ${ }^{T M}$ Algorithm using typical command strings and bus operations.

7. Erase Suspend/Resume

The Erase Suspend command allows the user to interrupt a Sector Erase operation and then perform data reads from or programs to a sector not being erased. This command is applicable ONLY during the Sector Erase operation which includes the time-out period for sector erase. Writing the Erase Suspend command (B0h) during the Sector Erase time-out results in immediate termination of the time-out period and suspension of the erase operation.
Writing the Erase Resume command (30h) resumes the erase operation. The bank addresses of sector being erasing or suspending should be set when writing the Erase Suspend or Erase Resume command.
When the Erase Suspend command is written during the Sector Erase operation, the device will take a maximum of "tspo" to suspend the erase operation. When the devices have entered the erase-suspended mode, the RY/BY output pin will be at High-Z and the DQ7 bit will be at logic "1", and DQ6 will stop toggling. The user must use the address of the erasing sector for reading DQ_{6} and DQ_{7} to determine if the erase operation has been suspended. Further writes of the Erase Suspend command are ignored.
When the erase operation has been suspended, the devices default to the erase-suspend-read mode. Reading

MBM29DL32TF/BF-70

data in this mode is the same as reading from the standard read mode except that the data must be read from sectors that have not been erase-suspended. Successively reading from the erase-suspended sector while the device is in the erase-suspend-read mode will cause DQ2 to toggle. (See "17. DQ2".)
After entering the erase-suspend-read mode, the user can program the device by writing the appropriate command sequence for Program. This program mode is known as the erase-suspend-program mode. Again, programming in this mode is the same as programming in the regular Program mode except that the data must be programmed to sectors that are not erase-suspended. Successively reading from the erase-suspended sector while the devices are in the erase-suspend-program mode will cause DQ2 to toggle. The end of the erasesuspended Program operation is detected by the RY/ $\overline{\mathrm{BY}}$ output pin, Data polling of DQ7 or by the Toggle Bit I (DQ_{6}) which is the same as the regular Program operation. Note that DQ_{7} must be read from the Program address while $D Q_{6}$ can be read from any address within bank being erase-suspended.
To resume the operation of Sector Erase, the Resume command (30h) should be written to the bank being erase suspended. Any further writes of the Resume command at this point will be ignored. Another Erase Suspend command can be written after the chip has resumed erasing.

8. Extended Command

(1) Fast Mode

MBM29DL32TF/BF has Fast Mode function. This mode dispenses with the initial two unclock cycles required in the standard program command sequence by writing Fast Mode command into the command register. In this mode, the required bus cycle for programming is two cycles instead of four bus cycles in standard program command. The read operation is also executed after exiting this mode. During the Fast mode, do not write any commands other than the Fast program/Fast mode reset command. To exit this mode, it is necessary to write Fast Mode Reset command into the command register. The first cycle must contain the bank address. (Refer to "8. Embedded Program ${ }^{\text {TM }}$ Algorithm for Fast Mode" in ■FLOW CHART.) The Vcc active current is required even $\overline{\mathrm{CE}}=\mathrm{V}_{\boldsymbol{1}}$ during Fast Mode.
(2) Fast Programming

During Fast Mode, the programming can be executed with two bus cycles operation. The Embedded Program Algorithm is executed by writing program set-up command (A0h) and data write cycles (PA/PD) . (Refer to " 8. Embedded Program ${ }^{\text {TM }}$ Algorithm for Fast Mode" in ■FLOW CHART.)
(3) Extended Sector Group Protection

In addition to normal sector group protection, the MBM29DL32TF/BF has Extended Sector Group Protection as extended function. This function enables to protect sector group by forcing VID on $\overline{R E S E T}$ pin and write a command sequence. Unlike conventional procedure, it is not necessary to force ViD and control timing for control pins. The extended sector group protection requires VID on RESET pin only. With this condition, the operation is initiated by writing the set-up command (60h) into the command register. Then, the sector group addresses pins ($A_{20}, A_{19}, A_{18}, A_{17}, A_{16}, A_{15}, A_{14}, A_{13}$ and A_{12}) and $\left(A_{6}, A_{3}, A_{2}, A_{1}, A_{0}\right)=(0,0,0,1,0)$ should be set to the sector group to be protected (recommend to set V_{IL} for the other addresses pins), and write extended sector group protection command (60h). A sector group is typically protected in $250 \mu \mathrm{~s}$. To verify programming of the protection circuitry, the sector group addresses pins ($A_{20}, A_{19}, A_{18}, A_{17}, A_{16}, A_{15}, A_{14}, A_{13}$ and $\left.A_{12}\right)$ and $\left(A_{6}, A_{3}, A_{2}\right.$, $\left.A_{1}, A_{0}\right)=(0,0,0,1,0)$ should be set and write a command (40h). Following the command write, a logic " 1 " at device output DQo will produce for protected sector in the read operation. If the output data is logic " 0 ", please repeat to write extended sector group protection command (60h) again. To terminate the operation, it is necessary to set RESET pin to $\mathrm{V}_{\mathbf{1}}$. (Refer to "17. Extended Sector Group Protection Timing Diagram" in ■TIMING DIAGRAM and "7. Extended Sector Group Protection Algorithm" in ■FLOW CHART.)

(4) Query (CFI : Common Flash Memory Interface)

The CFI (Common Flash Memory Interface) specification outlines device and host system software interrogation handshake which allows specific vendor-specified software algorithms to be used for entire families of devices. This allows device-independent, JEDEC ID-independent, and forward-and backward-compatible software support for the specified flash device families. Refer to Common Flash memory Interface code.
The operation is initiated by writing the query command (98h) into the command register. The bank address should be set when writing this command. Then the device information can be read from the bank, and an actual

MBM29DL32TF/BF-70

data of memory cell be read from the another bank. Following the command write, a read cycle from specific address retrieves device information. Please note that output data of upper byte (DQ15 to DQ8) is "0" in word mode (16 bit) read. Refer to the Common Flash memory Interface code table. To terminate operation, it is necessary to write the read/reset command sequence into the register. (See "Common Flash Memory Interface Code Table" in \quad FLEXIBLE SECTOR-ERASE ARCHITECTURE.)

9. HiddenROM Region

The HiddenROM feature provides a Flash memory region that the system may access through a new command sequence. This is primarily intended for customers who wish to use an Electronic Serial Number (ESN) in the device with the ESN protected against modification. Once the HiddenROM region is protected, any further modification of that region is impossible. This ensures the security of the ESN once the product is shipped to the field.
The HiddenROM region is 256 bytes in length and is stored at the same address of SAO in Bank A. The MBM29DL32TF occupies the address of the byte mode 3FE000h to 3FE0FFh (word mode 1FF000h to 1FF07Fh) and the MBM29DL32BF type occupies the address of the byte mode 000000h to 0000FFh (word mode 000000h to 00007Fh) . After the system has written the Enter HiddenROM command sequence, the system may read the HiddenROM region by using the addresses normally occupied by the boot sectors. That is, the device sends all commands that would normally be sent to the boot sectors to the HiddenROM region. This mode of operation continues until the system issues the Exit HiddenROM command sequence, or until power is removed from the device. On power-up, or following a hardware reset, the device reverts to sending commands to the boot sectors.
When reading the HiddenROM region, either change addresses or change $\overline{C E}$ pin from " H " to " L ". The same procedure should be taken (changing addresses or $\overline{\mathrm{CE}}$ pin from " H " to "L") after the system issues the Exit HiddenROM command sequence to read actual memory cell data.

10. HiddenROM Entry Command

The device has a HiddenROM area with one time protect function. This area is to enter the security code and to unable the change of the code once set. Programming is allowed in this area until it is protected. However, once it gets protected, it is impossible to unprotect. Therefore, extreme caution is required.
The HiddenROM area is 256 bytes. This area is normally the "outermost" 8 Kbyte boot block area in Bank 1. Therefore, write the HiddenROM entry command sequence to enter the HiddenROM area. It is called HiddenROM mode when the HiddenROM area appears.
Sectors other than the boot block area SA0 can be read during HiddenROM mode. Read/program of the HiddenROM area is possible during HiddenROM mode. Write the HiddenROM reset command sequence to exit the HiddenROM mode. The bank address of the HiddenROM should be set on the third cycle of this reset command sequence.
In HiddenROM mode, the simultaneous operation cannot be executed multi-function mode between the HiddenROM area and the Bank A. Note that any other commands should not be issued other than the HiddenROM program/protection/reset commands during the HiddenROM mode. When you issue the other commands including the suspend resume, send the HiddenROM reset command first to exit the HiddenROM mode and then issue each command.

11. HiddenROM Program Command

To program the data to the HiddenROM area, write the HiddenROM program command sequence during HiddenROM mode. This command is the same as the usual program command, except that it needs to write the command during HiddenROM mode. Therefore the detection of completion method is the same as in the past, using the DQ7 data pooling, DQ6 toggle bit and RY/BY pin. You should pay attention to the address to be programmed. If an address not in the HiddenROM area is selected, the previous data will be deleted. During the write into the HiddenROM region, the program suspend command issuance is prohibited.

12. HiddenROM Protect Command

There are two methods to protect the HiddenROM area. One is to write the sector group protect setup command (60 h) , set the sector address in the HiddenROM area and ($\left.\mathrm{A}_{6}, \mathrm{~A}_{3}, \mathrm{~A}_{2}, \mathrm{~A}_{1}, \mathrm{~A}_{0}\right)=(0,0,0,1,0)$, and write the sector group protect command (60h) during the HiddenROM mode. The same command sequence may be used because it is the same as the extension sector group protect in the past, except that it is in the HiddenROM

MBM29DL32TF/BF-70

Abstract

mode and does not apply high voltage to the RESET pin. Please refer to " 7 . Extended Command (3) Extended Sector Group Protection" for details of extension sector group protect setting. The other method is to apply high voltage (V ID $)$ to A 9 and $\overline{\mathrm{OE}}$, set the sector address in the HiddenROM area and $\left(A_{6}, A_{3}, A_{2}, A_{1}, A_{0}\right)=(0,0,0,1,0)$, and apply the write pulse during the HiddenROM mode. To verify the protect circuit, apply high voltage $\left(\mathrm{V}_{10}\right)$ to A_{9}, specify $\left(\mathrm{A}_{6}, \mathrm{~A}_{3}, \mathrm{~A}_{2}, \mathrm{~A}_{1}, \mathrm{~A}_{0}\right)=(0,0,0,1,0)$ and the sector address in the HiddenROM area, and read. When " 1 " appears on DQo, the protect setting is completed. " 0 " will appear on $D Q_{0}$ if it is not protected. Apply write pulse again. The same command sequence could be used for the above method because other than the HiddenROM mode, it is the same as the sector group protect previously mentioned. Refer to "8. Secor Group Protection" in ■FUNCTIONAL DESCRIPTION for details of the sector group protect setting. Take note that other sector groups will be affected if an address other than those for the HiddenROM area is selected for the sector group address, so please be careful. Pay close attention that once it is protected, protection CANNOT BE CANCELLED.

13. Write Operation Status

Detailed in "Hardware Sequence Flags Table" are all the status flags that can determine the status of the bank for the current mode operation. The read operation from the bank that does not operate Embedded Algorithm returns a data of memory cell. These bits offer a method for determining whether a Embedded Algorithm is completed properly. The information on DQ_{2} is address sensitive. This means that if an address from an erasing sector is consecutively read, then the DQ_{2} bit will toggle. However, DQ_{2} will not toggle if an address from a nonerasing sector is consecutively read. This allows the user to determine which sectors are erasing and which are not.
The status flag is not output from bank (non-busy bank) not executing Embedded Algorithm. For example, there is bank (busy bank) which is now executing Embedded Algorithm. When the read sequence is [1] <busy bank>, [2] <non-busy bank>, [3] <busy bank>, the DQ6 is toggling in the case of [1] and [3]. In case of [2], the data of memory cell is outputted. In the erase-suspend read mode with the same read sequence, DQ6 will not be toggled in the [1] and [3].
In the erase suspend read mode, DQ_{2} is toggled in the [1] and [3]. In case of [2], the data of memory cell is outputted.

Hardware Sequence Flags Table

Status			DQ_{7}	DQ6	DQ5	DQ_{3}	DQ2
In Progress	Embedded Program Algorithm		$\overline{\mathrm{DQ}_{7}}$	Toggle	0	0	1
	Embedded Erase Algorithm		0	Toggle	0	1	Toggle *1
	Erase Suspended Mode	Erase Suspend Read (Erase Suspended Sector)	1	1	0	0	Toggle
		Erase Suspend Read (Non-Erase Suspended Sector)	Data	Data	Data	Data	Data
		Erase Suspend Program (Non-Erase Suspended Sector)	$\overline{\mathrm{DQ}}_{7}$	Toggle	0	0	1 *2
	Program Suspended Mode	Program Suspend Read (Program Suspended Sector)	Data	Data	Data	Data	Data
		Program Suspend Read (Non-Program Suspended Sector)	Data	Data	Data	Data	Data
Exceeded Time Limits	Embedded Program Algorithm		$\overline{\mathrm{DQ}}_{7}$	Toggle	1	0	1
	Embedded Erase Algorithm		0	Toggle	1	1	N/A
	Erase Suspended Mode	Erase Suspend Program (Non-Erase Suspended Sector)	$\overline{\mathrm{DQ}_{7}}$	Toggle	1	0	N/A

MBM29DL32TF/BF-70

*1: Successive reads from the erasing or erase-suspend sector will cause DQ2 to toggle.
*2: Reading from non-erase suspend sector address will indicate logic "1" at the DQ2 bit.

14. DQ_{7}

Data Polling
The device features $\overline{\text { Data Polling as a method to indicate to the host that the Embedded Algorithms are in }}$ progress or completed. During the Embedded Program Algorithm an attempt to read the devices will produce the complement of the data last written to DQ7. Upon completion of the Embedded Program Algorithm, an attempt to read the device will produce the true data last written to DQ7. During the Embedded Erase Algorithm, an attempt to read the device will produce a " 0 " at the DQ_{7} output. Upon completion of the Embedded Erase Algorithm an attempt to read the device will produce a "1" at the DQ7 output. The flowchart for Data Polling (DQ7) is shown in "3. Data Polling Algorithm" in \quad FLOW CHART.
For programming, the $\overline{\text { Data }}$ Polling is valid after the rising edge of fourth write pulse in the four write pulse sequence.
For chip erase and sector erase, the $\overline{\text { Data }}$ Polling is valid after the rising edge of the sixth write pulse in the six write pulse sequence. Data Polling must be performed at sector address within any of the sectors being erased and not a protected sector. Otherwise the status may not be valid.
If a program address falls within a protected sector, Data Polling on DQ7 is active for approximately $1 \mu \mathrm{~s}$, then that bank returns to the read mode. After an erase command sequence is written, if all sectors selected for erasing are protected, Data Polling on DQ7 is active for approximately $400 \mu \mathrm{~s}$, then the bank returns to read mode. Once the Embedded Algorithm operation is close to being completed, the MBM29DL32TF/BF data pins (DQ7) may change asynchronously while the output enable ($\overline{\mathrm{OE}})$ is asserted low. This means that the devices are driving status information on DQ_{7} at one instant of time and then that byte's valid data at the next instant of time. Depending on when the system samples the DQ7 output, it may read the status or valid data. Even if the device has completed the Embedded Algorithm operation and DQ_{7} has a valid data, the data outputs on DQ_{6} to DQ_{0} may be still invalid. The valid data on DQ_{7} to DQ_{0} will be read on the successive read attempts.
The $\overline{\text { Data }}$ Polling feature is only active during the Embedded Programming Algorithm, Embedded Erase Algorithm or sector erase time-out. (See "Hardware Sequence Flags Table".)
See "6. Data Polling during Embedded Algorithm Operation Timing Diagram" in ■TIMING DIAGRAM for the Data Polling timing specifications and diagrams.

15. DQ6

Toggle Bit I
The device also features the "Toggle Bit I" as a method to indicate to the host system that the Embedded Algorithms are in progress or completed.
During an Embedded Program or Erase Algorithm cycle, successive attempts to read ($\overline{\mathrm{OE}}$ toggling) data from the devices will result in DQ_{6} toggling between one and zero. Once the Embedded Program or Erase Algorithm cycle is completed, DQ_{6} will stop toggling and valid data will be read on the next successive attempts. During programming, the Toggle Bit I is valid after the rising edge of the fourth write pulse in the four write pulse sequence. For chip erase and sector erase, the Toggle Bit I is valid after the rising edge of the sixth write pulse in the six write pulse sequence. The Toggle Bit I is active during the sector time out.
In programming, if the sector being written to is protected, the toggle bit will toggle for about 1μ s and then stop toggling without the data having changed. In erase, the devices will erase all the selected sectors except for the ones that are protected. If all selected sectors are protected, the chip will toggle the toggle bit for about $400 \mu \mathrm{~s}$ and then drop back into read mode, having changed none of the data.
Either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ toggling will cause the DQ_{6} to toggle.
The system can use DQ_{6} to determine whether a sector is actively erasing or is erase-suspended. When a bank is actively erasing (that is, the Embedded Erase Algorithm is in progress), DQ_{6} toggles. When a bank enters the Erase Suspend mode, DQ_{6} stops toggling. Successive read cycles during the erase-suspend-program cause DQ_{6} to toggle.
To operate toggle bit function properly, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ must be high when bank address is changed.

MBM29DL32TF/BF-70

See "7. Toggle Bit I during Embedded Algorithm Operation Timing Diagram" in ■TIMING DIAGRAM for the Toggle Bit I timing specifications and diagrams.

16. DQ5

Exceeded Timing Limits
DQ5 will indicate if the program or erase time has exceeded the specified limits (internal pulse count). Under these conditions DQ5 will produce a " 1 ". This is a failure condition which indicates that the program or erase cycle was not successfully completed. Data Polling is the only operating function of the devices under this condition. The $\overline{C E}$ circuit will partially power down the device under these conditions (to approximately 2 mA). The $\overline{\mathrm{OE}}$ and $\overline{\mathrm{WE}}$ pins will control the output disable functions as described in "MBM29DL32TF/BF User Bus Operations Tables ($\overline{\mathrm{BYTE}}=\mathrm{V}_{\boldsymbol{I}}$ and $\overline{\mathrm{BYTE}}=\mathrm{V}_{\mathrm{I}}$)" (■DEVICE BUS OPERATION).
The DQs failure condition may also appear if a user tries to program a non blank location without erasing. In this case the devices lock out and never complete the Embedded Algorithm operation. Hence the system never reads a valid data on DQ7 bit and DQ_{6} never stops toggling. Once the devices have exceeded timing limits, the DQ5 bit will indicate a "1." Please note that this is not a device failure condition since the devices were incorrectly used. If this occurs, reset the device with command sequence.
17. DQ_{3}

Sector Erase Timer
After the completion of the initial sector erase command sequence the sector erase time-out will begin. DQ_{3} will remain low until the time-out is complete. Data Polling and Toggle Bit are valid after the initial sector erase command sequence.
If Data Polling or the Toggle Bit I indicates the device has been written with a valid erase command, DQ3 may be used to determine if the sector erase timer window is still open. If DQ_{3} is high ("1") the internally controlled erase cycle has begun. If DQ_{3} is low ("0") , the device will accept additional sector erase commands. To insure the command has been accepted, the system software should check the status of DQ3 prior to and following each subsequent Sector Erase command. If DQ_{3} were high on the second status check, the command may not have been accepted.
See "Hardware Sequence Flags Table".
18. DQ_{2}

Toggle Bit II
This toggle bit II, along with DQ6, can be used to determine whether the devices are in the Embedded Erase Algorithm or in Erase Suspend.
Successive reads from the erasing sector will cause DQ_{2} to toggle during the Embedded Erase Algorithm. If the devices are in the erase-suspended-read mode, successive reads from the erase-suspended sector will cause DQ 2 to toggle. When the devices are in the erase-suspended-program mode, successive reads from the byte address of the non-erase suspended sector will indicate a logic "1" at the DQ 2 bit.
DQ_{6} is different from DQ_{2} in that DQ_{6} toggles only when the standard program or Erase, or Erase Suspend Program operation is in progress. The behavior of these two status bits, along with that of DQ_{7}, is summarized as follows :
For example DQ_{2} and DQ_{6} can be used together to determine if the erase-suspend-read mode is in progress. (DQ_{2} toggles while DQ_{6} does not.) See also "Toggle Bit Status Table" and " 9 . DQ ${ }_{2}$ vs. DQ6" in ■TIMING DIAGRAM.
Furthermore DQ2 can also be used to determine which sector is being erased. When the device is in the erase mode, DQ_{2} toggles if this bit is read from an erasing sector.
To operate toggle bit function properly, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ must be high when bank address is changed.

19. Reading Toggle Bits $\mathrm{DQ}_{6} / \mathrm{DQ}_{2}$

Whenever the system initially begins reading toggle bit status, it must read $D Q_{7}$ to $D Q_{0}$ at least twice in a row to determine whether a toggle bit is toggling. Typically a system would note and store the value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can read array data on DQ_{7} to DQ_{0} on the following read cycle.
However, after the initial two read cycles, if the system determines that the toggle bit is still toggling, the system

MBM29DL32TF/BF-70

also should note whether the value of DQ5 is high (see "15. DQ5") . If it is, the system should then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the device has successfully completed the program or erase operation. If it is still toggling, the device did not complete the operation successfully, and the system must write the reset command to return to reading array data.
The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has not gone high. The system may continue to monitor the toggle bit and DQ5 through successive read cycles, determining the status as described in the previous paragraph. Alternatively it may choose to perform other system tasks. In this case, the system must start at the beginning of the algorithm when it returns to determine the status of the operation. (Refer to "4. Toggle Bit Algorithm" in mFLOW CHART.)

Toggle Bit Status Table

Mode	DQ $_{7}$	DQ $_{6}$	DQ $_{2}$
Program	$\overline{\mathrm{DQ}}_{7}$	Toggle	1
Erase	0	Toggle	Toggle *1
Erase-Suspend Read (Erase-Suspended Sector)	1	1	Toggle
Erase-Suspend Program	$\overline{\mathrm{DQ}} 77$	Toggle	$1^{* 2}$

${ }^{*} 1$: Successive reads from the erasing or erase-suspend sector cause DQ_{2} to toggle.
*2 : Reading from non-erase suspend sector address indicates logic "1" at the DQ2 bit.

20. $R Y / \overline{B Y}$

Ready/Busy
The MBM29DL32TF/BF provide a RY/ $\overline{\mathrm{BY}}$ open-drain output pin as a way to indicate to the host system that the Embedded Algorithms are either in progress or has been completed. If the output is low, the devices are busy with either a program or erase operation. If the output is high, the devices are ready to accept any read/program or erase operation. If the MBM29DL32TF/BF are placed in an Erase Suspend mode, the RY/BY output will be high.
During programming, the $\mathrm{RY} / \overline{\mathrm{BY}}$ pin is driven low after the rising edge of the fourth write pulse. During an erase operation, the $\mathrm{RY} / \overline{\mathrm{BY}}$ pin is driven low after the rising edge of the sixth write pulse. The $\mathrm{RY} / \overline{\mathrm{BY}}$ pin will indicate a busy condition during the RESET pulse. Refer to "10. RY/BY Timing Diagram during Program/Erase Operations" and "11. RESET, RY/BY Timing Diagram" in ■TIMING DIAGRAM for a detailed timing diagram. The RY/ $\overline{\mathrm{BY}}$ pin is pulled high in standby mode.
Since this is an open-drain output, the pull-up resistor needs to be connected to Vcc ; multiple of devices may be connected to the host system via more than one RY/ $\overline{\mathrm{BY}}$ pin in parallel.

21. Data Protection

The MBM29DL32TF/BF are designed to offer protection against accidental erasure or programming caused by spurious system level signals that may exist during power transitions. During power up the devices automatically reset the internal state machine in the Read mode. Also, with its control register architecture, alteration of the memory contents only occurs after successful completion of specific multi-bus cycle command sequences.
The devices also incorporate several features to prevent inadvertent write cycles resulting form Vcc power-up and power-down transitions or system noise.

22. Low Vcc Write Inhibit

To avoid initiation of a write cycle during V cc power-up and power-down, a write cycle is locked out for Vcc less than $V_{\text {цко. If }} \mathrm{V}_{\text {сс }}$ < V цко, the $^{\text {the }}$ command register is disabled and all internal program/erase circuits are disabled. Under this condition the device will reset to the read mode. Subsequent writes will be ignored until the Vcc level is greater than Vடкo. It is the users responsibility to ensure that the control pins are logically correct to prevent

MBM29DL32TF/BF-70

unintentional writes when V_{cc} is above $\mathrm{V}_{\text {цкo. }}$
If Embedded Erase Algorithm is interrupted, there is possibility that the erasing sector (s) cannot be used.

23. Write Pulse "Glitch" Protection

Noise pulses of less than 3 ns (typical) on $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}$, or $\overline{\mathrm{WE}}$ will not initiate a write cycle.

24. Logical Inhibit

Writing is inhibited by holding any one of $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{I}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{H}}$, or $\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}$. To initiate a write cycle $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ must be a logic zero while $\overline{\mathrm{OE}}$ is a logic one.

25. Power-Up Write Inhibit

Power-up of the devices with $\overline{\mathrm{WE}}=\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathbb{H}}$ will not accept commands on the rising edge of $\overline{\mathrm{WE}}$. The internal state machine is automatically reset to the read mode on power-up.

26. Sector Group Protection

Device user is able to protect each sector group individually to store and protect data. Protection circuit voids both program and erase commands that are addressed to protected sectors. Any commands to program or erase addressed to protected sector are ignored. (See "8. Sector Group Protection" in $\boldsymbol{\square}$ FUNCTIONAL DESCRIPTION.)

MBM29DL32TF/BF-70

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating		Unit
		Min	Max	
Storage Temperature	Tstg	-55	+125	${ }^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$
Voltage with Respect to Ground All pins except A9, $\overline{\mathrm{OE}}, \mathrm{RESET}^{* 1, * 2}$	Vin, Vout	-0.5	$\mathrm{Vcc}+0.5$	V
Power Supply Voltage *1	Vcc	-0.5	+4.0	V
$\mathrm{A}_{9}, \overline{\mathrm{OE}}$, and $\overline{\mathrm{RESET}}{ }^{* 1, * 3}$	Vin	-0.5	+13.0	V
$\overline{\text { WP/ACC }}{ }^{* 1, * 4}$	$V_{\text {ACC }}$	-0.5	+10.5	V

*1: Voltage is defined on the basis of $\mathrm{Vss}=\mathrm{GND}=0 \mathrm{~V}$.
*2: Minimum DC voltage on input or I/O pins is -0.5 V . During voltage transitions, input or I/O pins may undershoot Vss to -2.0 V for periods of up to 20 ns . Maximum DC voltage on input or I / O pins is $\mathrm{Vcc}+0.5 \mathrm{~V}$. During voltage transitions, input or I/O pins may overshoot to $\mathrm{Vcc}+2.0 \mathrm{~V}$ for periods of up to 20 ns.
*3: Minimum DC input voltage on A 9 , $\overline{\mathrm{OE}}$ and RESET pins is -0.5 V . During voltage transitions, $\mathrm{A} 9, \overline{\mathrm{OE}}$ and $\overline{\mathrm{RESET}}$ pins may undershoot V ss to -2.0 V for periods of up to 20 ns . Voltage difference between input and supply voltage $\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{Cc}}\right)$ does not exceed +9.0 V . Maximum DC input voltage on $\mathrm{A}_{9}, \overline{\mathrm{OE}}$ and $\overline{R E S E T}$ pins is +13.0 V which may overshoot to +14.0 V for periods of up to 20 ns .
*4: Minimum DC input voltage on $\overline{\mathrm{WP}} / \mathrm{ACC}$ pin is -0.5 V . During voltage transitions, $\overline{\mathrm{WP}} / \mathrm{ACC}$ pin may undershoot Vss to -2.0 V for periods of up to 20 ns . Maximum DC input voltage on WP/ACC pin is +10.5 V which may overshoot to +12.0 V for periods of up to 20 ns when Vcc is applied.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Part No.	Value		Unit
			Min	Max	
Ambient Temperatuer	T_{A}	MBM29DL32TF/BF-70	-40	+85	${ }^{\circ} \mathrm{C}$
Power Supply Voltage*	V_{cc}	MBM29DL32TF/BF-70	+2.7	+3.6	V

* : Voltage is defined on the basis of $\mathrm{V} s \mathrm{~s}=\mathrm{GND}=0 \mathrm{~V}$.

Note : Operating ranges define those limits between which the functionality of the devices are guaranteed.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MBM29DL32TF/BF-70

MAXIMUM OVERSHOOT/MAXIMUM UNDERSHOOT

\square

Maximum Undershoot Waveform

Maximum Overshoot Waveform 1

Note : This waveform is applied for $\mathrm{A}_{9}, \overline{\mathrm{OE}}$, and $\overline{\text { RESET. }}$

Maximum Overshoot Waveform 2

MBM29DL32TF/BF-70

DC CHARACTERISTICS

Parameter	Symbol	Conditions		Value			Unit
				Min	Typ	Max	
Input Leakage Current	Iı	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Max}$		-1.0	-	+1.0	$\mu \mathrm{A}$
Output Leakage Current	Ito	Vout $=$ V ${ }_{\text {ss }}$ to V Vcc, V cc $=$ Vcc Max		-1.0	-	+1.0	$\mu \mathrm{A}$
$\mathrm{A} 9, \overline{\mathrm{OE}}, \overline{\mathrm{RESET}}$ Inputs Leakage Current	ILit	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Max}$, $\mathrm{A}_{9}, \overline{\mathrm{OE}}, \overline{\mathrm{RESET}}=12.5 \mathrm{~V}$		-	-	35	$\mu \mathrm{A}$
WP/ACC Accelerated Program Current	ILIA	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \operatorname{Max}, \\ & \mathrm{WP} / A C C=\mathrm{V}_{\mathrm{ACC}} \operatorname{Max} \end{aligned}$		-	-	20	mA
Vcc Active Current *1	Icc1	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}, \\ & \mathrm{f}=5 \mathrm{MHz} \end{aligned}$	Byte Word	-	-	16	mA
		$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	Byte Word	-	-	4	mA
Vcc Active Current *2	Icc2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$		-	-	30	mA
Vcc Current (Standby)	Icc3	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Max}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}, \\ & \mathrm{RESET}=\mathrm{V} \mathrm{~V} \pm 0.3 \mathrm{~V}, \\ & \mathrm{WP} / \mathrm{ACC}=\mathrm{V} \mathrm{Vc} \pm 0.3 \mathrm{~V} \end{aligned}$		-	1	5	$\mu \mathrm{A}$
Vcc Current (Standby, Reset)	Icc4	$\begin{aligned} & \mathrm{V} \mathrm{cc}=\mathrm{Vcc} \operatorname{Max}, \\ & \mathrm{RESET}=\mathrm{V} \mathrm{ss} \pm 0.3 \mathrm{~V} \end{aligned}$		-	1	5	$\mu \mathrm{A}$
Vcc Current (Automatic Sleep Mode) *5	Icc5	$\begin{aligned} & \mathrm{V} \mathrm{Vc}=\mathrm{V} \mathrm{Vc} \operatorname{Max}, \overline{\mathrm{CE}}=\mathrm{V} \mathrm{Vs} \pm 0.3 \mathrm{~V}, \\ & \mathrm{RESET}=\mathrm{V} \pm 0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V} \mathrm{Vc} \pm 0.3 \mathrm{~V} \text { or } \mathrm{V} s \mathrm{ss} \pm 0.3 \mathrm{~V} \end{aligned}$		-	1	5	$\mu \mathrm{A}$
Vcc Active Current *6	Icc6	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$	Byte	-	-	46	mA
(Read-While-Program)			Word	-	-	48	
Vcc Active Current *6	Icc7	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$	Byte	-	-	46	mA
(Read-While-Erase)			Word	-	-	48	
Vcc Active Current (Erase-Suspend-Program)	Icc8	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$		-	-	35	mA
Input Low Voltage	VIL	-		-0.5	-	+0.6	V
Input High Voltage	V_{IH}	-		2.0	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V
Voltage for Autoselect and Sector Protection ($\mathrm{A} 9, \overline{\mathrm{OE}}, \overline{\mathrm{RESET}}$) *3, *4	VID	-		11.5	12	12.5	V
Voltage for $\overline{\mathrm{WP}} / \mathrm{ACC}$ Sector Protection/ Unprotection and Program Acceleration	$V_{\text {Acc }}$	-		8.5	9.0	9.5	V
Output Low Voltage	Vol	$\mathrm{lol}=4.0 \mathrm{~mA}, \mathrm{Vcc}=\mathrm{Vcc} \mathrm{Min}$		-	-	0.45	V
Output High Voltage	Voh1	I он $=-2.0 \mathrm{~mA}, \mathrm{~V}$ cc $=\mathrm{V}$ cc Min		2.4	-	-	V
	Vон2	l он $=-100 \mu \mathrm{~A}$		Vcc-0.4	-	-	V
Low Vcc Lock-Out Voltage	Vıko	-		2.3	2.4	2.5	V

*1: The Icc current listed includes both the DC operating current and the frequency dependent component.
*2 : Icc active while Embedded Algorithm (program or erase) is in progress.
*3 : This timing is only for Sector Group Protection operation and Autoselect mode.
*4 : Applicable for only Vcc.
*5 : Automatic sleep mode enables the low power mode when address remains stable for 150 ns .
*6 : Embedded Algorithm (program or erase) is in progress (@5 MHz) .

AC CHARACTERISTICS

- Read Only Operations Characteristics

Parameter	Symbol		Test setup	Value *		Unit
	JEDEC	Standard		Min	Max	
Read Cycle Time	tavav	trc	-	70	-	ns
Address to Output Delay	tavav	tacc	$\begin{aligned} & \overline{\overline{\mathrm{CE}}}=\mathrm{V}_{\mathrm{IL}} \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	-	70	ns
Chip Enable to Output Delay	telav	tce	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	-	70	ns
Output Enable to Output Delay	talov	toe	-	-	30	ns
Chip Enable to Output High-Z	tehaz	tof	-	-	25	ns
Output Enable to Output High-Z	tahaz	tof	-	-	25	ns
Output Hold Time from Addresses, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$, Whichever Occurs First	taxax	toн	-	0	-	ns
$\overline{\text { RESET Pin Low to Read Mode }}$	-	tready	-	-	20	$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ to $\overline{\mathrm{BYTE}}$ Switching Low or High	-	teLfL, telfh	-	-	5	ns

* : Test Conditions :

Output Load : 30 pF (MBM29DL32TF/BF-70)
Input rise and fall times :5 ns
Input pulse levels : 0.0 V or V Cc
Timing measurement reference level
Input : $0.5 \times \mathrm{V}_{\mathrm{cc}}$
Output : $0.5 \times \mathrm{Vcc}$

MBM29DL32TF/BF-70

- Write/Erase/Program Operations

Parameter		Symbol		Value			Unit
		JEDEC	Standard	Min	Typ	Max	
Write Cycle Time		tavav	twc	70	-	-	ns
Address Setup Time		tavwL	tAs	0	-	-	ns
Address Setup Time to $\overline{\text { OE Low During Toggle Bit Polling }}$		-	taso	12	-	-	ns
Address Hold Time		twax	tah	45	-	-	ns
Address Hold Time from $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ High During Toggle Bit Polling		-	taht	0	-	-	ns
Data Setup Time		tovwh	tos	30	-	-	ns
Data Hold Time		twhdx	toh	0	-	-	ns
Output Enable Hold Time	Read	-	tоен	0	-	-	ns
	Toggle and $\overline{\text { Data }}$ Polling			10	-	-	ns
$\overline{\overline{C E}}$ High During Toggle Bit Polling		-	tcEph	20	-	-	ns
$\overline{\text { OE High During Toggle Bit Polling }}$		-	toEph	20	-	-	ns
Read Recover Time Before Write		tghw	tghwL	0	-	-	ns
Read Recover Time Before Write		tGHEL	tGHEL	0	-	-	ns
$\overline{\text { CE Setup Time }}$		telwL	tos	0	-	-	ns
$\overline{\text { WE Setup Time }}$		twLeL	tws	0	-	-	ns
$\overline{\text { CE Hold Time }}$		twher	tch	0	-	-	ns
$\overline{\text { WE Hold Time }}$		terwh	twh	0	-	-	ns
Write Pulse Width		twww	twp	35	-	-	ns
$\overline{\text { CE Pulse Width }}$		teLer	tcp	35	-	-	ns
Write Pulse Width High		twhwL	twpH	25	-	-	ns
$\overline{\text { CE Pulse Width High }}$		tенеL	tcPH	25	-	-	ns
Programming Operation	Byte	twhwh	twhwh1	-	4	-	$\mu \mathrm{s}$
	Word			-	6	-	$\mu \mathrm{s}$
Sector Erase Operation *1		twHwH2	twhwhz	-	0.5	-	s
$\mathrm{V}_{\text {cc }}$ Setup Time		-	tvcs	50	-	-	$\mu \mathrm{s}$
Rise Time to $\mathrm{V}_{10}{ }^{* 2}$		-	tvidr	500	-	-	ns
Rise Time to $\mathrm{V}_{\text {Acc }}{ }^{* 3}$		-	tvaccr	500	-	-	ns
Voltage Transition Time *2		-	tvLht	4	-	-	$\mu \mathrm{s}$
Write Pulse Width *2		-	twpp	100	-	-	$\mu \mathrm{s}$
$\overline{\mathrm{OE}}$ Setup Time to $\overline{\mathrm{WE}}$ Active *2		-	toesp	4	-	-	$\mu \mathrm{S}$

(Continued)
(Continued)

Parameter	Symbol		Value			Unit
	JEDEC	Standard	Min	Typ	Max	
$\overline{\text { CE Setup Time to WE Active *2 }}$	-	tcsp	4	-	-	$\mu \mathrm{s}$
Recover Time from RY/ $\overline{\mathrm{BY}}$	-	trB	0	-	-	ns
RESET Pulse Width	-	trp	500	-	-	ns
$\overline{\text { RESET }}$ High Level Period before Read	-	tre	200	-	-	ns
BYTE Switching Low to Output High-Z	-	tflaz	-	-	25	ns
$\overline{\text { BYTE Switching High to Output Active }}$	-	tFhav	-	-	70	ns
Program/Erase Valid to RY/ $\overline{\text { BY }}$ Delay	-	tbusy	-	-	90	ns
Delay Time from Embedded Output Enable	-	teoe	-	-	70	ns
Erase Time-Out Time	-	trow	50	-	-	$\mu \mathrm{s}$
Erase Suspend Transition Time	-	tspD	-	-	20	$\mu \mathrm{s}$

*1: Does not include the preprogramming time.
*2: For Sector Group Protection operation.
*3: This timing is limited for Accelerated Program operation only.

MBM29DL32TF/BF-70

■ ERASE AND PROGRAMMING PERFORMANCE

Parameter	Limits			Unit	Comments
	Min	Typ	Max		
Sector Erase Time	-	0.5	2.0	s	Excludes programming time prior to erasure
Word Programming Time	-	6.0	100	$\mu \mathrm{s}$	Excludes system-level
Byte Programming Time	-	4.0	80	$\mu \mathrm{s}$	overhead
Chip Programming Time	-	12.6	50	s	Excludes system-level overhead
Program/Erase Cycle	100,000	-	-	cycle	-

Notes : • Typical Erase conditions $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=2.9 \mathrm{~V}$

- Typical Program conditions $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=2.9 \mathrm{~V}$, Data $=$ checker

TSOP (1) PIN CAPACITANCE

Parameter	Symbol	Condition	Value		Unit
			Typ	Max	
Input Capacitance	$\mathrm{C}_{\mathbb{N}}$	$\mathrm{V}_{\mathbb{N}}=0$	6.0	10.0	pF
Output Capacitance	C_{N}	$\mathrm{V}_{\text {OUT }}=0$	8.5	12.0	pF
Control Pin Capacitance	$\mathrm{C}_{\mathbb{N} 2}$	$\mathrm{~V}_{\mathbb{N}}=0$	8.0	11.0	pF
$\overline{\text { WP/ACC Pin Capacitance }}$	$\mathrm{C}_{\mathbb{N} 3}$	$\mathrm{~V}_{\mathbb{N}}=0$	9.0	12.0	pF

Notes: - Test conditions $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

- DQ15/A-1 pin capacitance is stipulated by output capacitance.

FBGA PIN CAPACITANCE

Parameter	Symbol	Condition	Value		Unit
			Typ	Max	
Input Capacitance	CIn	$\mathrm{V}_{\mathrm{IN}}=0$	6.0	10.0	pF
Output Capacitance	Cout	$\mathrm{V}_{\text {OUT }}=0$	8.5	12.0	pF
Control Pin Capacitance	Cin2	$\mathrm{V}_{\mathrm{IN}}=0$	8.0	11.0	pF
$\overline{\text { WP/ACC Pin Capacitance }}$	Сімз	$\mathrm{V}_{\mathrm{N}}=0$	9.0	12.0	pF

Notes: - Test conditions $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

- DQ ${ }_{15 / A-1}$ pin capacitance is stipulated by output capacitance.

- TIMING DIAGRAM

- Key to Switching Waveforms

WAVEFORM	INPUTS Must Be Steady	Will Be Steady		
	May Change from H to L	Will Change from H to L		
May				
Change				
from L to H			\quad	Will
:---				
Change				
from L to H				

1. Read Operation Timing Diagram

MBM29DL32TF/BF-70

2. Hardware Reset/Read Operation Timing Diagram

3. Alternate WE Controlled Program Operation Timing Diagram

Notes : •PA is address of the memory location to be programmed.

- PD is data to be programmed at byte address.
- $\overline{\mathrm{DQ}}_{7}$ is the output of the complement of the data written to the device.
- Dout is the output of the data written to the device.
- Figure indicates the last two bus cycles out of four bus cycle sequence.
- These waveforms are for the $\times 16$ mode. The addresses differ from $\times 8$ mode.

4. Alternate $\overline{\mathbf{C E}}$ Controlled Program Operation Timing Diagram

Notes : \bullet PA is address of the memory location to be programmed.

- PD is data to be programmed at byte address.
- $\overline{\mathrm{DQ}}_{7}$ is the output of the complement of the data written to the device.
- Dout is the output of the data written to the device.
- Figure indicates the last two bus cycles out of four bus cycle sequence.
- These waveforms are for the $\times 16$ mode. The addresses differ from $\times 8$ mode.

MBM29DL32TF/BF-70

5. Chip/Sector Erase Operation Timing Diagram

* : SA is the sector address for Sector Erase. Addresses $=555 \mathrm{~h}$ (Word) for Chip Erase.

Note : These waveforms are for the $\times 16$ mode. The addresses differ from $\times 8$ mode.
6. $\overline{\text { Data }}$ Polling during Embedded Algorithm Operation Timing Diagram

* : $\mathrm{DQ}_{7}=$ Valid Data (the device has completed the Embedded operation.)

7. Toggle Bit I during Embedded Algorithm Operation Timing Diagram

*: DQ6 stops toggling (the device has completed the Embedded operation).

MBM29DL32TF/BF-70

8. Bank-to-Bank Read/Write Timing Diagram

Note : This is example of Read for Bank 1 and Embedded Algorithm (program) for Bank 2.
BA1 : Address corresponding to Bank 1
BA2 : Address corresponding to Bank 2
9. DQ_{2} vs. DQ_{6}

MBM29DL32TF/BF-70

10. RY/ $\overline{\mathrm{BY}}$ Timing Diagram during Program/Erase Operations

11. $\overline{\mathrm{RESET}}, \mathrm{RY} / \overline{\mathrm{BY}}$ Timing Diagram

12. Timing Diagram for Word Mode Configuration

MBM29DL32TF/BF-70

13. Timing Diagram for Byte Mode Configuration

14. BYTE Timing Diagram for Write Operations

15. Sector Group Protection Timing Diagram

A20, A19, A18
A17, A16, A15
A14, A13, A12

$A_{6}, A_{3}, A_{2}, A_{0}$

MBM29DL32TF/BF-70

16. Temporary Sector Group Unprotection Timing Diagram

MBM29DL32TF/BF-70

17. Extended Sector Group Protection Timing Diagram

SPAX : Sector Group Address to be protected
SPAY : Next Sector Group Address to be protected
TIME-OUT : Time-Out window $=250 \mu \mathrm{~s}(\mathrm{Min})$
Note : A-1 is VIL on byte mode.

MBM29DL32TF/BF-70

18. Accelerated Program Timing Diagram

FLOW CHART

1. Embedded Program ${ }^{\text {TM }}$ Algorithm

EMBEDDED ALGORITHMS

Program Command Sequence (Address/Command) :

Notes: - The sequence is applied for $\times 16$ mode.

- The addresses differ from $\times 8$ mode.

MBM29DL32TF/BF-70

2. Embedded Erase ${ }^{\mathrm{TM}}$ Algorithm

EMBEDDED ALGORITHMS

Notes : • The sequence is applied for $\times 16$ mode.

- The addresses differ from $\times 8$ mode.

3. Data Polling Algorithm

VA = Address for programming
= Any of the sector addresses within the sector being erased during sector erase or multiple sector erases operation.
= Any of the sector addresses within the sector not being protected during chip erase operation.

* $: \mathrm{DQ}_{7}$ is rechecked even if $\mathrm{DQ}_{5}=$ " 1 " because DQ_{7} may change simultaneously with DQ_{5}.

MBM29DL32TF/BF-70

4. Toggle Bit Algorithm

*1 : Read toggle bit twice to determine whether it is toggling.
*2 : Recheck toggle bit because it may stop toggling as DQ5 changes to " 1 ".

5. Sector Group Protection Algorithm

* : A-1 is VIL in byte mode.

MBM29DL32TF/BF-70

6. Temporary Sector Group Unprotection Algorithm

*1 : All protected sector groups are unprotected.
*2 : All previously protected sector groups are reprotected.

7. Extended Sector Group Protection Algorithm

MBM29DL32TF/BF-70

8. Embedded Program ${ }^{\text {TM }}$ Algorithm for Fast Mode

FAST MODE ALGORITHM

Notes : • The sequence is applied for $\times 16$ mode.

- The addresses differ from $\times 8$ mode.

ORDERING INFORMATION

Part No.	Package	Access Time (ns)	Sector Architecture
MBM29DL32TF70TN	48-pin plastic TSOP (1) (FPT-48P-M19) (Normal Bend)	70	Top Sector
MBM29DL32TF70PBT	48-pin plastic FBGA (BGA-48P-M12)	70	
MBM29DL32BF70TN	48-pin plastic TSOP (1) (FPT-48P-M19) (Normal Bend)	70	
MBM29DL32BF70PBT	48-pin plastic FBGA (BGA-48P-M12)	70	

MBM29DL32TF/BF-70

PACKAGE DIMENSIONS

48-pin plastic TSOP (1)
(FPT-48P-M19)

Note 1) *: Values do not include resin protrusion.
Resin protrusion and gate protrusion are +0.15 (.006) Max (each side) .
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.

© 2003 FUJITSU LIMITED F48029S-c-6-7
Dimensions in mm (inches)
Note : The values in parentheses are reference values.
(Continued)

MBM29DL32TF/BF-70

(Continued)
48-pin plastic FBGA
(BGA-48P-M12)

© 2001 FUJTSU LIMTED B48012S-C-3.3
Dimensions in mm (inches)
Note : The values in parentheses are reference values.

FUJITSU LIMITED

Abstract

All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

